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Abstract. We use the methods of topological Hochschild homology to shed new light
on groups satisfying the Bass trace conjecture. Factorization of the Hattori-Stallings rank map
through the Bökstedt-Hsiang-Madsen cyclotomic trace map leads to Linnell’s restriction on
such groups. As a new consequence of this restriction, we show that the conjecture holds for
any group G wherein every subgroup isomorphic to the additive group of rational numbers has
nontrivial and central image in some quotient of G.

Introduction

Let A be a ring, let K0(A) be the projective class group, and let HH0(A) be the zeroth
Hochschild homology group defined by the quotient A/[A,A] of A by the additive subgroup
[A,A] generated by all elements of the form ab − ba with a, b ∈ A. The Hattori-Stallings
rank [16, 31], also known as the Hattori-Stallings trace, is the map

r : K0(A) −→ HH0(A)

that takes the class of the finitely generated projective right A-module P to the image r(P ) of
the identity endomorphism of P by the trace homomorphism

HomA(P, P ) P ⊗A HomA(P,A)∼oo ev // A/[A,A].

Let G be a discrete group, and let Z[G] be the integral group ring of G. In this case, the group
HH0(Z[G]) is canonically isomorphic to the free abelian group generated by the set C(G) of
conjugacy classes of elements in G. Hence, we can write r(P ) uniquely as

r(P ) =
∑

[g]∈C(G)

r(P )(g)[g]

with r(P )(g) ∈ Z. It was conjectured by Bass [2, Strong Conjecture] that r(P )(g) is always
zero, unless g = 1, and it is this conjecture that we refer to as the Bass trace conjecture.
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In this paper, we consider the following factorization of the Hattori-Stallings rank through
the cyclotomic trace map of Bökstedt-Hsiang-Madsen [6].

K0(A) tr // TR0(A) // HH0(A)

The middle group is equipped with operators Fs called the Frobenius operators, one for every
positive integer s, and the image of the cyclotomic trace map is contained in the subgroup fixed
by all Frobenius operators. In the case A = Z[G], we show that this leads to the following
restriction on the elements g ∈ G for which the Hattori-Stallings rank r(P )(g) can be nonzero.

Theorem A. Let G be a group, let g ∈ G and suppose that r(P )(g) 6= 0, for some
finitely generated projective Z[G]-module P . Then there exists a positive integer m = m(g)
such that for all positive integers s, the elements g and gsm

are conjugate.

This restriction is not new, but was found earlier by P. A. Linnell [21, Lemma 4.1] by
very different methods, using work of G. H. Cliff [7] on matrices over group rings. Strictly
speaking, the statement we prove is stronger than Linnell’s statement, in that in Theorem A,
as in Emmanouil [11, Theorem 3.32], we have m = m(g) (independently of s) whereas the
original proofs presented in [21, Lemma 4.1] and [32] yield only that m = m(g, s). A well-
known consequence of the restriction is that if a nontrivial element g has r(P )(g) 6= 0, then g
lies in a subgroup isomorphic to the additive group of rationals Q. We present the following
stronger, new consequence.

Theorem B. Let G be a group such that every subgroup of G that is isomorphic to Q
has nontrivial and central image in some quotient of G. Then the Bass trace conjecture holds
for the group G.

In particular, the Bass trace conjecture holds for any group such that the intersection of
the transfinite lower central series contains no copy of Q. This is proved in Section 3 below,
where other consequences are explored, including the relation between the strong and weak
forms of the Bass trace conjecture; the weak form asserts that

∑
[g]∈C(G)r{[1]} r(P )(g) = 0.

Below, we use simplicial and cyclic sets and their geometric realization. We use the
notation X[−] to indicate a simplicial or cyclic set with set of n-simplices X[n] and refer the
reader to [22, Chapter 7] and [8] for the properties of its geometric realization |X[−]|.

1. The cyclotomic trace map

In this section, we recall the cyclotomic trace map and give a thorough treatment of the
factorization of the Hattori-Stallings rank through said map. We begin with a discussion of the
groups TRr

q(A) and of the operators that relate these groups as the integers r > 1 and q vary.
The reader is referred to [18, Section 1] for further details. The definition of these groups given
in loc. cit. uses very large constructions. The advantage of this is that the various maps that we
need all have good point-set level models.

Let C be a (small) exact category in the sense of Quillen [27, §2], and let K(C ) be
the algebraic K-theory spectrum as defined by Waldhausen [33, Section 1.3], the definition
of which depends on a choice of null-object 0 in C . As pointed out in [13, Section 6], the
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spectrum K(C ) is a symmetric spectrum in the sense of [20]. The algebraic K-groups of C
are defined to be the homotopy groups

Kq(C ) = [Sq,K(C )]

given by the set of maps in the homotopy category of symmetric spectra from the suspension
spectrum of the sphere Sq (which, by abuse of notation, we again denote by Sq) to the algebraic
K-theory spectrum K(C ). For later use, we notice that the zeroth space of the symmetric
spectrum K(C ) is defined to be the geometric realization

K(C )0 = |N(iC )[−]|

of the nerve of the subcategory iC of isomorphisms in C . There is a canonical map

σ : πq(K(C )0) −→ Kq(C )

from the homotopy groups of the zeroth space with the chosen null-object 0 as the basepoint
to the homotopy groups of the K-theory spectrum. It is not an isomorphism, except in trivial
cases, but if C is split-exact, then it is a group-completion for q = 0.

