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This paper presents a comparison of the criteria for updating the
Kriging surrogate models in multi-objective optimization: expected
improvement (EI), expected hypervolume improvement (EHVI), esti-
mation (EST), and those in combination (EHVIþEST). EI has been
conventionally used as the criterion considering the stochastic
improvement of each objective function value individually, while
EHVI has recently been proposed as the criterion considering the
stochastic improvement of the front of nondominated solutions in
multi-objective optimization. EST is the value of each objective func-
tion estimated nonstochastically by the Kriging model without con-
sidering its uncertainties. Numerical experiments were implemented
in the welded beam design problem, and empirically showed that, in
an unconstrained case, EHVI maintains a balance between accu-
racy, spread, and uniformity in nondominated solutions for Kriging-
model-based multiobjective optimization. In addition, the present
experiments suggested future investigation into techniques for han-
dling constraints with uncertainties to enhance the capability of
EHVI in constrained cases. [DOI: 10.1115/1.4024849]

1 Introduction

Surrogate models (or metamodels) are effective in reducing the
computational time required in real-world design optimization.
Surrogate models approximate the response of an objective or
constraint function to design variables in the form of a simple

algebraic function. This algebraic function is derived to interpo-
late the sample points with real values of the objective or con-
straint function given by expensive numerical simulation, and
thus surrogate models can promptly give an estimation of function
values at other points with unknown values of the function.

The most widely used surrogate model is the polynomial-based
model [1]. This model strictly assumes orthogonality of the sam-
ple points given for the surrogate model construction. Thus, when
the accuracy of the constructed surrogate model is insufficient, it
is the easiest but most wasteful way to discard and regenerate the
initial samples for a new surrogate model. Wang [2] proposed an
adaptive polynomial-based model that can avoid discarding initial
samples. However, it is very often difficult to set the order of
polynomial so that the polynomial-based model will globally imi-
tate the features of real functions in the whole design space. The
radial basis function network (RBFN) [3] is an alternative surro-
gate model that permits any in-filling samples without satisfying
those orthogonality. However, the RBFN does not provide any in-
formation about where in the design space these new sample
points should be added.

This paper focuses on the Kriging surrogate model [4,5]. This
model is based on Bayesian statistics, and can adapt well to non-
linear functions. Considering the approximation of a function f(x)
in terms of a design variable vector x, as illustrated in Fig. 1, the
Kriging model estimates not only the function value f̂ ðxÞ itself but
also the uncertainty ŝðxÞ that is equivalent to the approximation
error due to surrogate modeling (a full derivation of f̂ ðxÞ and ŝðxÞ
is given in Ref. [4]). The stochastic features modeled by f̂ ðxÞ and
ŝðxÞ help to determine the locations in the design space where
new sample points should be added for improvement of surrogate
model accuracy.

Jones et al. [5] proposed a practical approach to determine the
locations of additional sample points, designated efficient global
optimization (EGO). On the Kriging surrogate model, EGO
searches for the location where the EI of an original objective
function is maximized, and then reconstructs the surrogate model
by adding a new sample point at this location. Consequently, iter-
ation of this process will accomplish surrogate model accuracy
improvements as well as the exploration of a global optimum.
Then, Jeong et al. [6] proposed an extension of EGO for multi-
objective problems (EGOMOP), which evaluates EI of each
objective function and maximizes multiple EIs in terms of all
objective functions. Li et al. [7] proposed another criterion to
judge whether new sample points are needed based on the domi-
nation status in Kriging-based multiobjective optimization. Li [8]
also improved this criterion to make the judgment more accurate
and less influential to the uncertainty latent in the Kriging model.
Martin [9] proposed an efficient formulation to construct the Krig-
ing model construction by introducing gradient and Hessian terms
into the maximum likelihood estimation. Moreover, the Kriging
model has recently been contributing to a realization of challeng-
ing design optimization that had never been implemented before

Fig. 1 Kriging model
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due to insufficient computational resources, such as robust design
[10] and reducible uncertain interval design [11]. Recent surro-
gate-model-based techniques and these related matters, which are
not restricted within the Kriging model, were extensively
reviewed by Wang and Shan [12].

With regard to the Kriging updating strategy, the EHVI [13]
has also been proposed as an alternate criterion for updating the
Kriging models generated in multiobjective optimization. EHVI
focuses on improvement of the front of nondominated solutions in
a multiobjective function space, while EI focuses on the improve-
ment of each objective function value itself. Therefore, maximiz-
ing EHVI instead of EI is expected to achieve more efficient
exploration of global optima in multi-objective problems. In addi-
tion, Emmerich et al. [14] confirmed the monotonicity of the
EHVI criterion analytically for two-objective problems. However,
there is no report that comprehensively inspects and compares the
performance of different updating criteria (EI, EHVI, etc.) in sev-
eral optimization cases with different features (e.g., existence of
constraints).

