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High-frequency soliton-like waves in a relaxing medium
V. O. Vakhnenkoa)

Division of Geodynamics of Explosion, Institute for Geophysics, 252054 Kyiv, Ukraine

~Received 23 March 1998; accepted for publication 6 October 1998!

A nonlinear evolution equation is suggested to describe the propagation of waves in
a relaxing medium. It is shown that for low-frequency approach this equation is
reduced to the KdVB equation. The high-frequency perturbations are described by
a new nonlinear equation. This equation has ambiguous looplike solutions. It is
established that a dissipative term, with a dissipation parameter less than some limit
value, does not destroy these looplike solutions. ©1999 American Institute of
Physics.@S0022-2488~99!00503-4#

I. INTRODUCTION

As a rule the behavior of media under the action of high-frequency wave perturbations
described in the framework of equilibrium models of continuum mechanics. So, to develop p
cal models for wave propagation through media with complicated inner kinetics, the notions
on the relaxational nature of a phenomenon are regarded to be promising and fruitful.

The description of nonlinear processes arising in different areas of research can of
reduced to the well-known Korteweg–de Vries~KdV! equation.1,2 It turns out that low-frequency
perturbations in a relaxing medium satisfy the KdV equation, too. The high-frequency pert
tions are described by a new nonlinear evolution equation which has been investigated in R
and 4. This equation has an ambiguous solution in the form of a solitary wave. This work
with the looplike solutions of the model evolution equation. It is proved that the dissipative
with a dissipation parameter less than some limit value, does not destroy the looplike solu

II. LOW-FREQUENCY AND HIGH-FREQUENCY PERTURBATIONS IN RELAXING
MEDIUM

Thermodynamic equilibrium is disturbed owing to the propagation of fast perturbations
medium. There are processes of the interaction that tend to return the equilibrium. The para
characterizing this interaction are referred to as the inner variables unlike the macropara
such as the pressurep, mass velocityu, and densityr. In essence, the change of macroparame
caused by the changes of inner parameters is a relaxation process. From the nonequ
thermodynamics standpoint, the models of a relaxing medium are more general than the e
rium models for describing the evolution of the wave perturbations.

We restrict our attention to barothropic media. An equilibrium state equation of a baroth
medium is a one-parameter equation. As a result of relaxation, an additional variablej ~inner
parameter! appears in the state equation. It defines the completeness of the relaxation proc

p5p~r,j!. ~2.1!

There are two limiting cases:
~i! the lack of the relaxation~inner interaction processes are frozen! j51.

p5p~r,1![pf~r!, ~2.2!

~ii ! the relaxation complete~there is the local thermodynamic equilibrium! j50:

a!Electronic mail: vakhnenko@bitp.kiev.ua
20110022-2488/99/40(4)/2011/10/$15.00 © 1999 American Institute of Physics
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p5p~r,0![pe~r!. ~2.3!

These relationships enable us to introduce the sound velocities for fast processes

cf
25dpf /dr ~2.4!

and for slow processes

ce
25dpe /dr. ~2.5!

Slow and fast processes are compared by means of the relaxation timetp . The dynamic state
equation is written down in the form of the differential first-order equation

tpS dp

dt
2cf

2 dr

dt D1~p2pe!50. ~2.6!

Clearly, for the fast processes (vtp@1) we have the relation~2.2!, and for the slow ones (vtp

!1) we obtain~2.3!.
The substantiation of this equation within the framework of the thermodynamics of irre

ible processes has been given in Refs. 5–8. The mechanism of the exchange~inner! processes is
not defined concretely when the equation~2.6! is derived, and the thermodynamic and kine
parameters appear in this equation only. These characteristics can be found by experime
dynamic state equation~2.6! enables us to take into account the exchange processes comp
We note that the phenomenological approach for describing the relaxation processes in hy
namics is developed in many works.7–10 The dynamic state equation was used to describe
propagation of sound in a relaxing medium,7 to take into account the exchange processes wi
media~gas–solid particles!,8 and to study wave fields in gas-liquid media9 and in soils.10 In most
works the state equation has been derived from the concept of some concrete mechanism
inner process.