We let T be the circle group given by the multiplicative group of complex numbers of
modulus 1. We use the model of the topological Hochschild T-spectrum T (C ) which is given
in [18, Section 1.2] and which produces a symmetric orthogonal T-spectrum in the sense of [19,
23]; it is based on the Dundas-McCarthy model [9, Section 2.1.7] generalizing Bökstedt’s
original construction [5] from rings to exact categories. The symmetric spectrum structure is
used to construct the cyclotomic trace map, and the orthogonal spectrum structure is used to
define the maps Rs, Fs, and Vs which we now explain. First, for every positive integer r, the
group TRr

q(C ) is defined to be the equivariant homotopy group

TRr
q(C ) = [Sq ∧ (T/Cr)+, T (C )]T

given by the set of maps in the homotopy category of symmetric orthogonal T-spectra from the
suspension T-spectrum of the pointed T-space Sq ∧ (T/Cr)+ to T (C ). Here Cr ⊆ T denotes
the subgroup of order r and the subscript “+” indicates the addition of a disjoint basepoint. If
s divides r, then there are natural additive maps

Rs : TRr
q(C ) −→ TRr/s

q (C ) (restriction)

Fs : TRr
q(C ) −→ TRr/s

q (C ) (Frobenius)

Vs : TRr/s
q (C ) −→ TRr

q(C ) (Verschiebung).

The map Fs is induced by the canonical projection fs : T/Cr/s → T/Cr, and the map Vs is
induced by the associated transfer map vs : Sq ∧ (T/Cr)+ → Sq ∧ (T/Cr/s)+. The definition
of the map Rs is more subtle and uses the so-called cyclotomic structure of T (C ). We briefly
recall the definition and refer to [17, Section 2] for details. In general, if T is a symmetric
orthogonal T-spectrum, then the geometric Cs-fixed point spectrum ΦCsT is a symmetric or-
thogonal T/Cs-spectrum. In the special case of a suspension T-spectrum Sq ∧ X , there is a
canonical weak equivalence of symmetric orthogonal T/Cs-spectra

is : Sq ∧ (XCs) ∼−→ ΦCs(Sq ∧X).
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The group isomorphism ρs : T → T/Cs defined by the s th root gives rise to a change-of-
groups functor ρ∗s from the category of symmetric orthogonal T/Cs-spectra to the category of
symmetric orthogonal T-spectra. In particular, we obtain the symmetric orthogonal T-spectrum
ρ∗sΦ

CsT . Now, the cyclotomic structure of the topological Hochschild T-spectrum T (C ) is a
collection of compatible weak equivalences

rs : ρ∗sΦ
CsT (C ) −→ T (C )

of symmetric orthogonal T-spectra, one for every positive integer s, and the restriction map

Rs : TRr
q(C ) −→ TRr/s

q (C )

is defined to be the composition

[Sq ∧ (T/Cr)+, T (C )]T
ΦCs

// [ΦCs(Sq ∧ (T/Cr)+),ΦCsT (C )]T/Cs

ρ∗s // [ρ∗sΦ
Cs(Sq ∧ (T/Cr)+), ρ∗sΦ

CsT (C )]T
rs∗ // [Sq ∧ (T/Cr/s)+, T (C )]T

of the geometric Cs-fixed point functor, the change-of-groups isomorphism ρ∗s , and the isomor-
phism induced by the weak equivalences ρ∗sis and rs. We record the following basic properties
of the maps Rs, Fs, and Vs.

Lemma 1.1. Let r, s, and t be positive integers, and let d = (s, t) be the greatest
common divisor. The following relations (i)–(iv) hold.

(i) The maps R1, F1, V1 : TRr
q(C )→ TRr

q(C ) are the identity maps.

(ii) If st divides r, then

Rs ◦Rt = Rst : TRr
q(C ) −→ TRr/st

q (C )

Fs ◦ Ft = Fst : TRr
q(C ) −→ TRr/st

q (C )

Vs ◦ Vt = Vst : TRr/st
q (C ) −→ TRr

q(C )

Rs ◦ Ft = Ft ◦Rs : TRr
q(C ) −→ TRr/st

q (C )

Rs ◦ Vt = Vt ◦Rs : TRr/t
q (C ) −→ TRr/s

q (C )

(iii) If both s and t divide r, then

Fs ◦ Vt = dVt/d ◦ Fs/d : TRr/t
q (C ) −→ TRr/s

q (C ).

(iv) If both s and t but not st divide r, then

Rs ◦ Vt = 0: TRr/t
q (C ) −→ TRr/s

q (C ).