This paper compares the criteria for updating Kriging surrogate
models in multiobjective optimization: EI, EHVI, EST of an
objective function itself, and those in combination. The current
comparison is implemented through numerical experiments in the
welded beam design problem, which includes both unconstrained
and constrained cases. Thus, this paper investigates the capabil-
ities of each criterion to search for nondominated solutions on the
Kriging surrogate models in unconstrained and constrained multi-
objective optimization comprehensively.

2 Criteria for Updating the Kriging Model

2.1 EI. EI is the expected value of how much an objective
function f(x) may be improved on the Kriging surrogate model,
which will be reconstructed for f(x) with the additional point x. In
a single-objective problem where f(x) is minimized, as illustrated
in Fig. 2(a), the function improvement I[f(x)] and its expected
value EI[f(x)] are expressed, respectively, as

I½f ðxÞ� ¼ fref � F if F < fref

0 otherwise

�
(1)

EI½f ðxÞ� ¼
ð1
�1

I½f ðxÞ�/ðFÞdF

¼
ðfref

�1
fref � Fð Þ/ðFÞdF

(2)

where F is the Gaussian random variable N½f̂ ðxÞ; ŝ2ðxÞ�, and /ðFÞ
is the probability density function of F, i.e., /ðFÞ ¼ exp
½� F� f̂ ðxÞ
� �2

= 2ŝ2ðxÞð Þ�=
ffiffiffiffiffiffi
2p
p

ŝðxÞ
� �

. In addition, fref is the refer-
ence value to be specified for evaluating the improvement I[f(x)].
Usually in a single-objective problem, the minimum value of f(x)

in the current dataset of sample points is considered as fref , as
illustrated in Fig. 2(a), and the EI value corresponds to the proba-
bility that the Kriging predictor f̂ ðxÞ may achieve a new global
optimum at x on the reconstructed surrogate model. In the concept
of EI criterion, therefore, the location x with the maximum value
of EI[f(x)] should be searched for as an additional sample point.
Moreover, in a multi-objective problem where f1ðxÞ; f2ðxÞ;
…; fmðxÞ are minimized, EIs are evaluated and maximized for all
the objective functions individually using Eq. (2), as EI½f1ðxÞ�;
EI½f2ðxÞ�;…;EI½fmðxÞ�.

2.2 EHVI. EHVI is based on the theory of the hypervolume
indicator [15], which is a measure reflecting the quality of a set of
nondominated solutions produced in multi-objective optimization.
The hypervolume indicator consists of the size of the region
fronted by the nondominated solutions and bounded above by a
reference point. This study used an efficient algorithm for calcu-
lating the hypervolume indicator, as proposed previously [16].

Thus, EHVI is the expected value of how much the hypervo-
lume indicator may be improved on the Kriging surrogate model,
which will be reconstructed for f1ðxÞ; f2ðxÞ;…; fmðxÞ, respectively,
with the additional point x. The hypervolume improvement
HVI½f1ðxÞ; f2ðxÞ;…; fmðxÞ� is defined as the hypervolume bounded
above by the nondominated front of the current dataset of sample
points, as illustrated in Fig. 2(b), and its expected value
EHVI½f1ðxÞ; f2ðxÞ;…; fmðxÞ� is expressed as

EHVI½f1ðxÞ; f2ðxÞ;…; fmðxÞ�

¼
ðf1ref

�1

ðf2ref

�1
� � �
ðfmref

�1
HVI½f1ðxÞ; f2ðxÞ;…; fmðxÞ�

� /1ðF1Þ/2ðF2Þ � � �/mðFmÞdF1dF2 � � � dFm (3)

where F1;F2;…;Fm are the Gaussian random variables

N½f̂1ðxÞ; ŝ2
1ðxÞ�;N½f̂2ðxÞ; ŝ2

2ðxÞ�;…;N½f̂mðxÞ; ŝ2
mðxÞ�, respectively,

/1ðF1Þ;/2ðF2Þ;…;/mðFmÞ are the probability density functions
of F1;F2;…;Fm, respectively, and f1ref ; f2ref ;…; fmref are the refer-
ence values to be specified for evaluating the hypervolume
improvement HVI½f1ðxÞ; f2ðxÞ;…; fmðxÞ�. The EHVI value corre-
sponds to the probability that a combination of the Kriging predic-

tors f̂1ðxÞ; f̂2ðxÞ;…; f̂mðxÞ may achieve a new nondominated
solution at x on the reconstructed surrogate model. Similar to the
EI criterion, therefore, the concept of EHVI criterion indicates
that the search should be conducted for location x with the maxi-
mum value of EHVI[f(x)] as an additional sample point.

