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ABSTRACT 
Based on general principles of robust design and axiomatic 
design, relationship among robustness, structural parameters, 
design parameters and uncontrollable factors has been 
established. Various factors that affect system robustness were 
analyzed mathematically to determine the relationship 
between robustness and structural characteristics of the linear 
system. The relations among functional requirements were 
also explored. Accordingly, an optimization model was 
established to determine design parameters. This new robust 
design approach can be used for linear mechanical system 
analysis. 
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1 INTRODUCTION 
Quality is a primary factor in determining whether a product is 
successful in the market place. It can be evaluated if the 
product performs the intended functions. The intended 
functionality may be deviated by variations resulted from raw 
materials, manufacturing processes, and/or operational 
environments. To minimize the effects of the variations on 
functions, the functions pf product and system should be made 
insensitive to those variations. Dr.Taguchi has proposed robust 
design in 1970s’ and this method has been widely used in 
industry [1, 2]. When Taguchi method is used for early design 
stage, there are a few limitations: 
1) Taguchi method usually requires experimental data. It is 

not very convenient or practical to obtain sufficient 
experimental data at early stage of design process. For 
1
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example, for products with low production volume, it is 
impractical to obtain sufficient data for analysis. 

2) The experimental based method normally relies on the 
experience of engineers. The engineers’ experience and 
analysis based on a limited number of tests may lead to a 
group of partial optimal solutions.  

3) The internal relationships between system robustness and 
various parameters may not be directly revealed by such 
experimental method. When an improvement is required 
for functions of product, it is difficult to maintain the 
original robustness. 
 

Analytical robust design approach is a new method for design 
of robust mechanical systems. Through mapping from design 
parameters to functional requirements of system, this method 
aims to analyze the intrinsic relationships among structural 
characteristics, design parameters, uncontrollable factors and 
robustness of linear system. Based on Suh’s Axiomatic Design 
and robust analysis of traditional robust design approach [3], 
this paper reports on studies of models of linear mechanical 
system for robust analysis, sensitivity index of system, and 
describes a optimal model of analytical robust design, reveals 
the primary factors on robustness. Examples were included to 
demonstrate this new approach.  

2 ROBUST ANALYSIS 
2.1 Models 
The factors that influence functions of linear system could be 
divided into controllable factors and uncontrollable factors. It 
is important to distinguish these factors appropriately and 
establish analytical models accordingly. 
 Copyright © 2008 by ASME
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Based on the previous work [3] and according to Axiomatic 
Design theory [4], for a product, if Fr represent function 
requirements, Dp represent design parameters, the 
performance function can be expressed as below: 

Fr = D · Dp                                                                     (1) 
where  Fr = [Fr1, Fr2, …, Frn]T  Dp = [Dp1, Dp2, …, Dpm]T , D 
is a n × m design matrix and Dij = ∂Fri / ∂Dpj. 
Here, design matrix D can be regarded as controllable factors 
reflecting structural characteristics. Means of design 
parameters E(Dp) can be adjusted , if the following relation- 
ship is held:  

ΔDp = Dp – E(Dp)                                                          (2) 
where ΔDp denotes design deviation caused by environmental 
variations, in the following analysis it will be regarded as 
uncontrollable factors. Therefore, changes of function 
requirements caused by uncontrollable factors can be 
expressed below: 

ΔFr = D · ΔDp                                                                (3) 
In this study, the following definitions will be made: 
Means: 

E(ΔFr) = [E(ΔFr1), E(ΔFr2), …, E(ΔFrn)]T

E(ΔDp) = [E(ΔDp1), E(ΔDp2), …, E(ΔDpm)]T

Variance: 
Var(ΔFr) = E{[ΔFr – E(ΔFr)]2} 
Var(ΔDp) = E{[ΔDp – E(ΔDp)]2} 

Variance-Covariance: 
VC(ΔFr) = Cov(ΔFr, ΔFr) 

         = E{[∆Fr – E(∆Fr)] [∆Fr – E(∆Fr)]T} 
VC(ΔDp) = Cov(ΔDp, ΔDp) 
               = E{[∆Dp – E(∆Dp)] [∆Dp – E(∆Dp)]T} 

By using the above relationships, the following equation has 
been established: 