To analyze the wave motion, we shall use the hydrodynamic equations: the law of the
servation of mass

]V

]t
2

]u

r0]x
50 ~2.7!

and the law of the conservation of momentum

]u

]t
1

]p

r0]x
50. ~2.8!

HereV[r21 is specific volume andx is Lagrangian space coordinate.
The closed system of equations consists of two motion equations~2.7! and ~2.8! and the

dynamic state equation~2.6!. The motion equations~2.7! and ~2.8! are written in Lagrangian
coordinates, since the state equation~2.6! is related to the element of the mass of medium.

Let us consider a small perturbationp8,p0. The state equations for fast@~2.2!# and slow
@~2.3!# processes are considered to be known. They can be expanded as the power ser
accuracyO(p82)

Vf~p01p8!5V02cf
22V0

2p81
1

2

d2Vf

dp2 U
p5p0

p821 . . . ,
 29 Aug 2002 to 130.159.248.44. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Ve~p01p8!5V02ce
22V0

2p81
1

2

d2Ve

dp2 U
p5p0

p821 . . . .

Hereafter, the velocitiesce , cf are related to initial pressurep0. Combining these two relation
ships with the motion equations~2.7! and~2.8!, we obtain the equation in one unknown~the dash
in p8 is omitted!:

tp

]

]tS ]2p

]x2
2cf

22 ]2p

]t2
1

1

2V0
2

d2Vf

dp2 U
p5p0

]2p2

]t2 D 1S ]2p

]x2
2ce

22 ]2p

]t2
1

1

2V0
2

d2Ve

dp2 U
p5p0

]2p2

]t2 D 50.

~2.9!

A similar equation has been obtained in Ref. 5, though without nonlinear terms.
Now we shall show that for low-frequency perturbations the equation~2.9! is reduced to the

Korteweg–de Vries–Burgers~KdVB! equation, while for high-frequency waves we shall obta
the equation with hydrodynamic nonlinearity and term that appeared in the Klein–Gordon
tion.

To analyze the equation~2.9!, let us apply the multiscale method.11,12 The value«[tpv is
chosen to be small~large! parameter where the quantityv is the characteristic frequency of wav
perturbation. For the sake of convenience we rewrite the equation~2.9! as follows:

tpv
]

]tvS ]2p

]~xv!2
2cf

22 ]2p

]~ tv!2
1a f

]2p2

]~ tv!2D 1S ]2p

]~xv!2
2ce

22 ]2p

]~ tv!2
1ae

]2p2

]~ tv!2D 50,

~2.10!

a f5
1

2V0
2

d2Vf

dp2 U
p5p0

, ae5
1

2V0
2

d2Ve

dp2 U
p5p0

,

and introduce new independent variables

T05tv, X05xv, T225tv/«2, X225xv/«2.

It is precisely these variables that cause the equations, obtained within the framework of
scale method11,12

O~«11!:
]

]T0
S ]2p

]X0
2

2cf
22 ]2p

]T0
2

1a f

]2p2

]T0
2 D 50,

O~«0!:
]2p

]X0
2

2ce
22 ]2p

]T0
2

1ae

]2p2

]T0
2

50,

O~«21!:S ]3

]X0
2]T22

12
]3

]T0]X0]X22
D p23cf

22 ]3p

]T0
2]T22

13a f

]3p2

]T0
2]T22

50,

O~«22!:
]2p

]X0]X22
2ce

22 ]2p

]T0]T22
1ae

]2p2

]T0]T22
50, ~2.11!

O~«23!:S ]3

]T0]X22
2

12
]3

]X0]X22]T22
D p23cf

22 ]3p

]T0]T22
2

13a f

]3p2

]T0]T22
2

50,
 29 Aug 2002 to 130.159.248.44. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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O~«24!:
]2p

]X22
2

2ce
22 ]2p

]T22
2

1ae

]2p2

]T22
2

50,

O~«25!:
]

]T22
S ]2p

]X22
2

2cf
22 ]2p

]T22
2

1a f

]2p2

]T22
2 D 50,

to be partially uncoupled. The two leading equations depend onT0 andX0 only, while the last two
equations include the independent variablesT22 andX22 only. Thus, the low-frequency pertur
bations are described by the two leading equations, and the high-frequency perturbatio
described by the last two equations. An interaction between these perturbations is described
three center equations.

