JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 4 APRIL 1999

High-frequency soliton-like waves in a relaxing medium

V. O. Vakhnenko?®
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A nonlinear evolution equation is suggested to describe the propagation of waves in
a relaxing medium. It is shown that for low-frequency approach this equation is
reduced to the KdVB equation. The high-frequency perturbations are described by
a new nonlinear equation. This equation has ambiguous looplike solutions. It is
established that a dissipative term, with a dissipation parameter less than some limit
value, does not destroy these looplike solutions. 1899 American Institute of
Physics[S0022-24889)00503-4

I. INTRODUCTION

As a rule the behavior of media under the action of high-frequency wave perturbations is not
described in the framework of equilibrium models of continuum mechanics. So, to develop physi-
cal models for wave propagation through media with complicated inner kinetics, the notions based
on the relaxational nature of a phenomenon are regarded to be promising and fruitful.

The description of nonlinear processes arising in different areas of research can often be
reduced to the well-known Korteweg—de Vrig&dV) equationt? It turns out that low-frequency
perturbations in a relaxing medium satisfy the KdV equation, too. The high-frequency perturba-
tions are described by a new nonlinear evolution equation which has been investigated in Refs. 3
and 4. This equation has an ambiguous solution in the form of a solitary wave. This work deals
with the looplike solutions of the model evolution equation. It is proved that the dissipative term,
with a dissipation parameter less than some limit value, does not destroy the looplike solutions.

II. LOW-FREQUENCY AND HIGH-FREQUENCY PERTURBATIONS IN RELAXING
MEDIUM

Thermodynamic equilibrium is disturbed owing to the propagation of fast perturbations in a
medium. There are processes of the interaction that tend to return the equilibrium. The parameters
characterizing this interaction are referred to as the inner variables unlike the macroparameters
such as the pressupg mass velocityu, and densityp. In essence, the change of macroparameters
caused by the changes of inner parameters is a relaxation process. From the nonequilibrium
thermodynamics standpoint, the models of a relaxing medium are more general than the equilib-
rium models for describing the evolution of the wave perturbations.

We restrict our attention to barothropic media. An equilibrium state equation of a barothropic
medium is a one-parameter equation. As a result of relaxation, an additional vafigibleer
parameterappears in the state equation. It defines the completeness of the relaxation process

pP=p(p.§). (2.7

There are two limiting cases:
(i) the lack of the relaxatiofinner interaction processes are frogér1.

p=p(p,1)=ps(p), (2.2

(i) the relaxation completéhere is the local thermodynamic equilibriyida=0:
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P=p(p,0)=Ppe(p). (2.3
These relationships enable us to introduce the sound velocities for fast processes
cZ=dps/dp (2.4
and for slow processes
c2=dp,/dp. (2.5

Slow and fast processes are compared by means of the relaxatiorrfiniehe dynamic state
equation is written down in the form of the differential first-order equation

dp ,dp
Tp E—Cfm

+(p—pe)=0. (2.6)

Clearly, for the fast processes¢,>1) we have the relatiof2.2), and for the slow ones«(7,
<1) we obtain(2.3).

The substantiation of this equation within the framework of the thermodynamics of irrevers-
ible processes has been given in Refs. 5—8. The mechanism of the ex¢imm@geprocesses is
not defined concretely when the equati¢h6) is derived, and the thermodynamic and kinetic
parameters appear in this equation only. These characteristics can be found by experiment. The
dynamic state equatiof2.6) enables us to take into account the exchange processes completely.
We note that the phenomenological approach for describing the relaxation processes in hydrody-
namics is developed in many works'® The dynamic state equation was used to describe the
propagation of sound in a relaxing medidrty take into account the exchange processes within
media(gas—solid particles and to study wave fields in gas-liquid medand in soilst® In most
works the state equation has been derived from the concept of some concrete mechanism for the
inner process.

To analyze the wave motion, we shall use the hydrodynamic equations: the law of the con-
servation of mass

oV ou —0 2

gt podx @7
and the law of the conservation of momentum

ou + P =0 2.8

gt podx 28

HereV=p ! is specific volume anda is Lagrangian space coordinate.

The closed system of equations consists of two motion equat@ids and (2.8) and the
dynamic state equatiof2.6). The motion equation$2.7) and (2.8) are written in Lagrangian
coordinates, since the state equati@rb) is related to the element of the mass of medium.

Let us consider a small perturbatigri<p,. The state equations for fag2.2)] and slow
[(2.3)] processes are considered to be known. They can be expanded as the power series with

accuracyO(p'?)