2.3 EST. For a comparison with EI and EHVI, EST is also
considered here. EST is the value of an objective function f(x),
which is estimated nonstochastically by the Kriging model with-
out considering its uncertainties, i.e., f̂ ðxÞ itself. In the concept of
EST criterion, a straightforward search is performed for the

Fig. 2 Criteria for updating the Kriging model: (a) EI and (b) EHVI
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location of x with the minimum value of f̂ ðxÞ as an additional
sample point. It is only natural that this concept may lead to an
incorrect global optimal due to ignorance regarding surrogate
model approximation error ŝðxÞ.

3 Numerical Experiments

3.1 Problem Definition. This paper performed numerical
experiments in the multiobjective welded beam design problem,
as illustrated in Fig. 3, which minimizes

f1ðxÞ ¼ Disp (4a)

f2ðxÞ ¼ Cost (4b)

subject to

g1ðxÞ ¼ H � B � 0 (5a)

g2ðxÞ ¼ MaxS� 60 � 0 (5b)

g3ðxÞ ¼ MaxT � 100 � 0 (5c)

where

Disp ¼ F� S3

4� T3 � B� Young
ðbeam tip displacementÞ

Cost ¼ Wc �Wvol þMc �Mvol ðtotal costÞ

Wvol ¼ H2 � L ðweld volumeÞ

Mvol ¼ T � B� Sþ Lð Þ ðbeam volumeÞ

MaxS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t12 þ t22

p
ðmaximum shear stressÞ

MaxT ¼ 6� S� F

T2 � B
ðmaximum tensional stressÞ

t1 ¼ F Sþ L=2ð Þ
B� Area

t2 ¼ F

2� Area

Area ¼ L� H �
ffiffiffi
2
p

Fixed parameters are Mc ¼ 0:01 (beam cost per unit volume),
Wc ¼ 1 (weld cost per unit volume), Young¼ 250,000 (Young’s
modulus), F¼ 150 (beam tip load), and S¼ 100 (beam length).
The other parameters are the design variables, x ¼ x1; x2; x3;½
x4�T ¼ H;L;T;B½ �T, whose ranges are set as 1 � H � 15 (weld
height), 3 � L � 50 (weld length), 10 � T � 50 (beam height),
and 1 � B � 15 (beam width), respectively.

3.2 Test Cases. Four Kriging models were constructed for
two objective functions f1ðxÞ and f2ðxÞ (Eqs. 4(a) and 4(b)) and
two constraint functions g2ðxÞ and g3ðxÞ (Eqs. 5(b) and 5(c)),
while the remaining constraint function g1ðxÞ (Eq. 5(a)) was not

approximated by the Kriging model. Note that g1ðxÞ � 0 deter-
mines the order of size between two design variables H and B,
and can always be satisfied in a subordinate procedure without ex-
pensive function evaluation, e.g., first specifying a value for H
and then specifying a larger value for B.

These experiments compare the following four different criteria
for updating Kriging models in the welded beam design problem,
each of which is formulated as

EST:

Minimize : f̂1ðxÞ
Minimize : f̂2ðxÞ
Subject to : bgðxÞ � 0

EI:

Maximize : EI½f1ðxÞ� � PnðxÞ
Maximize : EI½f2ðxÞ� � PnðxÞ

EHVI:

Maximize : EHVI½f1ðxÞ; f2ðxÞ� � PnðxÞ

EHVIþEST:

Minimize : f̂1ðxÞ
Minimize : f̂2ðxÞ
Maximize : EHVI½f1ðxÞ; f2ðxÞ� � PnðxÞ

in the following two problems with different combinations of con-
straints, each of which results in a different penalty function Pn(x) as

Problem 1: Considering g1ðxÞ � 0 only (equivalent to an
unconstrained problem)

PnðxÞ ¼ 1

Problem 2: Considering all the constraints

PnðxÞ ¼ Prob½g2ðxÞ � 0� � Prob½g3ðxÞ � 0�

Prob½g2ðxÞ � 0� and Prob½g3ðxÞ � 0� are calculated from the sto-
chastic features of the Kriging models as follows; considering a