Let us write out the motion equations for low-frequency and high-frequency perturbatio
the initial variablesx and t. For low-frequency perturbations the main terms]2p/]x2 and
ce

22]2p/]t2 appear in the second equation of the system~2.11!, while for high-frequency pertur-
bations the main terms]2p/]x2 andcf

22]2p/]t2 appear in the seventh equation of~2.11!.
For low-frequency perturbations (tpv!1) propagating in one direction, we obtain an evo

tion equation

]p

]t
1ce

]p

]x
1aece

3p
]p

]x
2be

]2p

]x2
1ge

]3p

]x3
50,

~2.12!

be5
ce

2tp

2cf
2 ~cf

22ce
2!, ge5

ce
3tp

2

8cf
4 ~cf

22ce
2!~cf

225ce
2!.

This equation can be obtained in the following way. A dispersion relation for the linea
equation~2.10! can be written down with an accuracyO(k3) in the formv5cek1 ibek

22gek
3,

if the termsce
21]p/]t and]p/]x are the main ones. For this dispersion relation we write a lin

equation in which a nonlinear term is reconstructed in agreement with the initial equation.
The equation~2.12! is the well-known KdVB equation. It is encountered in many chapters

physics to describe nonlinear wave processes.1 In Ref. 2 it was shown how hydrodynamic equ
tions reduce to either the KdV or Burgers equation according to the choices for the state eq
and the generalized force when analyzing the gasdynamical waves, waves in shallow2

hydrodynamic waves in cold plasma,13 or ion-acoustic waves in cold plasma.14 The KdV equation
(be50) has stationary solutions~solitons!. In the case ofbeÞ0 the stationary solutions of th
equation~2.12! are known also.15

For high-frequency perturbations (tpv@1), using the last two equations of the system~2.11!,
we get the following evolution equation:

]2p

]x2
2cf

22 ]2p

]t2
1a fcf

2 ]2p2

]x2
1b f

]p

]x
1g f p50,

~2.13!

b f5
cf

22ce
2

tpce
2cf

, g f5
cf

42ce
4

2tp
2ce

4cf
2

.

In addition to the nonlinear term with coefficienta f , the equation has dissipativeb f ]p/]x and
dispersiveg f p terms. If a f5b f50, this is a linear Klein–Gordon equation. There is a Gree
function for this equation16,17 that enables us to find the solution in quadrature, at least. Nume
solutions of the Klein–Gordon equation modeling the propagation of high-frequency perturb
 29 Aug 2002 to 130.159.248.44. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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in gas–liquid media have been presented in Ref. 17. Whitham’s monograph18 has also described
a similar evolution equation for high-frequency perturbations, but its form coincides with th
Eq. ~2.13! only whena f50 andg f50.

Landau and Lifshitz have shown that for high frequencies the dissipative term under
transport of heat agrees with corresponding term in the equation~2.13! ~see section 79 and 81 i
Ref. 7!. Thus, the dynamic state equation~2.6! enable us to take into account the dissipat
processes completely. But the form of the dissipative terms describing the inner exchang
cesses~transport of heat and momentum! are different for the high and low frequencies.

We call attention to the fact that the dispersion relationsv5v(k) for the linearized equations
~2.12! and ~2.13! have been restricted by the finite power series ink and ink21, respectively:

v5cek1 ibek
22gek

3, tpv!1,

cf
22v25k21 ib fk2g f , tpv@1.

In the general case the equation~2.13! has been investigated insufficiently. It is likely that th
is connected with the fact noted by Whitham18 that the high-frequency perturbations attenu
very fast. However, in Ref. 18 the evolution equation without nonlinear and dispersive term
considered. Certainly, the lack of such terms restricts the class of solutions. At least, there
solution in the form of a solitary wave which is caused by nonlinearity and dispersion.