' —2\/2 7 1d2Vf 2
Vi(pot+p')=Vo—cs “Vgp +§d_p2 p'e+ ...,
P=Pg
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d?V,

2y
dp? P

’ —2\/2~1 1
Ve(Potp ):VO_Ce Vop +§
P=Pg

Hereafter, the velocities,, c; are related to initial pressumg,. Combining these two relation-
ships with the motion equatiorf2.7) and(2.8), we obtain the equation in one unknothe dash

in p’ is omitteg:
0—,2 2
”) o,
_ ot
P=Pg

(2.9

2 2 2
o[ 7o a1y,
at| gx2 ot 2V§ dp?

9°p? . J°p _2a2p+ 1 d?v,
C — —_—
2 C a2 2V3 gp?

o at?
P=pPg

A similar equation has been obtained in Ref. 5, though without nonlinear terms.

Now we shall show that for low-frequency perturbations the equdfid is reduced to the
Korteweg—de Vries—Burger&dVB) equation, while for high-frequency waves we shall obtain
the equation with hydrodynamic nonlinearity and term that appeared in the Klein—Gordon equa-
tion.

To analyze the equatiof2.9), let us apply the multiscale methot™ The valuee= o is
chosen to be smallarge parameter where the quantiéyis the characteristic frequency of wave
perturbation. For the sake of convenience we rewrite the equéidnas follows:

J (92 (?2 (92 2 (92 32 (92 2
Tpw / P —C{Z P + a;s P + P —ng P + ae P =0,
Mo\ g(xw)? itw)? atw)?]  \ a(xw)? tw)?  Ci(tw)?
(2.10
1 d?v; 1 d?V,
HTV2 A2 X2 12
2Vy dp - 2Vg dp b=y

and introduce new independent variables
To=to, Xo=xw, T_,=tw/e?, X_,=Xwl&.

It is precisely these variables that cause the equations, obtained within the framework of multi-
scale methoth!?

O(8+l e _2_0;2_2_'_6”_[32 :Oy
dTo\ X5 aTs aTs
(92 &2 192 2
0(80):—2—cg2—2 ae—pz— ,
(93 &3 &3p a3p2
O(e~1): +2 —3c; ? +3a =0,
( IX2aT_,  ITodXedX_, CoaT2aT_, T aT2aT,
(?2 (92 (92 2
06 2): —o b — g2 P -o, (2.11

+ =
IXgIX 5 & GTedT 5 CaTedT

073 53 3 0—,3p

2
O(z~3): 42 Yo ML YL
( (&Toﬁxzz (9X0(9X2(9T2) P f (?To(?TZ,Z f{?To(?TZ,Z
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(92 (92 (92 2
O(s™*): f—c;z 2p+ae 'Z =0,
O(s™%): —c;? +a =0,
aT o\gx2, " oaT2, T2,

to be partially uncoupled. The two leading equations depenty@andX, only, while the last two
equations include the independent variables and X_, only. Thus, the low-frequency pertur-
bations are described by the two leading equations, and the high-frequency perturbations are
described by the last two equations. An interaction between these perturbations is described by the
three center equations.

Let us write out the motion equations for low-frequency and high-frequency perturbations in
the initial variablesx and t. For low-frequency perturbations the main term&p/dx? and
0;2(92p/(9t2 appear in the second equation of the systarii1), while for high-frequency pertur-
bations the main termgp/dx? andc; 29°p/dt?> appear in the seventh equation(@f11).

For low-frequency perturbations{w<1) propagating in one direction, we obtain an evolu-
tion equation

ap ap 3. 9P 9p a°p
ot Ce X (4 epax eaXZ Ye &_Xs 0,
(2.12
2 3.2
CeTp CeTp
Be=—— (ci—cl), ye=——(ci—c3)(ci—5c2).
Cs 8¢}

This equation can be obtained in the following way. A dispersion relation for the linearized
equation(2.10 can be written down with an accura@(k®) in the formw=ck+iB.k*— k3,

if the termsc, *ap/at anddp/dx are the main ones. For this dispersion relation we write a linear
equation in which a nonlinear term is reconstructed in agreement with the initial equation.