Fig. 3 Welded beam design problem

Fig. 4 Flowchart of updating the Kriging models
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constraint function g(x) approximated as ĝðxÞ with its approxima-
tion error t̂ðxÞ (equivalent to an objective function f(x) approxi-
mated as f̂ ðxÞ with its approximation error ŝðxÞ),

Prob½gðxÞ � 0� ¼
ð0

�1
cðGÞdG (6)

where G is the Gaussian random variable N½ĝðxÞ; t̂2ðxÞ�, and cðGÞ
is the probability density function of G, i.e.,
cðGÞ ¼ exp½� G� ĝðxÞð Þ2= 2t̂2ðxÞð Þ�=

ffiffiffiffiffiffi
2p
p

t̂ðxÞ
� �

. The reference
values used for evaluating EI and EHVI are set as f1ref ¼ 0:005
and f2ref ¼ 1; 000.

3.3 Numerical Settings. Figure 4 shows the flowchart of
updating the Kriging models in the present numerical experi-
ments. Each test case consists of 30 trials, each of which starts
from a different initial dataset of sample points. The initial sample
points are generated uniformly in the design variable space by
Latin hypercube sampling (LHS) [17]. The number of initial sam-

ple points changes from 6 to 8 depending on the trials due to the
satisfaction of g1ðxÞ � 0 in the LHS process.

On the Kriging models constructed from the initial sample
points, the locations of additional sample points are determined
using the EGOMOP software based on the formulations for each
test case as outlined in Sec. 3.2. The EGOMOP employs a real-
coded multi-objective genetic algorithm (512 individuals, 100 gen-
erations, Pareto rankingþ fitness sharing for fitness assignment,
stochastic universal sampling for parent selection, simulated binary
crossoverþ polynomial mutation (10% rate) for offspring repro-
duction) with range adaptation to accelerate convergence toward
the Pareto-optimal front while keeping search diversity, and all
function evaluations are surrogated by the Kriging models. Indeed,
EGOMOP has been demonstrated through several applications to
real-world design problems where expensive numerical simulations
must be conducted for function evaluation (e.g., Refs. [18,19]), and
succeed in finding better design candidates than the baseline design
in terms of all objective functions within realistic computational
times.

Fig. 5 Scatter plots of the sample points in objective function space obtained on the first trial in problem 1: (a) EST, (b) EI,
(c) EHVI, and (d) EHVI 1 EST
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In the cases based on multi-objective formulations (EST, EI,
and EHVIþEST), a set of nondominated solutions are obtained,
and the solution closest to the centroid of all the solutions is
selected as an additional sample point. In the case based on
single-objective formulation (EHVI); on the other hand, a single
optimal solution is obtained and employed as an additional sam-
ple point. This means that sample points are added one by one in
all cases for a fair comparison. Then, the Kriging models are
reconstructed and the search for the next additional sample point
is performed. The update process of the Kriging models is iter-

ated until the number of initial and additional sample points
sums to 30.

3.4 Performance Measures. The Kriging model should lead
to accurate estimation in a particular region to be interested in. In
multi-objective optimization, this region corresponds to the neigh-
borhood of Pareto-optimal front. Therefore, this paper considers
all the following four measures important to investigate the per-
formance, such that the real Pareto-optimal front can be captured

Table 1 Comparison of the performance measures in problem 1 (nonbracketed value:
mean, bracketed value: standard deviation evaluated for 30 trials)

GD (�10�3) Spacing (�10�2) Spread (�10�1) Coverage (�10�1)

EST 117.67 (143.66) 6.6683 (8.0840) 4.5170 (2.9370) 5.3662 (2.1372)
EI 7.3157 (7.8157) 6.3924 (4.0233) 5.8558 (1.7700) 8.7729 (0.46180)
EHVI 15.692 (10.427) 5.6148 (2.9240) 8.4935 (1.0171) 9.0999 (0.58333)
EHVIþEST 15.045 (11.681) 7.0262 (3.3214) 7.6221 (1.7585) 8.5991 (0.88021)

Fig. 6 Scatter plots of the sample points in objective function space obtained on the first trial in problem 2: (a) EST, (b) EI,
(c) EHVI, and (d) EHVI 1 EST
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by a finite number of nondominated solutions found on the Krig-
ing models through different updating strategies. Generational
distance (GD) [20] represents the proximity from the obtained
nondominated solutions to the real Pareto-optimal front. Spacing
[21] represents the uniformity of the obtained nondominated solu-
tions. Spread [22] represents the extent of spread among the
obtained nondominated solutions. Coverage [23] is defined as the
ratio of a hypervolume dominated by the obtained nondominated
solutions to that dominated by the real Pareto-optimal front, and
represents the overall performance related to both proximity and
spread. A smaller value is better in GD and Spacing, while a
larger value is better in Spread and Coverage.