The studies of the equation~2.13! have some scientific interest both from the viewpoint of t
investigation of the propagation of high-frequency perturbations and from the viewpoint o
existence of stable wave formations.

III. EVOLUTION EQUATION FOR HIGH-FREQUENCY PERTURBATIONS

The equation~2.13!, which we are interested in, is written down in dimensionless form. Le
restrict our consideration to the propagation of high-frequency waves in positive directionx, then
with necessary accuracy we can write the operator

]2

]x2
2cf

22 ]2

]t2
5S ]

]x
2cf

21 ]

]t D S ]

]x
1cf

21 ]

]t D→2
]

]xS ]

]x
1cf

21 ]

]t D
~for example, see section 93 in Ref. 7!. In the moving coordinates system with velocitycf , the
equation has the form in dimensionless variablesx̃5Ag f /2(x2cf t), t̃ 5Ag f /2cf t, ũ5a fcf

2p ~tilde
over variablesx̃, t̃ , ũ is omitted!:

]

]xS ]

]t
1u

]

]xDu1a
]u

]x
1u50. ~3.1!

The constanta5b f /A2g f is always positive.
The equation~3.1! without the dissipative term has the form of the nonlinear equation3,4

]

]xS ]

]t
1u

]

]xDu1u50. ~3.2!

These equations are related to that of Whitham18 with the kernelsK(x)5 1
2@a(2Q(x)21)1uxu#

andK(x)5 1
2uxu ~see Eq.~2! in Ref. 3! and are written as

]u

]t
1u

]u

]x
1au1

1

2E2`

`

ux2su
]u

]s
ds50, ~3.3!
 29 Aug 2002 to 130.159.248.44. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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]u

]t
1u

]u

]x
1

1

2E2`

`

ux2su
]u

]s
ds50, ~3.4!

whereQ(x) is a Heaviside function. There is no derivative in the dissipative termau of Eq. ~3.3!.
Papers3,4 are devoted to the analysis of the equation~3.2!. In Ref. 4 it was named Vakhnen

ko’s equation. The equation~3.2! has two families of traveling wave solutions.3,4 In one case the
solutions have looplike form~see Fig. 1 in Ref. 3!. Only in this case is there a solitary wav
solution. In Ref. 4 it is predicted that both families of solutions are stable to long wavele
perturbations. The existence of singular points, at which the derivatives tend to infinity, req
the application of a nonstandard method.4 The ambiguous structure is similar to the loop solit
solution to an equation that models a stretched rope.19 The looplike solitons on a vortex filamen
were investigated by Hasimoto20 and Lamb, Jr.21

The material described below deals with the ambiguous looplike solutions of the equ
~3.1!. From the mathematical point of view the ambiguous solution does not present diffic
while the physical interpretation of ambiguity always has some difficulties. In this connectio
problem of ambiguous solutions is regarded to be important. The problem consists in wheth
ambiguity has a physical nature or is related to the incompleteness of mathematical mo
particular to the lack of dissipation.

We will consider the problem related to the singular points when the dissipation takes
At these points the dissipative terma ]u/]x tends to infinity. The question arises: are the
solutions of the equation~3.1! in a looplike form? That the dissipation is likely to destroy t
looplike solutions can be associated with the following well-known fact.1 For a simplest nonlinea
equation without dispersion and dissipation,

]u

]t
1u

]u

]x
50, ~3.5!

any initial smooth solution with boundary conditions

uux→1`50, uux→2`5u05const.0

becomes ambiguous in the final analysis. When the dissipation is considered, we have a B
equation22

]u

]t
1u

]u

]x
1m

]2u

]x2
50.

The dissipative terms of this equation and Eq.~2.13! for low frequency are coincided. The inclu
sion of the dissipative term transforms the solutions so that they cannot be ambiguous as
of evolution. The wave parameters are always unambiguous. What happens in our case
high frequency when the dissipative term has the formau @Eq. ~3.3!#? Will the inclusion of
dissipation give rise to unambiguous solutions? It turns out that, and here this has been prov
dissipative term, with a dissipation parameter less than some limit value, does not destr
looplike solutions. A physical interpretation is given to ambiguous solutions.