Proof. The statements (i)–(iii) are immediate consequences of the definitions and of [17,
Proposition 3.2]; compare loc. cit., Lemma 3.3. To prove (iv), we consider the diagram

[Sq ∧ (T/Cr/t)+, T (C )]T
ΦCs

//

Vt=v∗t
��

[ΦCs(Sq ∧ (T/Cr/t)+),ΦCsT (C )]T/Cs

(ΦCsvt)∗

��

[Sq ∧ (T/Cr)+, T (C )]T
ΦCs

// [ΦCs(Sq ∧ (T/Cr)+),ΦCsT (C )]T/Cs
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which commutes since ΦCs is a functor. Moreover, since s was assumed not to divide r/t, the
fixed set (T/Cr/t)Cs is empty. It follows that the upper right-hand term in the diagram is zero,
which proves (iv).

For completeness, we note that TRr
q(C ) is a module over the ring W〈r〉(Z) of big Witt

vectors in Z indexed on the set 〈r〉 of divisors in r, and that if s divides r, then

Vs ◦ Fs : TRr
q(C ) −→ TRr

q(C )

is equal to multiplication by the element Vs(1) ∈ W〈r〉(Z). This fact, however, is not used in
this paper. On the other hand, we need the following result.

Proposition 1.2. Let r be a positive integer, let p be a prime number dividing r, and
write r = pud with d not divisible by p. In this situation, the sequence

TRd
0(C )

Vpu
// TRr

0(C )
Rp

// TRr/p
0 (C ) // 0

is exact.

Proof. As a particular case of [1, Proposition 1.1] with q = 0, v = 1, and λ = 0, we
have the exact sequence

H0(Cpu ,TRd(C ))
Npu

// TRr
0(C )

Rp
// TRr/p

0 (C ) // 0.

The left-hand term is the 0th Borel homology group of Cpu with coefficients in the symmetric
orthogonal T-spectrum TRd(C ) = ρ∗d(T (C )Cd) and is defined by

Hq(Cpu ,TRd(C )) = [Sq ∧ (T/Cpu)+, E+ ∧ ρ∗d(T (C )Cd)]T,

where E is a free T-CW-complex whose underlying space is contractible. If E′ is another
such T-CW-complex, then there is a T-homotopy equivalence f : E → E′, the T-homotopy
class of which is unique, and hence, the Borel homology group is well-defined up to canonical
isomorphism. The skeleton filtration of E gives rise to a first quadrant spectral sequence

E2
s,t = Hs(Cpu ,TRd

t (C ))⇒ Hs+t(Cpu ,TRd(C ))

from the group homology of Cpu with coefficients in the trivial Cpu-module TRd
t (C ). In

particular, the edge homomorphism defines an isomorphism

TRd
0(C ) = H0(Cpu ,TRd

0(C )) ∼ // H0(Cpu ,TRd(C )).

Finally, as was noted in [17, Lemma 3.2], the composition of the edge homomorphism and the
left-hand map Npu in the exact sequence at the top of the proof is equal to the Verschiebung
map Vpu . This completes the proof.

We next recall the cyclotomic trace map of Bökstedt-Hsiang-Madsen [6], but use the
technically better construction given by Dundas-McCarthy [9]. The T-fixed point spectrum
T (C )T is a symmetric orthogonal spectrum. We further replace the symmetric spectrum K(C )
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by its suspension symmetric orthogonal spectrum which we again write K(C ); compare [19].
There is a natural map of symmetric orthogonal spectra

τ : K(C ) −→ T (C )T

given by the canonical map defined in [18, p. 14, middle]. Now the cyclotomic trace map is
defined to be the natural additive map

trr : Kq(C ) −→ TRr
q(C )

given by the composition

[Sq,K(C )] τ∗−→ [Sq, T (C )T] ∼−→ [Sq ∧ (T/T)+, T (C )]T
p∗r−→ [Sq ∧ (T/Cr)+, T (C )]T

of the map induced by the map τ , the canonical isomorphism, and the map induced by the
canonical projection pr : T/Cr → T/T. The next result is essential for our purposes here.

Lemma 1.3. If r and s are positive integers with s dividing r, then

Fs ◦ trr = trr/s = Rs ◦ trr : Kq(C ) −→ TRr/s
q (C ).

Proof. The left-hand equality follows immediately from the definitions since

pr ◦ fs = pr/s : T/Cr/s −→ T/T.

Similarly, the right-hand equality follows from the definition of the restriction map, which we
recalled above, since the diagram

Sq ∧ (T/Cr/s)+
pr/s

//

is
��

Sq ∧ (T/T)+

is
��

ρ∗sΦ
Cs(Sq ∧ (T/Cr)+)

ρ∗sΦCspr
// ρ∗sΦ

Cs(Sq ∧ (T/T)+)

commutes.

