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Edge contribution to
forward scattering by spheres

H. F. M. van den Bosch, K. J. Ptasinski, and P. J. A. M. Kerkhof
Edge functions T1 and T2, which describe the polarization-dependent edge contribution to forward
scattering by spheres, are derived from the exact Mie solution. All the relative refractive indices and
the 64 , x , 2048 size parameter range are considered. The edge functions significantly improve the
approximation methods that can be used to calculate forward-scattering patterns. Form close to 1, an
asymptotic approximation is used. Otherwise, the familiar geometrical optics approximation and the
similar physical optics approximation for glory rays are used. Both geometrical and physical optics
equations can be deduced from the above-mentioned asymptotic approximation.
Key words: Forward light scattering, sphere, Mie, geometrical optics, physical optics, anomalous

diffraction, edge function. r 1996 Optical Society of America
1. Introduction

A widely used method for determining particle sizes
is measurement of the forward-scattering pattern of
a dilute suspension of particles over an integer
number of detectors. If no multiple scattering oc-
curs, the measured scattering vector b is the sum of
scattering by all the particles of different sizes:

A · x 5 b,

where x is a discrete size distribution and A is a
scattering matrix whose columns are the scattering
vectors of a number of size classes. The range of
sizes that can be distinguished depends on the
combination of wavelength and angles for which the
scattering pattern is measured.
Calculation of scattering matrixA requires calcu-

lation of the forward-scattering patterns of particles
in the considered size range. For spherical par-
ticles, with any relative refractive index m 5
nsphere@nmedium and size parameter x5 2pa@l, calcula-
tion of the exact solution according to Mie1,2 is
possible, but this requires a long calculation time for
large values of x.
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For x large andm not too close to 1, it is possible for
one to calculate the scattering pattern of a sphere by
calculating separately the contributions from inci-
dent and nonincident rays. The incomplete wave
front of the nonincident rays gives a Fraunhofer
diffraction pattern. The energy of an incident ray is
divided among several outgoing rays p 1see Fig. 12,
giving several contributions to the scattering pat-
tern that can be calculated using ray or geometrical
optics.
Glory rays, i.e., nonaxial rays that are scattered in

the forward or backward direction, have infinite
intensity according to the geometrical optics 1GO2
approximation. Langley and co-workers3,4 detail a
physical optics 1PO2 approximation, using both ray
optics and diffraction theory, that is valid for these
rays. Both GO and PO equations can be deduced
from the exact solution with an asymptotic approxi-
mation presented by van de Hulst.5
This asymptotic approximation cannot be used for

rays incident on the edge of the sphere, i.e., for small
values of t. These rays are partially reflected rays
1p 5 02 close to the forward direction and diffract into
the shadow region behind the sphere just like the
rays that miss the particle and cause the Fraunhofer
diffraction. The edge domain for which reflected
rays are significantly diffracted depends on the size
parameter and is given by t , x21@3 1van de Hulst62,
i.e., for large values of x the edge contribution can be
neglected.
We show that the difference between the exact Mie

solution and the approximation for forward-scatter-
ing patterns, for moderate values of x 164–20482 and
1 May 1996 @ Vol. 35, No. 13 @ APPLIED OPTICS 2285



averaged over a size range Dx, results from the edge
domain. This edge contribution can be expressed
by two edge functions,6 T1 and T2, that can be
represented by several polynomials of x andm. The
averaged Mie solution can now be reconstructed by
adding the approximation and the edge contribution.
There are other approximate calculation methods

for light scattering that also have separate terms for
the edge contribution. Nussenzveig7–9 presented
the complex angular momentum 1CAM2 theory that
gives a physical explanation for all the features of
the exact Mie solution. The CAM theory allows
approximate expressions that are valid for x1@3 : 1
and 0m 2 1 01@2x1@3: 1. An expression for the extinc-
tion efficiency10 is compared with our result.
Chen11,12 generalized the eikonal approximation

1valid for scalar waves and m near 12 with two
parameters and adapted these parameters to fit the
approximation to the exact solution in the forward
direction. The maximum size parameter for which
a scattering pattern 0 , q , 30° is presented is x 5
30 together with m 5 1.33. The GO approximation
with an edge contribution is a better approximation
for this case, possibly because the difference for both
polarizations at the edge is not accounted for in a
generalized eikonal approximation. Calculation
times for both methods are not compared.