IV. AMBIGUOUS SOLUTIONS

Let us pass to the coordinates in which the equation~3.2! has stationary periodic solutions@see
Eq. ~7! in Ref. 3#

h5x2vt, t5t, ~4.1!

wherev is a nonzero constant. Eq.~3.2! has looplike solutions whenv.0. Parkes noted4 that
there are no stationary periodic solution of~3.2! whenv50. After substitution of
 29 Aug 2002 to 130.159.248.44. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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z5u2v

into Eq. ~3.1! we get the evolution equation

zth1~zzh!h1~z1v !1azh50. ~4.2!

We investigate the solution behavior within the neighborhood of singular pointsz50 where
zh→6` and zt!zh . Therefore in the investigated equation~4.2! we neglect the termz in
comparison withv, and also discard the termzt , to obtain

~zzh!h1v1azh50. ~4.3!

It is convenient to use the inverse functionh5h(z). Taking into accountzh51/hz and zhh5
2hzz/hz

3, Eq. ~4.3! is rewritten as

2zhzz1vhz
31ahz

21hz50.

Introducing the definitionq[hz , this equation can be integrated to obtain

E dq

q~vq21aq11!
5E dz

z
.

Depending on the sign of the quantity 12a2/4v, the latter expression has two different forms. W
have introduced the critical valuea* of the parametera defined by

a* 52Av. ~4.4!

For a,a* ~i.e., 12a2/4v.0), we get

lnF z2

q2
~vq21aq11!G52

2a

A4v2a2
tg21

2vq1a

A4v2a2
1 ln c1 , ~4.5!

and fora.a* ~i.e., 12a2/4v,0), we have

lnF z2

q2
~vq21aq11!G5

a

Aa224v
lnU2vq1a1Aa224v

2vq1a2Aa224v
U1 ln c2 . ~4.6!

We analyze the expression~4.5!. First let us verify the special casea50. We have

z2

q2
~vq211!5c1 ,

or

vz21
1

4
~z2!h

25c1 .

Hence in the vicinity ofz50,

h1h056
1

2
E dz2

Ac12vz2
57

Ac12vz2

v
.
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We arrive at the result given in Ref. 3, namely that with the lack of dissipation (a50) the integral
curves pass over an ellipse atz50.

Now we investigate the case 0,a,a* . It is easy to show that the r.h.s. of~4.5! is always
bounded for any valueq[zh

21. In the neighborhood ofz50 the r.h.s. of~4.5! is close to value

2
2a

A4v2a2
tg21

a

A4v2a2
1 ln c1[ ln c3 .

Consequently, we arrive at the equation

z2

q2
~vq21aq11!5c3 .

Even not integrating this equation, it is easy to show that atz50 we must haveq50 since in
generalc3Þ0. This means that atz50 the derivatives have the values

hz50, zh56`.

At z50 the solution becomes ambiguous.
In the casea.a* there is the solution

z50, q5hzÞ0, zhÞ6`.

In fact, atz50 we obtain from the r.h.s. of~4.6!

q5hz52
a

2v
2

Aa224v
2v

Þ0. ~4.7!

Thus, the derivativezh at z50 is bounded by a finite value. The solution is always unambiguo
Let us consider the solution behavior in the neighborhood ofz50 as a→a* . We first

consider the casea→a* 20. According to~4.5! the r.h.s. of this equation tends to minus infinit
i.e., atz'0 we haveq5hzÞ0. Consequently, there is no looplike solution.

When a→a* 10 there is also a solution withq5hzÞ0 at z50. The rootq50 at z50
seems possible in this case since~4.6! transforms to

lnF z2

q2
~vq21aq11!G5

2a

2vq1a
1 ln c2 . ~4.8!

However, as appears from~4.7!, the r.h.s. of the equation~4.8! tends to minus infinity so thatq
Þ0 at z50. Therefore, in the casea→a* the dissipation destroys the looplike solutions.

We have proved the following statement. For values ofa,a* the inclusion of the dissipative
term does not change the looplike solutions of equation~3.1!, while for a>a* there is no solution
with an infinite gradient.