We next recall the definition of the (0, 0) th space of T (C ), which we use below. The
cyclic nerve of the exact category C or, more generally, of any (small) category C enriched in
pointed sets is defined to be the cyclic pointed set N cy(C )[−] with n-simplices

N cy(C )[n] =
∨

(P0,...,Pn)

HomC (P1, P0) ∧HomC (P2, P1) ∧ · · · ∧HomC (P0, Pn),

the wedge sum ranging over (n + 1)-tuples of objects of C , and with cyclic structure maps

di(f0 ∧ · · · ∧ fn) =

{
f0 ∧ · · · ∧ fi ◦ fi+1 ∧ · · · ∧ fn if 0 6 i < n

fn ◦ f0 ∧ · · · ∧ fn−1 if i = n

si(f0 ∧ · · · ∧ fn) =

{
f0 ∧ · · · ∧ fi ∧ idPi+1 ∧fi+1 ∧ · · · ∧ fn if 0 6 i < n

f0 ∧ · · · ∧ fn ∧ idP0 if i = n

tn(f0 ∧ · · · ∧ fn) = fn ∧ f0 ∧ f1 ∧ · · · ∧ fn−1.
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We also define N (C )[k] be the category of functors from the category [k] generated by the
graph 0← 1← · · · ← k and define N i(C )[k] to be the full subcategory whose objects are all
functors P : [k]→ C that take morphisms in [k] to isomorphisms in C . In particular,

ob(N i(C )[k]) = N(iC )[k],

but morphisms in N i(C )[k] need not be isomorphisms. The cyclic nerve of N i(C )[k] is a
cyclic pointed set, covariantly functorial in [k]. Hence, the collection of these cyclic pointed
sets form a simplicial cyclic pointed set N cy(N i(C )[−])[−], and

T (C )(0,0) = |N cy(N i(C )[−])[−]|

is defined to be the geometric realization. Again, there is a canonical map

σr : πq((T (C )(0,0))
Cr) −→ TRr

q(C )

from the equivariant homotopy groups of the (0, 0) th space to the equivariant homotopy groups
of the symmetric orthogonal T-spectrum T (C ), and this map, too, is typically not a bijection.
We note that, while the definition of the domain of this map uses only the underlying category
enriched in pointed sets of the exact category C , the definition of the target uses the exact
category structure. We also note that, on (0, 0) th spaces, the map tr1 is induced by the map

tr1 : ob(N i(C )[−]) −→ N cy(N i(C )[−])[0]

that to an object P associates its identity morphism idP .
We recall that McCarthy [24] has defined the Hochschild homology of a (small) exact

category C . Proceeding as in [18, Section 1.2], this construction gives rise to a symmetric
orthogonal T-spectrum HH(C ), whose equivariant homotopy groups we write

HHr
q(C ) = [Sq ∧ (T/Cr)+,HH(C )]T.

There is no cyclotomic structure on HH(C ), however, and the groups HHr
q(C ) with r > 1

appear to be of little use. Hence, we consider only the groups HHq(C ) = HH1
q(C ) which are

McCarthy’s Hochschild homology groups of C . To define the (0, 0) th space, we recall that the
additive cyclic nerve N cy

⊕ (C )[−] is the cyclic abelian groups with n-simplices

N cy
⊕ (C )[n] =

⊕
(P0,...,Pn)

HomC (P1, P0)⊗HomC (P2, P1)⊗ · · · ⊗HomC (P0, Pn)

and with the cyclic structure maps defined as for the cyclic nerve, replacing smash products by
tensor products. Now the (0, 0) th space of HH(C ) is defined to be the geometric realization

HH(C )(0,0) = |N cy
⊕ (N i(C )[−])[−]|

of the indicated simplicial cyclic abelian group. There is a canonical map

σ1 : πq(HH(C )(0,0)) −→ HHq(C )

from the (equivariant) homotopy groups of the (0, 0) th space to the (equivariant) homotopy
groups of the symmetric orthogonal T-spectrum HH(C ), but in contrast to K(C ) and T (C ),
it follows from [24, Corollary 3.3.4] that this map is an isomorphism, if C is split-exact.
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Finally, there is a canonical map of symmetric orthogonal T-spectra

` : T (C ) −→ HH(C )

called the linearization map that on (0, 0) th spaces is induced by the map

` : N cy(N i(C )[−])[−] −→ N cy
⊕ (N i(C )[−])[−]

of simplicial cyclic pointed sets that to f0 ∧ · · · ∧ fn associates f0 ⊗ · · · ⊗ fn and replaces
wedge sums by direct sums; compare [10, Definition IV.1.3.5]. To summarize the situation, we
have the following commutative diagram, which we need only in the case q = 0.

(1.4) πq(K(C )0)
tr1 //

σ

��

πq(T (C )(0,0))
` //

σ1

��

πq(HH(C )(0,0))

σ1

��

Kq(C )
tr1 // TR1

q(C ) ` // HHq(C )

The lower right-hand horizontal map is an isomorphism, for q 6 1; see loc. cit. Moreover, if
the exact category C is split-exact, then the right-hand vertical map is an isomorphism, for all
q > 0, and the left-hand vertical map is a group-completion, for q = 0.

We now specialize to the case where C = P(A) is the (split-)exact category of finitely
generated projective right modules over a unital associative ring A. We define

Kq(A) = Kq(P(A)), TRr
q(A) = TRr

q(P(A)), HHq(A) = HHq(P(A)).

