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Abstract 
A completely unsupervised mixture distribution network, 
namely the self-organising mixture network, is proposed 
for learning arbitrary density functions. The algorithm 
minimises the Kullback-Leibler information by means of 
stochastic approximation methods. The density functions 
are modelled as mixtures of parametric distributions 
such as Gaussian and Cauchy. The first layer oj the 
network is similur to the Kohonen's self-organising map 
(SOM), but with the parameters of the class conditional 
densities as the learning weights. The winning 
mechanism is based on muximum posterior probability, 
and the updatiq of weights can be limited to a s,mall 
neighbourhood around the winner. The second layer 
accumulates the responses of these local nodes, weighted 
by the learninlg mixing parameters. The network 
possesses simple structure and computation, yet yields 
fast and robust convergence. Experimental results are 
also presented. 

1. Introduction 

In a completely unsupervised situation where there is 
little or no prior knowledge about data properties except 
for the data samples themselves, the joint pattern 
distribution can be often considered or modelled as a 
mixture of some parametric forms such as Gaussians [ 11. 
Such a method has also provided a general strategy for 
designing and training a complex learning system and 
has extended thle single network approach to a modular 
architecture approach such as mixture of experts 
networks [2].  This prevides a trade-off between simple 
and limited parametric approaches and computational 
intensive nonpa rametric approaches. In some cases such 
as pattern classification, there is also a need for solving 
individual conditional distributions, which neither 
parametric nor non-parametric approaches are capable. 
The form of individual conditional densities or 
components of the mixture is usually assumed to be some 
popular functions, e.g. Gaussian, Cauchy, Laplace. The 

parameters for each component density, however, have to 
be derived solely from the data samples. Xu and Jordan 
[3] applied the expectation-maximisation (EM) method 
to this kind of problems, produced an EM algorithm for 
Gaussian mixtures and showed its advantages over other 
algorithms. Yin and Allinson have recently proposed a 
Bayesian SOM for solving Gaussian mixture problems, 
and have shown additional advantages (e.g. less local 
minima, and much faster convergence speed) over the 
EM algorithm [4, 51. 

In this paper, we extend and generalise the learning 
principle in the Bayesian SOM to any kind of mixture 
distributions. The resulting network, the self-organising 
mixture network (SOMN), combines the criterion of 
minimising the Kullback-Leibler information [6], stocha- 
stic approximation method, and the SOM [7] structure. 
The resulting algorithms require simple scalar and local 
calculation, and hence are computational efficient, 
converge fast, and have good noise tolerant properties. 

2. The Mixture Distribution and Unsupervi- 
sed Learning 

2.1. Mixture distributions 

The mixture model has been employed in many 
practical pattern classification applications, e.g. [ 1) and 
[2].  In a mixture model, each sample, x, from a d- 
dimensional input space, CkRRd, is assigned to one of K 
distinct classes, each of which has a prior probability P,. 
In each pattern class, samples are distributed according 
to a prescribed class-conditional probability density. The 
joint-probability density of data samples is given by [8] 

K 

~ ( X I O )  = Cpi  (xte, ) p ,  (1) 
i=l 

where pi (xl6, ) is the i-th class-conditional density, and 
8, are the sufficient statistics or parameter vector, for the 
i-th class-conditional density, i=l, 2, ... K .  @=(e,, e,, ... 
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0JT. Pi is the prior probability of the i-th class and is 
also called the mixing parameters or weights. For a 
Gaussian or Cauchy mixture, the conditional density has 
the following forms respectively, 

1 --(x-m,)~z;’(x-m,) 
e 2  (2) 

1 
pi (XI  e, ) = 

(27E)d’21Xi11’2 

where Oi={BiI,  Bi2}=(mi, Xi] are the mean vector and 
covariance matrix of the i-th Gaussian or Cauchy 
conditional density respectively. 

2.2. Maximum likelihood estimation and the EM 
algorithm 

For most unsupervised learning applications, only the 
form of their class-conditional density are known; the 
other parameters have to be learnt, unsupervised, from a 
set of N unlabelled independent samples, sZ={ x(l), x(2), 
.. .x(N) }. In these cases, maximising the joint-likelihood 

N 

(ML) of all observed samples, p(Ql0) = n p ( x ( k ) l @ ) ,  

may lead to a singular solution. When restricted to the 
largest finite maximum and Gaussian components, it 
results in some implicit equations for these parameters 
[SI. 