2. Asymptotic Approximation

The asymptotic approximation that was used by van
de Hulst5 to demonstrate the correspondence of the
exact solution and the GO approximation is used to
derive an asymptotic formula 1AF2 that can be used to
approximate the forward-scattering pattern for m <
1. Sharma13 used the same approximation to ex-
plain the large range of m values for which the
anomalous diffraction approximation gives good re-
sults for extinction efficiency Qext 5 4S102@x2. The
exact solution is given by1

S11x, q2 5 o
n51

` 2n 1 1

n1n 1 12
3anpn1cos q2 1 bntn1cos q24. 112

The expression for S2 can be obtained from S1 by
interchanging an and bn. Both scattering coeffi-

Fig. 1. Separation of wave front into incident and nonincident
rays for a sphere with relative refractive index m , 1. The hole
in the wave front causes a Fraunhofer diffraction pattern. The
incident rays are partly reflected and partly refracted. Several
outgoing rays are denoted by p 5 0, 1, 2, 3.
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cients,

an 5
1 2 exp122ian2

2
, bn 5

1 2 exp122ibn2

2
, 122

contain the term 1@2 that corresponds with Fraun-
hofer diffraction and is omitted from further consid-
eration. The remaining terms depend on size pa-
rameter x and the relative refractive index m. For
large x and excluding the edge domain, the following
asymptotic approximation can be used5:

2exp122ian2 < u0
ui 1 r2

1 1 uir2

5 u03r2 1 11 2 r222 o
p51

`

uip12r22p214 , 132

where reflection coefficient r25 tan1t 2 t82@tan1t 1 t82.
Angles t and t8 are defined by

x cos t 5 x8 cos t8 5 n 1 1@2,

where x8 5 mx. The separate terms on the right-
hand side of approximation 132 correspond to rays
p 5 0, 1, 2, etc. 1Fig. 12. A similar approximation
is allowed for 2exp122ibn2 with r2 replaced by
r1 5 sin1t 2 t82@sin1t 1 t82. The function u0 5 2i
exp122ixf 2 with f 5 sin t 2 t cos t contains outside
values, and ui 5 2i exp12ix8f 82 with f 8 5 sin t8 2

t8 cos t8 contains inside values for the angle and size
parameter. The notation used here deviates from
the notation used by van deHulst insofar as exp12ivt2
instead of exp1ivt2 was used to represent time depen-
dence.
van de Hulst5 also replaced the angular functions

pn and tn in Eq. 112 with asymptotic approximations
that are valid for all scattering angles q except q < 0
and q < p. After several additional steps, neglect-
ing pn and the stationary phase approximation, the
GO equations were found. The replacement of func-
tions pn and tn by asymptotic approximations that
are valid near the forward or backward direction for
large n, i.e., excluding axial rays, has already been
suggested by van de Hulst:

pn1cos q2 < n1n 1 12
J11u2

u
sn21, 142

tn1cos q2 < n1n 1 12J181u2sn, 152

where u 5 1n 1 1@22q and s 5 1 for the forward
direction whereas u5 1n 1 1@221p 2 q2 and s5 21 for
the backward direction. The angular functions can
also be written using J11u2@u 5 1J0 1 J22@2 and J18 5

1J0 2 J22@2, where J0, J1, and J2 are the first three
integer Bessel functions of the first kind.
The forward-scattering amplitude, excluding