The map left-hand vertical map σ in (1.4) induces an isomorphism of the projective class group
of A onto the group K0(A). Moreover, we have canonical isomorphisms

A/[A,A]
j

// π0(HH(P(A))(0,0))
σ1 // HH0(P(A))

which justifies our writing HH0(A) for the right-hand group. Here, the map j takes the class
of a ∈ A to the class of the map of right A-modules la : A → A defined by la(b) = ab, and
its inverse takes the class of f ∈ HomA(P0, P0) to the trace tr(f) ∈ A/[A,A]. We refer the
reader to [24, Proposition 2.4.3] for further discussion.

We record the following result. Henceforth, we refer to the composite map in the state-
ment as the Hattori-Stallings rank.

Lemma 1.5. The following composite map agrees, under the above identification of its
target group with A/[A,A], with the Hattori-Stallings rank.

K0(A)
tr1 // TR1

0(A) ` // HH0(A)

Proof. Comparing definitions, we see that it suffices to show that the composition of the
top horizontal maps in (1.4) takes the class of P to the class of idP . It does.

It follows from Lemmas 1.1 and 1.3 that the maps trr define a map

tr : K0(A) −→ TR0(A) = lim
r

TRr
0(A)
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to the inverse limit with respect to the restriction maps, the limit indexed by set of the positive
integers ordered under division. Moreover, it follows from Lemma 1.1 that the collection of
Frobenius maps Fs : TRr

0(A)→ TRr/s
0 (A) induces a Frobenius map

Fs : TR0(A) −→ TR0(A)

and that these maps, in turn, define an action of the multiplicative monoid of positive integers N
on TR0(A). We write TR0(A)N for the subgroup of elements fixed by the N-action. Finally,
Lemma 1.3 shows that the image of the map tr is contained in TR0(A)N ⊆ TR0(A), and
Lemma 1.5 shows that the Hattori-Stallings rank is equal to the composite map

K0(A) tr // TR0(A)N i // TR0(A)
pr1 // TR1

0(A) ` // HH0(A),

where i is the canonical inclusion. This factorization of the Hattori-Stallings rank map leads to
restrictions on its image, as we next see.

The cyclotomic structure map rs : ρ∗sΦ
CsT (C )→ T (C ), on the level of (0, 0) th spaces,

is a T-equivariant homeomorphism, the inverse of which is given by the composition of the
homeomorphisms ∆r and Dr defined in [6, Sections 1–2]. In particular, the middle left-hand
horizontal map in the following diagram is a bijection. We use this fact in the case A = Z[G]
and C = P(A), where we consider the commutative diagram

(1.6) C(G) i //

j

��

A/[A,A]

j∼
��

π0((T (C )(0,0))Cs)
rs

∼
//

σs

��

π0(T (C )(0,0))
` //

σ1

��

π0(HH(C )(0,0))

σ1∼
��

TRs
0(C )

Rs // TR1
0(C ) `

∼
// HH0(C )

in which the top middle vertical map j takes the class of g ∈ G to the class of the map of right
A-modules lg : A → A defined by lg(b) = gb, and the top vertical map i is induced by the
canonical inclusion of G in A. We define the natural set map

[−]s : C(G) −→ TRs
0(A)

to be the composition of the map j, the inverse of the map rs, and the map σs.

Lemma 1.7. Let G be a group. For every g ∈ G, and every divisor t of r,

Rt([g]r) = [g]r/t, Ft([g]r) = [gt]r/t.

Proof. The first statement is immediate from the definitions, and the second statement
follows from the definitions and [17, Lemma 3.3, p. 54].

It follows from (1.6) that the map [−]1 induces an isomorphism from the free abelian
group generated by C(G) onto the group TR1

0(Z[G]). We have the following generalization.

Proposition 1.8. Let G be a group, and let r be a positive integer. The abelian group
TRr

0(Z[G]) is free with a basis consisting of the elements Vt([g]r/t), where t and [g] range over
the divisors of r and the elements of C(G), respectively.
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Proof. The proof is by induction on r; the case r = 1 was established above. So we fix
r and assume that the statement holds for all proper divisors of r. We choose a prime p that
divides r and consider the exact sequence

TRd
0(Z[G])

Vpu
// TRr

0(Z[G])
Rp

// TRr/p
0 (Z[G]) // 0

from Proposition 1.2 with r = pud and d not divisible by p. It will suffice to show that the
left-hand map Vpu is injective. But it follows from Lemma 1.1 that the composite map

TRd
0(Z[G])

Vpu
// TRr

0(Z[G])
Fpu

// TRd
0(Z[G])

is equal to multiplication by pu, and since the group TRd
0(Z[G]), inductively, is a free abelian

group, we conclude that Vpu is injective as desired.

We use Proposition 1.8 to evalute the group TR0(Z[G]) which, we recall, is defined to
be the inverse limit of the groups TRr

0(Z[G]) with respect to the restriction maps. To this end,
we abuse notation and write [g] for the element ([g]r) of TR0(Z[G]). We also remark that the
maps Vt : TRr/t

0 (Z[G])→ TRr
0(Z[G]) give rise to a map Vt : TR0(Z[G])→ TR0(Z[G]).