The EM algorithm is an iterative maximum 
likelihood procedure for parameter estimation under 
incomplete data or missing data situations [9]. Many 
problems can be viewed as instances of such situations. 
For example, in the unsupervised learning for the 
mixture distribution model, the input samples are 
incomplete, the missing data are the class-labels or 
indicator functions for each sample. By using the EM 
procedure, the marginal, or incomplete-data, likelihood 
is obtained by the average or expectation of the complete- 
data likelihood respect to the missing data under the 
current parameter estimates (E-step), then the new 
parameter estimates are obtained by maximising the 
marginal likelihood (M-step). The EM algorithm has 
been shown to be an iterative gradient ascent algorithm, 
in which the likelihood function exhibits no decrease 
after each iteration [9]. 

The EM method has been applied to unsupervised 
parameter estimation of Gaussian mixtures by Xu and 
Jordan [3]. The resulting algorithms coincide with Duda 
and Hart’s earlier suggestion ([SI, see Section 2.2). It is 

k=l 

an extended and generalised k-means algorithm with 
considerations of class-conditional distribution and 
priors, thus will generally result in improved clustering 
than the k-means algorithm. Xu and Jordan [ 10, 1 I] have 
shown that this EM algorithm is a variable metric 
gradient ascent algorithm with first-order convergence. 
They have also acknowledged the slow convergence of 
the algorithm, especially when the mixture components 
are not well separated, but found that faster methods such 
as superlinear and Hessian gradient generally performed 
poorly for this kind of ill-conditioned problems. 

The EM algorithm provides a feasible solution to this 
kind of unsupervised learning problem. But its slow 
convergence and high computational costs need to be 
addressed for practical applications. 

3. The Self-Organising Mixture Network 

3.1. The SOMN structure 

Based on the mixture distribution model, i.e. Eqn. 
(l), the SOMN structure can be illustrated as in Fig. 1. 
For a mixture of finite components, the network Fd places 
K nodes in the input space, a. The kernel parameters, 

e.g. mean vectors, mi and covariance matrix, Xi, are the 
learning weights. The output of a kernel is the 
conditional density of that component in the mixture. 
The upper layer, or the network output, sums the 
responses of these kernel weighted by the prior 

A 

probability or mixing weight, e ,  which are also learning 
parameters. At each time step, n, a sample, denoted by 
x(n), is randomly taken from Q. A winner is chosen 
according to its kernel output multiplied by its mixing 
parameter, i.e. estimated posterior probability. Within a 
neighbourhood of the winner, q,, the weights are 
updated. Thus the SOMN is similar to the SOM in terms 
of its local learning properties. 

The number of nodes, however, needs not to be 
known a priori, but has to be equal to or larger than the 
number of underlying components in the mixture. That 
is, one can always use a large number of nodes to learn 
the mixture, and only the signification ones will remain. 
Such a number can be an objective factor in the learning. 
For a smooth estimation of an arbitrary density, one can 
use a large number of nodes. For mixtures with a known 
class number or where only a number of major or 
principal classes need to be traced, a SOMN with this 
number of components can be used to interpret interested 
sub-densities of individual classes. 
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Figure 1. Structure of the self-organising 
mixture network 

3.2. The SOMN updating algorithm 

Suppose that the true environmental data density 
function and the estimated one are p(x) and p(x) 
respectively. Kullback-Leibler information metric [6] 
measures the divergence or ‘distance’ between these two, 
and is defined as: 

It is also referred to as relative entropy, and is a m  
expectation of the negative log-likelihood in the limit of 
an infinite number of data points subtracting a bias 
which is known as the entropy of the data density. It 
measures the average information remaining in each dalta 
point by the estimator. It is always a positive number, 
and will be zero if and only if the estimated density 
equals the true one. It has been shown that this criterion 
is equivalent to the ML or quasi-ML criterion [ 11 and has 
provided an important criterion in density or 
unsupervised learning [ 12- 141. 

When the estimated density is modelled as a mixture 
distribution, a function of various sub-densities and their 

parameters, one can seek the optimal estimate of these 
parameters by minimising I via its partial differentials in 
respect to every model parameter, i.e. 

andj=l,2 ( 5 )  

where 8, represents the jth parameter of the ith 
conditional class density, e.g. mean vector amd 
covariance matrix forj=l and 2 respectively. In Eqn. (6), 
the method of Lagrange multipliers with constraint 
parameter h is used to ensure the constraint of a valid 

K 
probability, i.e. i(oi  3 = 1. 

i=I 

The Robbins-Monro stochastic approximation method 
[15] can be used for solving these non-directly solvalble 
equations, and this results in the following adaptive 
updating algorithm: 

where a(n) is the learning coefficient or rate, and the 
constraint parameter h is set to 1. 