Fraunhofer diffraction and reflection terms and us-
ing the average reflection coefficient r 5 1r1 1 r22@2,



can now be approximated by

S11x, q2

x2
5 e

tlow

p@2

u01 ui 1 r

1 1 uir
2 r2

3 J01x q cos t2cos t sin t dt, 162

where the summation of Eq. 112 is replaced by an
integral over dn 5 d1x cos t2 5 x sin tdt. This re-
placement is allowed if the integrand is a slowly
varying function of t. For m , 1 the lower limit of
the integral in Eq. 162 is therefore taken as tlow 5
tcrit1cos tcrit 5 m2, whereas for m . 1, tlow 5 0.
Equation 162 with r 5 0, u0ui 5 2exp1ir sin t2, r 5
2x1m 2 12, and tlow 5 0 gives the anomalous diffrac-
tion approximation 1without Fraunhofer diffraction2.
The advantage of this asymptotic formula over the

exact Mie solution is the following. Regardless of
the value of m, the Mie algorithm makes a summa-
tion over a little more than x terms. The integrand
in Eq. 162 is form near 1, a slowly varying function of
t, and for sizing systems using forward scattering
the integral can be determined numerically accu-
rately with O112x2@3 terms.
Whereas the cumulative integral of the anomalous

diffraction approximation for q 5 0 in the complex
domain gives a smooth spiral, the corresponding
cumulative AF result, i.e., Eq. 162, for q 5 0 gives
approximately the same spiral with an oscillating
curvature.

3. Glory Rays

We derive an equation for glory rays, i.e., nonaxial
rays that are scattered in the forward or backward
direction 1e.g., p 5 2 in Fig. 12, using the approxima-
tions outlined in Section 2. The result matches the
PO approximation by Langley and co-workers3,4 who
also considered the rainbow-enhanced glory that we
do not consider here.
The derivation that we present is similar to that of

the GO equations by van de Hulst.5 Substituting
the approximations 3Eq. 122 and approximations 132–
1524 in Section 2 for one value of p. 1, 11 2 r22212r22p21

5 e2p and 11 2 r12212r12p21 5 e1p in Eq. 112, leads to

S1p1x, q2 5 o
n51

`

1n 1
1

223e2p
J11u2

us
1 e1pJ181u24

3 u0uipsn. 172

The last three factors of Eq. 172 can be rewritten as

u0uipsn 5 exp12iGn2,

Gn 5 21xf 2 px8f 82 1 1p 1 12
p

2
2 Lpn. 182

In the forward direction L 5 0 and in the backward
direction L 5 1. The complex terms nearly cancel
one another except near the value of n 5 n0, where
Gn11 2 Gn 1 k2p 5 0 is nearly satisfied. Integer k
can be omitted if L is allowed to assume any even
value in the forward direction and any uneven value
in the backward direction. Replacing the difference
with the derivative

d

dn
5
1

x

d

d cos t
5

21

x sin t

d

dt

leads to

Gn8 5 22t 1 2pt8 2 Lp 5 0 192

for a forward or backward directed ray. This condi-
tion can be used to determine the values of n0, t, and
t8. Multiplying this equation with n0 1 1@2 5
x cos t 5 x8 cos t8 and subtracting the product from
Gn give the following expression for the phase delay
of such a ray:

Gno 5 2x sin t 2 2px8 sin t8 1 1p 1 1 1 L2p@2. 1102

For the summation around n0 the first two factors of
Eq. 172 are quasi-constant. Replacing the summa-
tion by an infinite integral and Gn by a second-order
approximation leads to the Fresnel integral

e exp32iGno2 i
1

2
1n 2 no22Gno94dn

5 1 2p

0Gno9 02
1@2

exp32iGno 2 i1p@42sA4, 1112

where

Gno9 5
2A

x cos t
, A 5

2p

tan t8
2

2

tan t
,

and sA represents the sign of A. The resulting
amplitude function is given by

S1p1x, q2 5 1x cos t23@212p

0A 02
1@2

3e2p J11u2us
1 e1pJ181u24

3 exp32iGno 2 i1p@42sA4, 1122

where u 5 x q cos t or u 5 x 1p 2 q2cos t for the
forward or backward direction, respectively, and t is
determined by Eq. 192. One can obtain the expres-
sion for S2 by interchanging e1p and e2p. The
expression in brackets corresponds to a virtual ring
source with diameter u@q 5 x cos t as photographed
by Langley and co-workers4,5 who found a correspond-
ing equation using ray optics and diffraction theory
1PO approximation2. Near the rainbow condition
1A 5 02 a third-order approximation ofGn is required,
which we do not discuss in this paper.