Corollary 1.9. Every element a ∈ TR0(Z[G]) admits a unique expression as a series

a =
∑

at,[g]Vt([g])

where t and [g] range over the positive integers and the conjugacy classes of elements in G,
respectively, and where at,[g] are integers with the property that for every positive integer t, the
coefficient at,[g] is nonzero for only finitely many [g] ∈ C(G).

Proof. By Proposition 1.8, each group TRr
0(Z[G]) in the inverse limit is a free abelian

group with a basis consisting of the elements Vt([g]r/t), where t and [g] range over the divisors
of r and the conjugacy classes of elements in G, respectively. Moreover, if s divides r, then
Lemmas 1.1 and 1.7 show that the restriction map

Rs : TRr
0(Z[G]) −→ TRr/s

0 (Z[G])

is equal to the Z-linear map given by

Rs(Vt([g]r/t)) =

{
Vt([g]r/st) if st divides r,
0 otherwise.

We see that the statement follows, since Vt([g]) ∈ TR0(Z[G]) is the unique element that
projects to Vt([g]r/t) ∈ TRr

0(Z[G]), if t divides r, and to 0 ∈ TRr
0(Z[G]), otherwise.

2. Proofs of Theorems A and B

We first use the factorization of the Hattori-Stallings rank map through the cyclotomic
trace map to prove the slightly strengthened version of Linnell’s theorem [21, Lemma 4.1] that
we stated as Theorem A in the introduction.
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Proof of Theorem A. Let P be a finitely generated projective Z[G]-module. We may
write the Hattori-Stallings rank of P uniquely as

r(P ) = a0[1] + a1[g1] + · · ·+ an[gn],

where [1], [g1], . . . , [gn] are distinct elements of C(G), where a0 is an arbitrary integer, and
where a1, . . . , an are nonzero integers. Let m be the minimal exponent of the symmetric group
on n letters (the least common multiple of {1, 2, 3, . . . , n}). We claim that

[gi] = [gsm

i ]

for all positive integers s and for i = 1, 2, . . . , n. This will prove the theorem. To prove the
claim, we consider the image a = tr(P ) ∈ TR0(Z[G]) by the cyclotomic trace map. We write
the element a uniquely as a series

a =
∑

at,[g]Vt([g])

as in the statement of Corollary 1.9. By Lemma 1.5, we have `(pr1(a)) = r(P ), which shows
that the coefficient a1,[g] is equal to ai, if [g] = [gi], and zero, otherwise. Since a is in the image
of the cyclotomic trace map, we have from Lemma 1.3 that a = Fs(a), for all positive integers
s. Let s = p be a prime number. In this case, we have by Lemma 1.1 that

Fp(a) =
∑

at,[g]Vt([gp]) +
∑

pat,[g]Vt/p([g]),

where, in the left-hand sum, t ranges over all positive integers prime to p, where, in the right-
hand sum, t ranges over all positive integers divisible by p, and where, in both sums, [g] ranges
over the conjugacy classes of elements in G. We note that the generators Vt/p([g]) that appear
in the right-hand sum are pairwise distinct, while the generators Vt([gp]) that appear in the
left-hand sum need not be distinct. In particular, every generator of the form Vt/p([g]) with
t divisible by p2 appears only in the right-hand sum and appears with the coefficient pat,[g].
Therefore, the equation a = Fp(a) implies that, for t divisible by p2,

at/p,[g] = pat,[g].

Equivalently, on writing t = pu, we have that, for u divisible by p,

au,[g] = papu,[g].

Iterating this equation, we find that, for u divisible by p, the coefficient au,[g] can be divided by
p arbitrarily often, and therefore, is equal to zero. Since this is true for all prime numbers p, we
conclude that the coefficient at,[g] is equal to zero, unless t = 1. Hence,

a = a0[1] + a1[g1] + · · ·+ an[gn],

and by Lemma 1.7, the equation a = Fs(a) becomes

a0[1] + a1[g1] + · · ·+ an[gn] = a0[1] + a1[gs
1] + · · ·+ an[gs

n].

It follows, by the uniqueness of this expression, that for every positive integer s, the map

ϕs : C(G) −→ C(G)

that takes [g] to [gs] restricts to a bijection ϕs|S of the subset S = {[g1], . . . , [gn]} onto itself.
But (ϕs|S)m = idS , by the definition of m, so the claim follows.
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Corollary 2.1. Let g be a nontrivial element of the group G for which there exists a
finitely generated projective Z[G]-module P with r(P )(g) 6= 0. In this situation, the element g
lies in a subgroup C of G that:

(i) is isomorphic to Q,

(ii) is generated by conjugates of g,

(iii) is contained in a finitely generated subgroup H of G,

(iv) has its elements lying in finitely many H-conjugacy classes, and

(v) has normal closure the subgroup [G, C] = [G, g] of G generated by all commutators of
the form [h, g] with h ∈ G.