The equatior(2.12) is the well-known KdVB equation. It is encountered in many chapters of
physics to describe nonlinear wave processesRef. 2 it was shown how hydrodynamic equa-
tions reduce to either the KdV or Burgers equation according to the choices for the state equation
and the generalized force when analyzing the gasdynamical waves, waves in shallo water,
hydrodynamic waves in cold plasnapr ion-acoustic waves in cold plasnfaThe KdV equation
(B=0) has stationary solutionsolitong. In the case 0f8.# 0 the stationary solutions of the
equation(2.12 are known alsd®

For high-frequency perturbationsfw>1), using the last two equations of the systéni 1),
we get the following evolution equation:

%p 9p 5°p? ap
— 2
——5 ~Ct "5 taCi—+ B+ vp=0,
a2 a2 " ox2 x
(2.13
cf—ck cf—cp

Bi=

2. YT 242
TpCeCt 27,CeCt

In addition to the nonlinear term with coefficieat, the equation has dissipatiyg dp/dx and
dispersivey;p terms. If a;=B;=0, this is a linear Klein—Gordon equation. There is a Green’s
function for this equatiof?"!’that enables us to find the solution in quadrature, at least. Numerical
solutions of the Klein—Gordon equation modeling the propagation of high-frequency perturbations
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in gas—liquid media have been presented in Ref. 17. Whitham’s mondfjtagé also described
a similar evolution equation for high-frequency perturbations, but its form coincides with that of
Eqg. (2.13 only whena;=0 andy;=0.

Landau and Lifshitz have shown that for high frequencies the dissipative term under high
transport of heat agrees with corresponding term in the equéliaB) (see section 79 and 81 in
Ref. 7). Thus, the dynamic state equati¢®.6) enable us to take into account the dissipative
processes completely. But the form of the dissipative terms describing the inner exchange pro-
cessegtransport of heat and momentuare different for the high and low frequencies.

We call attention to the fact that the dispersion relatiersw(k) for the linearized equations
(2.12 and(2.13 have been restricted by the finite power seriek and ink 1, respectively:

0= Cek+iBk>— yk3, Tow<l,
C;2w2:k2+iﬁfk_7f, Tow>1.

In the general case the equati@13 has been investigated insufficiently. It is likely that this
is connected with the fact noted by Whith&hthat the high-frequency perturbations attenuate
very fast. However, in Ref. 18 the evolution equation without nonlinear and dispersive terms was
considered. Certainly, the lack of such terms restricts the class of solutions. At least, there is no
solution in the form of a solitary wave which is caused by nonlinearity and dispersion.

The studies of the equatidg.13 have some scientific interest both from the viewpoint of the
investigation of the propagation of high-frequency perturbations and from the viewpoint of the
existence of stable wave formations.

lll. EVOLUTION EQUATION FOR HIGH-FREQUENCY PERTURBATIONS

The equatiori2.13, which we are interested in, is written down in dimensionless form. Let us
restrict our consideration to the propagation of high-frequency waves in positive dirgctioen
with necessary accuracy we can write the operator

d .9 Jd/( .9
—+cC —2 +c

2 2
J 0 g 0 a a[d a
ax Tt oot ax\ox f oot

ENG f ot2 X foot

(for example, see section 93 in Ref. Th the moving coordinates system with velocdy, the
equation has the form in dimensionless variables,y;/2(x— cst), T = \y;/2cst, U= a;c?p (tilde
over variable,t, U is omitted:

17 i e =0 3.1
ax\ gt U UT X gy TUTY @D

The constanty= B;/+/2y; is always positive.
The equation(3.1) without the dissipative term has the form of the nonlinear equafion

d

X

J d

e U Jutu=0. (3.2

These equations are related to that of Whithamith the kernelsK (x) =3 (20 (x) — 1)+]|x|]
andK(x)=3|x| (see Eq(2) in Ref. 3 and are written as

&u+ &u+ +1Jw &ud =0 3.3
S tuz tauts _w|x—s|£ s=0, (3.3
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au du 1 (= au
o +u PV + 2f_oc|x s| 0Sds—0, (3.9
where®(x) is a Heaviside function. There is no derivative in the dissipative temof Eq. (3.3).

Paper$* are devoted to the analysis of the equati8r®). In Ref. 4 it was named Vakhnen-
ko’s equation. The equatiof8.2) has two families of traveling wave solutiof$.In one case the
solutions have looplike forntsee Fig. 1 in Ref. B Only in this case is there a solitary wave
solution. In Ref. 4 it is predicted that both families of solutions are stable to long wavelength
perturbations. The existence of singular points, at which the derivatives tend to infinity, required
the application of a nonstandard mettfofihe ambiguous structure is similar to the loop soliton
solution to an equation that models a stretched fdfehe looplike solitons on a vortex filament
were investigated by Hasimdtband Lamb, J¢*

The material described below deals with the ambiguous looplike solutions of the equation
(3.2). From the mathematical point of view the ambiguous solution does not present difficulties
while the physical interpretation of ambiguity always has some difficulties. In this connection the
problem of ambiguous solutions is regarded to be important. The problem consists in whether the
ambiguity has a physical nature or is related to the incompleteness of mathematical model, in
particular to the lack of dissipation.