4. Edge Functions

It is evident from Fig. 2 that two different amplitude
functions, S11q2 and S21q2, are required to give a
description of the far-field scattering behavior of a
sphere 1x, m2 placed in a linearly polarized flat electro-
magnetic wave. For a plane at any azimuth angle
1 May 1996 @ Vol. 35, No. 13 @ APPLIED OPTICS 2287



w, decomposition is necessary to find the amplitude
of the scattered wave. Amplitude function S1 de-
pends on reflection 1and transmission2 with the elec-
tric field normal to the plane of incidence, i.e., on
reflection coefficient r1, whereas S2 depends on
reflection with the electric field in the plane of
incidence, i.e., coefficient, r2. This is correct for
large angle scattering. Close to the forward and
backward directions, i.e., q < 0 or p, rays that
emerge from all azimuth angles w contribute signifi-
cantly by way of diffraction to both amplitude func-
tions that depend on both reflection coefficients, as is
the case for glory rays 3Eq. 11224.
The edge rays are reflected in the forward direction.

Their contributions S1edg and S2edg to the total
amplitude functions are assumed to be diffraction
patterns that radiate from a circle around the sphere
1dotted circle in Fig. 22. The width of the relevant
wave front is neglected. The actual relevant edge
domain is given by a specific value of angle t 1Fig. 12
that depends on size parameter x: tedg 5 x21@3.
The width of the relevant part of the incident wave
front is thus given by x11 2 cos tedg2 < x1@3@2, which,
for large values of x, is small compared with the
circumference of the circle. Since reflection coeffi-
cients r1 and r2 for both possible polarizations are
different, two different edge functions, T1 and T2,
are needed to describe the contribution from any
azimuth angle w.
Decomposition of the original polarization direc-

tion into two components, normal and parallel to the
scattering plane, and decomposition of the resulting
amplitudes after reflection to the original polariza-
tion direction along with integration over the men-
tioned circle at the edge leads to the following
equations for the amplitude functions:

S1edg1x, z2

2x
5 T11x2J181z2 1 T21x2

J11z2

z
, 1132

S2edg1x, z2

2x
5 T21x2J181z2 1 T11x2

J11z2

z
, 1142

where z 5 x sin q < xq and the edge functions are
assumed independent of scattering angle q.
Assuming that the edge contributions S1edg and

S2edg to the total scattering amplitudes are known,
both edge functions follow directly from the first null
point in J181za2 5 0, za 5 1.84 . . . 1hereafter referred to

Fig. 2. Linearly polarized light, after scattering by a sphere, is
still linearly polarized in the planes normal and parallel to the
polarization direction.
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as method a2,

T1a1x2 5
S2edg1x, za2

2xJ11za2@za
, T2a1x2 5

S1edg1x, za2

2xJ11za2@za
, 1152

and also from the first null point in J11zb2 5 0, zb 5
3.83 . . . 1hereafter referred to as method b2,

T1b1x2 5
S1edg1x, zb2

2xJ181zb2
, T2b1x2 5

S2edg1x, zb2

2xJ181zb2
. 1162

If the considered amplitude functions S1 and S2
indeed result from the circle at the edge of the
sphere, then bothmethods should give identical edge
functions: T1a 5 T1b and T2a 5 T2b. Because of
the actual ratio of the width of the relevant wave
front to the diameter of the circle around the sphere
given by x1@3@x 5 x22@3, the differences T1a 2 T1b and
T2a 2 T2b are smaller for larger values of x. Using
J0102 5 1 and J2102 5 0 the following relations must
also be true:

S1edg1x, 02 5 S2edg1x, 02 < x1T1a 1 T2a2

< x1T1b 1 T2b2.

One can calculate amplitude functions S1edg and
S2edg by subtracting from the exact Mie solution
different approximations in different ranges of the
complex relative refractive indexm.