Proof. Parts (i)–(iv) may be found in [21, Lemma 4.1] and [12, Theorem 3.32]; only
part (v) is new. By Theorem A, there exists a positive integer m such that

[g] = [gsm
],

for every positive integer s. In particular, we set s = 2m− 1 so that (2m− 1, sm− 1) = 1, and
choose integers k and l such that

k(2m − 1) + l(sm − 1) = 1.

Now, there exist elements x, y ∈ G such that g2m
= xgx−1 and gsm

= ygy−1, or equivalently,
such that g2m−1 = [x, g] and gsm−1 = [y, g]. Therefore,

g = [x, g]k[y, g]l.

This shows that g ∈ [G, g]. Therefore, the smallest normal subgroup of G that contains g,
namely 〈g〉[G, 〈g〉], reduces to [G, g]. By (ii) above, C ⊆ [G, g] = [G, C], which is thereby
also the normal closure of C.

Proof of Theorem B. Let g ∈ G be a nontrivial element for which there exists a finitely
generated projective Z[G]-module P with r(P )(g) nontrivial, and let C ⊆ G be the subgroup
specified in Corollary 2.1. We must show that if N ⊆ G is a normal subgroup and if the image
C̄ of C in G/N is contained in the center, then that image is necessarily trivial. Now, by the
assumption on C, we have [G/N, C̄ ] = 1. Hence,

C ⊆ [G, g] = [G, C] ⊆ N

which shows that the image C̄ in G/N is trivial as desired.

3. Further consequences

In this section, we explore some consequences of the main theorems.
We recall that the lower central series of the group G is defined to be the descending

sequence of subgroups
G = G1 ⊇ G2 ⊇ · · · ⊇ Gn ⊇ · · ·
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with Gn = [G, Gn−1]. We write Gω =
⋂

n>1 Gn, and recall that the group G is defined to be
residually nilpotent if Gω is trivial. Continuing, the transfinite lower central series is defined
as follows. For a successor ordinal α + 1, we have Gα+1 = [G, Gα], while, for a limit ordinal
β, we have Gβ =

⋂
α<β Gα. The series stabilizes once α is larger than the cardinality of G.

Its intersection is sometimes called the relatively perfect radical, and is the maximal subgroup
P ⊆ G with the property that P = [G, P ]. From the five-term homology exact sequence, it is
the maximal subgroup P such that the canonical projection G→ G/P induces an epimorphism
on H2(−, Z) and an isomorphism on H1(−, Z). For further discussion of this group, see [29].

Corollary 3.1. Suppose that the intersection P of the transfinite lower central series of
the group G does not contain a subgroup isomorphic to Q. Then the group G satisfies the Bass
trace conjecture.

Proof. We show that G satisfies the hypothesis of Theorem B. So let D ⊆ G be a sub-
group isomorphic to Q and let N ⊆ G be the normal closure of D. We have [G, N ] ⊆ N , and
if also N ⊆ [G, N ], then the subgroup N , and hence D, would be contained in the intersection
of the lower transfinite central series, contradicting our hypothesis on G. So we conclude that
N , and hence D, have nontrivial image in G/[G, N ]. Since this image is central, the hypothesis
of Theorem B is fulfilled, as was to be shown.

The class of groups with the property of Corollary 3.1 of course includes all hypocen-
tral groups (those where the intersection of the transfinite lower central series is trivial), and
so in particular all residually nilpotent groups. Previously, it was shown by Emmanouil [11]
that residually nilpotent groups satisfy the Bass trace conjecture, if they are of finite rational
homological dimension. However, as Guido Mislin has kindly pointed out (private communi-
cation), because of Proposition 3.8 (i) below, to affirm the conjecture for all residually nilpotent
groups, it suffices to check it for all finitely generated residually nilpotent groups. Such groups
are residually finitely generated nilpotent, and hence, contain no divisible elements, because
all subgroups of finitely generated nilpotent groups are finitely generated. Thus, the Bass trace
conjecture for residually nilpotent groups follows from Theorem A. For further example of
groups whose satisfaction of the Bass trace conjecture follows from Theorem A, we have the
following.
Example 3.2. The mapping class group Γg of a smooth orientable closed surface of genus g > 3
is a finitely generated perfect group. Therefore, every element of Γg lies in the intersection of
the transfinite lower central series. However, Γg contains no copy of Q because it is residually
finite [14]. Hence, the Bass trace conjecture holds for this group; see also [25, Corollary 7.17].
Example 3.3. We let G = SL(2, Q) and consider the elements

g =

(
1 1
0 1

)
h =

(
a b

c d

)
.

The calculation

gk =

(
1 k

0 1

)
hgh−1 =

(
1− ac a2

−c2 1 + ac

)
shows that gk is conjugate to g if and only if k is a square. In particular, for every positive
integer r, we have

[g] = [gr2
].