We will consider the problem related to the singular points when the dissipation takes place.
At these points the dissipative termdu/dx tends to infinity. The question arises: are there
solutions of the equatioB3.1) in a looplike form? That the dissipation is likely to destroy the
looplike solutions can be associated with the following well-known Yde&tr a simplest nonlinear
equation without dispersion and dissipation,

&U+ ﬂu_o 3
gt Yax (3.5

any initial smooth solution with boundary conditions
Ul +=0, Ul _.=Uy=const=0

becomes ambiguous in the final analysis. When the dissipation is considered, we have a Burgers
equatior?

The dissipative terms of this equation and Ef13 for low frequency are coincided. The inclu-

sion of the dissipative term transforms the solutions so that they cannot be ambiguous as a result
of evolution. The wave parameters are always unambiguous. What happens in our case for the
high frequency when the dissipative term has the ferm [Eq. (3.3)]? Will the inclusion of
dissipation give rise to unambiguous solutions? It turns out that, and here this has been proved, the
dissipative term, with a dissipation parameter less than some limit value, does not destroy the
looplike solutions. A physical interpretation is given to ambiguous solutions.

IV. AMBIGUOUS SOLUTIONS

Let us pass to the coordinates in which the equai®® has stationary periodic solutiofisee
Eq. (7) in Ref. 3

n=x—vt, 7=t 4.1

wherev is a nonzero constant. E¢3.2) has looplike solutions when>0. Parkes notédthat
there are no stationary periodic solution(8f2) whenv =0. After substitution of
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Z=Uu-v
into Eq. (3.1) we get the evolution equation
z,,+(zz,),+(z+v)+az,=0. (4.2

We investigate the solution behavior within the neighborhood of singular ppin€ where
z,—~=* and z,<z,. Therefore in the investigated equati¢h.2) we neglect the ternz in
comparison withy, and also discard the term}, to obtain

(zz,),+*v+az,=0. 4.3

It is convenient to use the inverse functior= 7(z). Taking into accoung,=1/5, andz,,=
— 754 73, EQ. (4.3 is rewritten as

3 2
—Zm, vt an;+n,=0.

Introducing the definitiorg= #,, this equation can be integrated to obtain

f dq 3 dz
q(vg?+aq+1) ra

Depending on the sign of the quantity-1v?/4v, the latter expression has two different forms. We
have introduced the critical valug* of the parameterr defined by

a*=2v. (4.9
For a<a* (i.e., 1— ¢?/4v>0), we get
22 2a 2vq+a
In| —(vg?+aq+1)|=— tg~ ! +Incy, (4.5
qz \/4v—a2 \/4U_a’2

and fora>a* (i.e., 1— a®/4v<0), we have

{22 ) @ 2vq+a+ Va?—4v
Inl —(vg°+taq+1)|= In +Inc,. (4.6)
q° Va?—4v | 2vq+a—Va?—4v

We analyze the expressida.5). First let us verify the special cage=0. We have

z? )
?(vq +1)=cq,

or
1
2 2\2 _
vz +Z(Z )3 =C1-

Hence in the vicinity ofz=0,

1 dz c,—vZz?
n+%=i5f =3 :

\/Cl_l)zz v
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We arrive at the result given in Ref. 3, namely that with the lack of dissipatien(Q) the integral
curves pass over an ellipsezt 0.

Now we investigate the case<w<a*. It is easy to show that the r.h.s. 6£.5) is always
bounded for any valuqzzgl. In the neighborhood af=0 the r.h.s. of(4.5) is close to value

2a L o
_—t97 -
Vv — a? Vav — a?

Consequently, we arrive at the equation

+Inc,=Inc,.

N
E(vq +aq+1l)=cj;.

Even not integrating this equation, it is easy to show that=a0 we must haveg=0 since in
generalc;# 0. This means that &=0 the derivatives have the values

At z=0 the solution becomes ambiguous.
In the casew> a* there is the solution

z=0, gq=»,#0, z,#*o.

In fact, atz=0 we obtain from the r.h.s. d#.6)

a al—4v
q:Uz:—Z——ZU #0. 4.7

Thus, the derivative,, atz=0 is bounded by a finite value. The solution is always unambiguous.
Let us consider the solution behavior in the neighborhoodzeD as a— a*. We first
consider the case— o* —0. According to(4.5) the r.h.s. of this equation tends to minus infinity,
i.e., atz=0 we haveq= 7,#0. Consequently, there is no looplike solution.
When a— a* +0 there is also a solution with= 7,#0 atz=0. The rootq=0 atz=0
seems possible in this case sindeb) transforms to

z° )
g(vq +aq+ 1)

In

+Inc,. (4.8

2a
2vqta
However, as appears frofd.7), the r.h.s. of the equatio@.8) tends to minus infinity so thaj
#0 atz=0. Therefore, in the case— a* the dissipation destroys the looplike solutions.