3.5 Results and Discussion

3.5.1 Problem 1. Figure 5 presents a comparison of scatter
plots of the sample points in the objective function space, which
were obtained on the first trial in problem 1, among four different
criteria. Based on any criterion, the present experiments obtained
additional samples, which are better than the initial samples in
terms of f1ðxÞ and f2ðxÞ. However, EST resulted in a much smaller
number of nondominated samples than the other criteria, and these
samples did not reach the real Pareto-optimal front due to surro-
gate model approximation error. On the other hand, EI resulted in
many nondominated samples, which reach the real Pareto-optimal
front, but these samples are concentrated on part of the front.
EHVI and EHVIþEST resulted in several nondominated sam-
ples, although less than EI, and these samples are distributed
widely on the real Pareto-optimal front (not only in the objective
function space but also in the design variable space).

Table 1 presents a comparison of the performance measures
among four different criteria in problem 1. The nonbracketed and
bracketed values in each cell of Table 1 represent the mean and
standard deviation of performance measure, respectively, which
were statistically evaluated for 30 trials. EI showed the best aver-
age performance of GD and was followed by EHVIþEST and
EHVI, while EST showed quite poor performance. On the other
hand, EHVI showed the best average performance of Spacing and
Spread. With regard to the overall performance measure Cover-
age, EHVI overwhelmed the other criteria. These results indicate
that EHVI can maintain a balance between accuracy, spread, and
uniformity in nondominated solutions for Kriging-model-based
multi-objective optimization. Moreover, note that EST showed
the largest standard deviation for all criteria, i.e., the capability of
EST depends strongly on the choice of initial samples.

3.5.2 Problem 2. In problem 2, the scatter plots of the
obtained sample points in the objective function space and the
comparison of the evaluated performance measures are shown in
Fig. 6 and Table 2, respectively. Note that problem 2 allows infea-
sible samples to be added because g2ðxÞ and g3ðxÞ were evaluated
approximately by the Kriging models. In problem 2, not only EST
but also EHVIþEST showed poor performance because most of
the additional samples were infeasible, as shown in Figs. 6(a) and
6(d). On the other hand, EI and EHVI resulted in nondominated
sample distributions (Figs. 6(b) and 6(c)). Table 2 indicates that
EI is better than EHVI in terms of GD, Spacing, and Coverage,
while EHVI is better than EI in terms of Spread. This means that
EHVI did not overwhelm EI as much in problem 2 as in problem
1. Table 2 also implies that EST and EHVIþEST had large stand-

ard deviation for most criteria, i.e., the capabilities of EST and
EHVIþEST are strongly dependent on the choice of initial sam-
ples. The differences in the numerical results between problems 1
and 2 were mainly due to poor accuracy of the Kriging model for
g2ðxÞ. To enhance the capability of EHVI, the constraints with
uncertainties should be handled in a more suitable way.

4 Conclusions

This paper described investigation and comparison of the capa-
bilities of the criteria, EI, EHVI, EST, and those in combination
(EHVIþEST), to search for nondominated solutions in the Krig-
ing surrogate models in multi-objective optimization. Numerical
experiments were implemented in the welded beam design prob-
lem. The numerical results in an unconstrained case empirically
showed that although EI has good performance, particularly in
terms of the proximity to a real Pareto-optimal front, EHVI main-
tains a balance between accuracy, spread, and uniformity in non-
dominated solutions for Kriging-model-based multi-objective
optimization. However, the numerical results in a constrained
case did not lead to such balanced performance for EHVI. As
future work, therefore, a more sophisticated technique for han-
dling constraints with uncertainties must be considered and tested
to further enhance the capability of EHVI.

In addition, this paper considered only the welded beam design
problem as the numerical experiments. In future, therefore, addi-
tional experiments need to be implemented in different problems
with more objective functions to assure the generality of the pres-
ent conclusions. However, the EHVI-based updating strategy may
become impractical due to the fact that conventional algorithms to
calculate the hypervolume indicator increase those computational
time drastically as the number of objective functions increases.
Thus, it is also essential to employ new efficient algorithms (e.g.,
Ref. [24]) for hypervolume calculation.
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