The common form of the dissipative term for high-frequency perturbationsau ~which does
not depend on the nature of the exchange processes! cannot preclude the possibility of a formatio
of a multi-valued solution from an initial single-valued profile. In this case there are the in
gradients in contrast to the profiles of a wave for the low frequencies when the dissipative te
the formb ]2u/]x2.

The problem of a multi-valued solution can be forestalled in a following way. The equa
~3.2! can be rewritten into new independent variablesy5y(x,t) and t15t so that the dependen
variableu5u(y,t1) will be a single-valued function ofy. These variables have been defined
the relationships
 29 Aug 2002 to 130.159.248.44. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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wdy5dx2udt, t15t

in which the equation~3.2! has been reduced to a system of the equations in the unknownsu and
w:

]w

]t1
5

]u

]y
,

]2w

]t1
2

1uw50.

For example, for a one-soliton solution we havew512u/v @see Eqs.~12! and~14! in Ref. 3#.
In the space of new variablesy andt1 a solution is a single-valued function@Eq. ~13! from Ref. 3#.
Each state has been uniquely defined by the variabley at any timet.

Considering the dependent variableu and the coordinatex as the functions of new variabley
we solve the problem of the ambiguous solution. A number of the states with their thermody
parameters can occupy one microvolume, but these states are distinguished by the coordiny. It
is assumed that the interaction between the separated states occupying one microvolume
neglected in comparison with the interaction between the particles of one thermodynamic
Even if we shall take into account the interaction between the separated states in accord w
dynamic state equation~2.6!, then for high frequencies the dissipative term arises which is sim
to the corresponding term in Eq.~2.13!, but with the other relaxation time. In this sense t
separated terms are distributed in space, but describing the wave process we consider
interpenetratable. The similar situation, when several components with different hydrody
parameters occupied one microvolume, has been assumed in the mixture theory~see, for instance
Refs. 23 and 24!. Such a fundamental assumption in the theory of mixtures is physically im
sible ~see Ref. 23, p. 7!, but it is appropriate in the sense that separated components are
velocity interpenetratable continua.

Thus in the frameworks of this model approach, the high-frequency perturbation ca
described by the multi-valued functions.

V. CONCLUSIONS

The KdV and KdVB equations are employed to describe a number of evolution proc
when the low-frequency approach turns out to be adequate. In these cases thermodynamic
eters of a medium are close to the equilibrium values, the microvolume state is defined by o
of thermodynamic values, and the disturbance from the equilibrium is taken into account by
of expansion in gradients.25 If the low-order expansions within the framework of such an appro
give rise to an inadequate description, we could take into account the terms of higher order
a result consider higher frequencies. For example, if Eq.~3.5! has an ambiguous solution~or
discontinuous solution!, the improvement of models by means of adding higher degree deriva
excludes the ambiguous solutions. So, in the low-frequency approach, an ambiguity is con
with the incompleteness of the mathematical model.

In contrast to this, in models for the propagation of high-frequency perturbations the d
bance from the ‘‘frozen’’ state is taken into account by means of expansion in integral term@see
Eq. ~3.3! and ~3.4!#. The integral terms contain the prehistory of the process. We have
established that a higher order of expansion~in particular, the dissipative term! for the high-
frequency evolution equation still allows ambiguous solutions. Consequently, the ambigu
solution does not relate to the incompleteness of the mathematical model, in particular to th
of dissipation. In addition there is the space of new independent variables where the solution
single-valued function.

The following three circumstances show that in the framework of the approach consi
here there are the multi-valued solutions when we model the high-frequency wave process~1!
All parts of looplike solutions are stable to perturbations; this was proved by Parkes.4 ~2! The
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dissipation does not destroy the looplike solutions~the result of this work!. ~3! The investigation
regarding the interaction of the solitons has shown that it is necessary to take into accou
whole ambiguous solution, and not just the separate parts.

It is necessary to note that the substantiation of the nonlinear evolution equation~3.1! within
the framework of statistic physics remains an important problem. At present this problem
difficult since it is connected with the description of high nonequilibrium systems.
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