It is straight forward to calculate the corresponding 
partial differential terms in Eqn. (7) for a specified 
conditional model, e.g. Eqn. (2) or (3). 

The updating of the above parameters can be limited 
to a small neighbourhood of a winning node, which has 
the largest response or posterior probability, due to the 
spreading properties of the most conditional densities. 
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Figure 2. Density estimates using the Gaussian and Cauchy mixture models. 

That is, the density can be approximated by a mixture of 
a small number of nodes at one time, Le. 

where c is the winning node index and 77, is a 
neighbourhood of the winner. 

4. Experimental Results 

The SOMN has been applied successfully to various 
real problems such as clustering, texture classification, 
density estimation, and peak location [ 161. Some typical 
results on density modelling using various mixture 
models are shown in Fig. 2. 

Fig. 2(a) shows the profile of an x-ray rocking curve 
(Le. the profile of an x-ray diffraction peak as a function 
of photon energy). Though in reality a spectrum, the 
experimental data points (for the network learning) were 
sampled randomly to provide an effective density 
histogram. The network, initially assigned 20 nodes as 
the number of peaks is assumed unknown, has 
successfully learnt the four main peaks using the Cauchy 
mixture (the Gaussian mixture can also be used, but the 
network requires many more nodes for a smooth 
interpretation and will result in larger errors). The 
estimated density (solid line) is after only five epochs. 
The four main components after five epochs are in 
positions, -537.8, -498.5, -452.1, and -386.7 with 
standard variances of 6.25, 6.69, 8.99, and 5.86 and 

mixing weights of 0.205, 0.253, 0.258, and 0.268 
respectively. Other nodes have resulted in very small 
influence (less than 2% ). 

In Fig. 2(b), a Gaussian mixture with five 
components is used to learn a noisy snapshot image from 
a capillary electrophoresis system. As only two main 
peaks are clearly visible before the learning, a five- 
Gaussian-node SOMN is used for this data. The figure 
shows the results after five learning epochs. Two major 
peaks have been correctly and accurately located, and 
other peaks have also been revealed. An important 
feature of the SOMN is that it can simultaneously 
provide the width information about each peaks, which 
are in many cases important. 

In the above two experiments, only the winning node 
and its two neighbouring nodes (one on each side) are 
updated at each iteration. To prevent the variances and 
mixing parameters going to singular and zero 
respectively, or vary drastically between consecutive 
samples, it is better to use small initial learning rates. 
However, it has been found that the network converges 
over a wide range of learning rates. 

5. Conclusions 

An unsupervised learning structure, based on the 
criterion of maximising the Kullback-Leibler information 
entropy, the stochastic approximation method and the 
SQM principle, is proposed for estimating general 
densities by means of mixture distribution models. As 
shown in other papers [4, 51 the Gaussian SOMN 
outperforms the EM algorithm in both convergence speed 
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and robustness; and can be regarded as a more 
generalised and adaptive version of the EM algorithm for 
unsupervised learning and data density modelling. Like 
the SOM algorithm, the SOMN is a computational 
simple algorithm and is easy to implement. Its 
neighbourhood conscience learning and locality of the 
kernel function provides the network with efficient 
computation. The algorithm with either Gaussian or 
Cauchy (or others) mixture models employed) resemble 
the SOM algoritlhm in wieght updating, that is, only 
scalar neighbourhood functions rather than matrix ones 
are required, though such scalar neighbourhood function 
may vary form model to model. It has been shown that 
the neighbourhood learning will provide the SOM with a 
certain annealing effect in searching for a better estimate 
[ 171 and can also result in good noise tolerance[ 181. This 
SOMN algorithm also provides some insights and 
quantitative analysis to the SOMs neighbourhood 
functional role. For example, in the Gaussian SOMN, the 
neighbourhood functions equal the posterior probabilil ies 
of the mixture components, and the network will 
converge to a mixture of Gaussian distributions. 

We greatly acknowledge the provision of x-ray dzta 
by  Pro$ K. E. Singer, and capillary electrophoresis dizta 
by Dr, B. Pokric and Dr. E. Bergstrom. 
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