14 Berrick and Hesselholt, Topological Hochschild homology

So the element g satisfies the conclusion of Theorem A with m(g) = 2. Now, the element g
clearly lies in the subgroup

D =

{(
1 x

0 1

)
| x ∈ Q

}
,

which is isomorphic to Q. Nevertheless, we may conclude from Corollary 2.1 that the Bass
trace conjecture holds for G. Indeed, since G is a linear group, it follows from [2, Theorem 9.6]
that for every finitely generated subgroup H ⊆ G, the divisible elements in H have finite order.
Therefore, the group G does not contain any subgroup C that satisfies both of the properties (i)
and (iii) of Corollary 2.1. (For an alternative route, using (v) of Corollary 2.1, we can use
the well-known fact that finitely generated linear groups are residually nilpotent, a situation
discussed above. The affirmation of the Bass trace conjecture for the general case of linear
groups then follows from Proposition 3.8 below. Of course, it was also established in Bass’
original paper [2].)

That the groups in the next example satisfy the Bass trace conjecture does not evidently
follow from Theorem A, because they contain numerous subgroups isomorphic to Q.
Example 3.4. Let F be a field of characteristic zero, and let Λ be a well-ordered set. In this
situation, the McLain group M(Λ; F ) is known to be hypocentral [28, Theorem 6.22], and so,
by Corollary 3.1 satisfies the Bass trace conjecture.

Next, we have two examples with m(g) = 1.
Example 3.5. As pointed out in [30], the conclusion of Theorem A holds for the following
group of P. Hall [15] with m = 1. First, index all prime numbers pn by the set of integers.
Let C be the direct sum of countably many copies of Q, again indexed by the set of integers.
Now let W be the group generated by elements ξ, η subject only to the requirement that all
conjugates of η commute; write A for the abelian group that they generate. Hall’s finitely
generated group H is the semidirect product formed by letting ξ act on C by shifting the nth
copy of Q to the (n + 1)th copy and by letting η act on all elements of the nth copy of Q by
raising to the pnth power. The commutator subgroup H ′ is the semidirect product of C and
A, while H ′′ = C is a minimal normal subgroup of H . Thus, the subgroup C satisfies all of
Corollary 2.1. Nevertheless, the Bass trace conjecture holds for H since it is soluble and hence
amenable [4].
Example 3.6. By [26, Corollary 1.2], every countable torsion-free group can be embedded into
a (torsion-free) 2-generated group G with a unique nontrivial conjugacy class. In particular,
every element of g ∈ G satisfies the conclusion of Theorem A with m(g) = 1. If C ⊆ G is a
subgroup isomorphic to Q, then all the conditions of Corollary 2.1 hold with respect to g ∈ C
embedded in G (since obviously the conjugates of any nontrivial element generate the whole
group, making G simple). Since G has no quotient with nontrivial center, the hypothesis of
Theorem B fails to hold. It would be interesting to decide whether or not this group G satisfies
the Bass trace conjecture.
Example 3.7. It is observed in [3] that the Bass trace conjecture holds for all groups if and only
if it holds for all binate groups. Now, binate groups are perfect (indeed, acyclic, with every
element a commutator); and so again every element lies in the intersection of the transfinite
lower central series, whence Theorem B is not in general applicable.

In this context, it is worth recording the following known results on the class B of groups
for which the Bass trace conjecture holds. The reader may find the proofs of (i) and (ii) in [11,
Remark 1.5] and [12, Proposition 3.39], respectively.
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Proposition 3.8. The Bass trace conjecture holds for the group G, if either

(i) it holds for every finitely generated subgroup H ⊆ G, or

(ii) it holds for every proper subgroup H ⊆ G of finite index.

Thus, the class B is locally and virtually closed. However, it is not known whether
the class B is residually closed, that is, whether a group G with the property that for every
g ∈ G, there exists a group homomorphism f : G → G′ with G′ ∈ B and f(g) nontrivial is
necessarily in B. On the other hand, it is easy to verify that the class of all groups G in which
every divisible element maps nontrivially to the center of some quotient of G is a residually
closed class.

Finally, we make the following amusing observation concerning the relation between the
strong and weak forms of the Bass trace conjecture. (It is known that to affirm the weak Bass
trace conjecture for all groups, it suffices to do so for a single group, described in [3].)

Proposition 3.9. The strong form of the Bass trace conjecture holds for all groups if

(i) the class B of groups for which the strong form of the Bass trace conjecture holds is
closed under taking finitely generated subgroups; and

(ii) the weak form of the Bass trace conjecture holds for all finitely generated groups.

Proof. By Proposition 3.8 (i), it suffices to verify the strong Bass trace conjecture for
every finitely generated group G. Now, by [26, Theorem 1.1], the group G embeds in a finitely
generated group T in which any two elements of the same order are conjugate. But from
Corollary 2.1 applied to T , we know that for every finitely generated projective Z[T ]-module
P , all nontrivial elements x ∈ T with r(P )(x) nonzero have the same, infinite, order. Thus,
they lie in a single conjugacy class in T . Therefore, the assumption (ii) that the weak Bass
trace conjecture holds for T , implies that T ∈ B. Finally, from the assumption (i) applied to
the group T , we conclude that G ∈ B.
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