5. Absorbing Sphere

The simplest case for determining the edge functions
according to the information in Section 4 is the value
of m with a large imaginary part so that all p . 0
contributions are absorbed and only the Fraunhofer
diffraction and edge contribution are important for
the forward-scattering pattern: Sedg 5 SMie 2 SFrh.
For such a subtraction we use the short notation of
Mie–Frh. Figure 3 shows the resulting real part of
edge functions T1 and T2 according to method b for
64 , x , 2048, 0.1 , m , 100, and Im3m4 5 Re3m4.
Figure 4 shows that the differences T1a 2 T1b and
T2a 2 T2b between the results from method a and
method b for x 5 64 are an order of magnitude
smaller than for T1b and T2b, whereas for larger
values of x the difference decreases as x22@3. This
result shows that it is indeed possible to deduce the
edge functions from the exact Mie solution and
including these edge functions in the approximation
will decrease the approximation error significantly.
From a comparison of differences S11x, 02 2

x1T1a 1 T2a 2 andS11x, 02 2 x1T1b 1 T2b 2 it was found
that the use of method b gives a slightly better
approximation in the exact forward direction than
does method a.

6. Transparent Sphere

The largest contribution to forward scattering be-
sides the Fraunhofer diffraction and the edge reflec-
tion for real values of m is the twice refracted p 5 1
ray, leading to the definition SGO 5 SFrh 1 Sp51,



where Sp51 was calculated according to GO. One
can diminish the p . 1 contributions to SMie by
averaging SMie 2 SGO over a size range of Dx < x@8,
leading to the edge contribution Sedg 5 SMie 2 SGO.
This is true for the largest part of the m–x range
shown in Fig. 5 but not for the area around m 5 1
bounded by µ 5 216 and r 5 2x1m 2 12 5 51. The µ
parameter is defined here as µ 5 1m 2 12x2@3 <
1tcrit@tedg22 and depends on the position of the critical
angle in the edge domain.

Fig. 3. Real part of edge functions T1 and T2 multiplied by x21@3,
calculated using method b for 0.1 , m , 100, Im3m4 5 Re3m4, and
64 , x , 2048.

Fig. 4. Difference between the edge functions in Fig. 3 and
the corresponding edge functions that were calculated using
method a.
For 216 , µ , 25 the glory rays of the type
discussed in Section 3 are not sufficiently diminished
by averaging and are included in the definition SPO 5
SGO 1 Sp52,9, where the second term is the sum of the
glory contributions according to the PO approxima-
tion for p 5 2 to p 5 9 with L 5 0. In this range the
edge contribution is given bySedg 5 SMie 2SPO.
In the remaining range for 25 , µ and r , 51 the

difference between the exact solution SMie and the
asymptotic approximation of Eq. 162 including the
Fraunhofer diffraction, referred to as SAF, leads to
the edge contribution Sedg 5 SMie 2 SAF. For the
24 , µ , 4 range Fig. 6 shows the resulting edge
function T1b 3Eq. 11624 and the difference T1a 2 T1b,
which is much smaller than T1b, indicating that in

Fig. 5. Them–x area for 0.3 , m , 3 and 64 , x , 1024, divided
into areas bounded by indicated conditions for µ, r, and q.

Fig. 6. Real part of edge function T1 multiplied by x21@3,
calculated according to method b 1upper figure2 for 24 , µ , 4 and
64 , x , 2048, and the difference in the corresponding function
that was calculated according to method a 1lower figure2.
1 May 1996 @ Vol. 35, No. 13 @ APPLIED OPTICS 2289



this range T1b may indeed be interpreted as an edge
function. The edge functions in this range, multi-
plied by x21@3, are a function of a parameter µ and
marginally a function of x. Directly below µ 5 0 the
Goos–Hanchen effect9,14 probably causes the deep
dip in the edge function, whereas the rest of the
fluctuations can be interpreted as the results of
continuous diffraction interaction between incident,
reflected, and inside waves in the edge domain.
For 0r 0 , 0.01 we used the Rayleigh–Gans15 ap-

proximation. In our figures only the m 5 1 line
corresponds to this case. For m . 1 the reflection
coefficient r2 changes sign at the Brewster angle
tBrw, where t 1 t8 5 p@2. Parameter q as defined
here gives the inverse of the relative position of the
Brewster angle in the edge domain: q 5
11 1 m221@2x21@3 5 tedg@sin tBrw. Figure 7 shows the
functions T1b and T2b as functions of parameter q
calculated for Sedg 5 SMie 2 SGO. The remaining
ripple in Fig. 7 is due to rays with p . 1 and can be
diminished with a better averaging method. Near
q 5 0.1 and x 5 64, refractive index m would be less
than 1 based on the definition of q, so the edge
function is simply set to 0. The flat region was
calculated for a refractive index with a small imagi-
nary component 1Im3m4@Re3m4 , 10242 without aver-
aging.
For 64 , x , 1024 we determined different polyno-