We have proved the following statement. For valuesgfa* the inclusion of the dissipative
term does not change the looplike solutions of equai®b), while for a=a* there is no solution
with an infinite gradient.

The common form of the dissipative term for high-frequency perturbatiangwhich does
not depend on the nature of the exchange procgsaesot preclude the possibility of a formation
of a multi-valued solution from an initial single-valued profile. In this case there are the infinite
gradients in contrast to the profiles of a wave for the low frequencies when the dissipative term has
the form B 6%u/ 9x>.

The problem of a multi-valued solution can be forestalled in a following way. The equation
(3.2) can be rewritten into new independent variablesy(x,t) andt;=t so that the dependent
variableu=u(y,t,) will be a single-valued function of. These variables have been defined by
the relationships
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edy=dx—udt, t;=t

in which the equatiori3.2) has been reduced to a system of the equations in the unknoeamd
@:

dp du (?2(p+ 0
—=—, — +ue=0.
gy ot

For example, for a one-soliton solution we haye 1—u/v [see Egs(12) and(14) in Ref. 3].
In the space of new variablgsandt; a solution is a single-valued functi¢iq. (13) from Ref. 3.
Each state has been uniquely defined by the variglaleany timet.

Considering the dependent variabiend the coordinatg as the functions of new variable
we solve the problem of the ambiguous solution. A number of the states with their thermodynamic
parameters can occupy one microvolume, but these states are distinguished by the coprdinate
is assumed that the interaction between the separated states occupying one microvolume can be
neglected in comparison with the interaction between the particles of one thermodynamic state.
Even if we shall take into account the interaction between the separated states in accord with the
dynamic state equatiof®.6), then for high frequencies the dissipative term arises which is similar
to the corresponding term in E@2.13), but with the other relaxation time. In this sense the
separated terms are distributed in space, but describing the wave process we consider them as
interpenetratable. The similar situation, when several components with different hydrodynamic
parameters occupied one microvolume, has been assumed in the mixture(gesorfpr instance
Refs. 23 and 24 Such a fundamental assumption in the theory of mixtures is physically impos-
sible (see Ref. 23, p.)7 but it is appropriate in the sense that separated components are multi-
velocity interpenetratable continua.

Thus in the frameworks of this model approach, the high-frequency perturbation can be
described by the multi-valued functions.

V. CONCLUSIONS

The KdV and KdVB equations are employed to describe a number of evolution processes
when the low-frequency approach turns out to be adequate. In these cases thermodynamic param-
eters of a medium are close to the equilibrium values, the microvolume state is defined by one set
of thermodynamic values, and the disturbance from the equilibrium is taken into account by means
of expansion in gradienfs.If the low-order expansions within the framework of such an approach
give rise to an inadequate description, we could take into account the terms of higher order and as
a result consider higher frequencies. For example, if @) has an ambiguous solutiofr
discontinuous solutionthe improvement of models by means of adding higher degree derivatives
excludes the ambiguous solutions. So, in the low-frequency approach, an ambiguity is connected
with the incompleteness of the mathematical model.

In contrast to this, in models for the propagation of high-frequency perturbations the distur-
bance from the “frozen” state is taken into account by means of expansion in integral[®zems
Eqg. (3.3 and (3.4]. The integral terms contain the prehistory of the process. We have just
established that a higher order of expansion particular, the dissipative tepnfor the high-
frequency evolution equation still allows ambiguous solutions. Consequently, the ambiguity of
solution does not relate to the incompleteness of the mathematical model, in particular to the lack
of dissipation. In addition there is the space of new independent variables where the solution is the
single-valued function.

The following three circumstances show that in the framework of the approach considered
here there are the multi-valued solutions when we model the high-frequency wave protBsses:

All parts of looplike solutions are stable to perturbations; this was proved by PhtResThe
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dissipation does not destroy the looplike solutidtie result of this work (3) The investigation
regarding the interaction of the solitons has shown that it is necessary to take into account the
whole ambiguous solution, and not just the separate parts.

It is necessary to note that the substantiation of the nonlinear evolution eq(@&tipmithin
the framework of statistic physics remains an important problem. At present this problem is too
difficult since it is connected with the description of high nonequilibrium systems.
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