mials of the functions T1bx21@3 and T2bx21@3 as
functions of x and one of the real parametersm, µ, or
q. It does not seem to be difficult to extend the
polynomials to complex values ofm.
The entire forward-scattering pattern within the

penumbra region7 can be calculated by adding the

Fig. 7. Real part of edge functions T1 and T2 multiplied by x21@3

that was calculated using method b for 0.1 , q , 316, Im3m4 5 0,
and 64 , x , 1024.
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appropriate approximations for scattering ampli-
tudes S1 and S2 1GO, PO, or AF2 and the correspond-
ing edge contributions according to Eqs. 1132 and 1142.
In Section 7 we discuss the resulting accuracy for the
exact forward direction 1q 5 02 compared with the
accuracy of an approximation that results from the
CAM approach.9
The calculation time requires for the GO and PO

approximations including the edge contribution, us-
ing a polynomial fit, is approximately a factor of x
lower than the time required to obtain the exact Mie
solution.2 The calculation time required for the AF
depends strongly on the number of terms used for
numerical evaluation of Eq. 162 but for the mentioned
number of terms is approximately a factor of x1@3

faster than the exact solution. Only the 64 , x ,
2048 size parameter range and calculation for a
specific x value are considered here. For calculation
of scattering elements for large enough values of x,
for which the addition of intensities of different
contributions is allowed, we can gain considerably
more time using the GO or PO approximation.

7. Comparison with Complex Angular Momentum
Extinction Efficiency

The approximation we have presented is compared
with the CAM approximation presented by Nussenz-
veig10 for the extinction efficiency Qext 5 4S102@x2,
64 , x , 1024, and 1.1 , m , 2.5. For the major
part of this m–x area both approximations are
equally good.10 The CAM approximation is better
near µ 5 4 1Fig. 52 because of an improved p 5 1
contribution. For µ , 4 and q . 0.5 obtained with
theAF and GOmethods, respectively, the method we
have presented is better. The CAM approximation
neglects penetration of outside complex surfacewaves
into the sphere,7 leading to the condition
0m 2 1 01@2x1@3 5 µ1@2: 1. When the Brewster angle
approaches the edge 1q . 0.5, Section 62 transmission
into the sphere for polarization 2 is probably not
negligible, leading to less accurate CAM results.
For smaller values of x the width of the edge domain
is larger, so the method presented here leads to
worse results.

8. Summary

It has been shown that edge functions T1 and T2 as
used by van de Hulst1 can be determined with a
rigorous Mie solution by subtracting appropriate
approximations. The relative error of the edge func-
tions determined in this way is approximately 10%
for parameter x 5 64 and decreases as x22@3 for
higher values of x. Adding the edge contributions
significantly improves the approximate methods to
calculate forward-scattering patterns. The method
presented does not give a physical explanation for
the resulting edge functions but for some cases leads
to a better approximation for the extinction effi-
ciency and probably also for near-forward scattering,



than an earlier presented expression resulting from
the powerful CAM approach.10

Appendix A. Nomenclature

a Sphere radius,
J0, J1, J2 Integer Bessel functions of the first

kind,
m Relative refractive index,
n Refractive index,
p Ray number,
q Œ1 1 m2x21@3,

r, r1, r2 Reflection coefficients,
S, S1, S2 Scattering amplitude functions,
T, T1, T2 Edge functions,

x Size parameter of 2pa@l,
Dx Size parameter range,

a Angle of incidence,
l Wavelength,
µ 1m 2 12x2@3,
r 21m 2 12x,
q Scattering angle,
w Azimuth angle,
t p@2 2 a,

tedg Limit of edge domain,
a, b Subscripts as calculation methods, Eq.

1152 or Eq. 1162.
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