VC(ΔFr) = VC(D · ΔDp) 
= E[ (D · ΔDp)( D · ΔDp) T] 
= D · E[ΔDp · ΔDp T] · DT 

                = D · VC(ΔDp) · DT                                          (4) 

2.1 System sensitivity 
Robust design aims to make functions of system insensitive to 
uncontrollable factors through selecting system structure and 
design parameters properly [2]. Accordingly, if a system is 
robust, its performance functions should be insensitive to 
uncontrollable factors, i.e. sensitivity index Sv

2 = σD
2 / σF

2 

should be a small value; where σF
2 represents the variance of 

functional requirements and σD
2 represents the variance of 

uncontrollable factors [3]. 
In real engineering systems, the mathematical characteristics 
of uncontrollable factors can be obtained through 
mathematical analysis. In this study it is assumed that 
uncontrollable factors ΔDpi i = 1, 2, …, m are mutually 
independent, and have normal distributions, furthermore, 
 2
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variance of each uncontrollable factor can be expressed as 
follows:  

Var(∆Dpi) = εi
2 σD

2                                                           (5) 
where  εi i = 1, 2, ..., m are constants larger than 0. 
From Equation (3), changes of functional requirements caused 
by uncontrollable factors can be represented as: 
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According to Equation (5), the following transform can be 
made: 
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Referring to Equation (3), we have:  
ΔFr = D' · ΔDp'                                                              (8) 

where  
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ΔDp' = [ΔDp1 / ε1,ΔDp2 / ε2, …, ΔDpm / εm]T

As uncontrollable factors are expressed by ΔDpi = Dpi – E(Dpi)  
i = 1, 2, …, m we know: 

E(ΔDp') = [E(ΔDp1/ε1), E(ΔDp2/ε2), …, E(ΔDpm/εm)]T 

= 0                                                                     (9) 

E(ΔFrj) = E[Dj1ΔDp1 + Dj2ΔDp2 + …+ DjmΔDpm] 
= 0                                                                     (10) 

where   j = 1, 2, …, n 
As it is assumed that uncontrollable factors ΔDpi i = 1, 2, …, 
m are mutually independent, and have normal distributions 
(for other distributions, corresponding methods can also be 
developed with similar approach). By bringing Equations (5) 
and (9) together, we obtain:  

VC(ΔDp') = E{[∆Dp' – E(∆Dp')] [∆Dp' – E(∆Dp')]T} 
= {[∆Dp'] [∆Dp']T }  
= σD

2
 · I                                                         (11) 

According to Equation (4), it is found: 
VC(ΔFr) = D' · VC(ΔDp') · D'T     
                = D' ·σD

2
 · I · D'T

                = σD
2
 D' · D'T                                                  (12) 

Left side of Equation (12) 
VC(ΔFr) =  
  Copyright © 2008 by ASME
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Right side of Equation (12) 
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If consider elements on diagonal of the matrix only, we have, 
σD

2
 D' · D'T = 

                                           (15)
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As we know, 
Var(ΔFri) = Var[Fri – E(Fri)] = Var(Fri)                        (16) 

If σF
2 denotes variance of functional requirement, the 

following relations are held: 
σF

2 = Var(Fri) = Var(ΔFri)   i = 1, 2, …, n                     (17) 

In this study it is assumed that variances of functional 
requirements are identical (if there is a significant difference 
among variations, the following analysis would be different), 
then, bringing Equations (12), (13), (15), (16) and (17) 
together, we obtain: 
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Comparing with diagonal elements of Equation (18), we have:  
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and sensitivity index obtains the following relation: 

Sv
2 = σF

2 / σD
2 =

2

F

n
′D                                                    (20) 

where  ||·||F denotes the standard Frobenius norm. 

3 ROBUST DESIGN 
In addition to satisfy expected functional requirements, robust 
design needs to make deviations of functional requirements 
insensitive to uncontrollable factors resulted from materials, 
manufacturing, operational environment and so on. Sensitivity 
index is defined as follows:  

Sv
2 = σF

2 / σD
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where  i = 1, 2, …, n and ε1, ε2, …, εm are all proportional 
constants larger than 0. Thus, we obtain the same 
monotonicity. 
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where  i = 1, 2, …, n   j = 1, 2, …, m 
If sensitivity index Sv

2 has the minimum value, influences 
caused by uncontrollable factors on variance of functional 
requirements will become minimum. According to basic idea 
of robust design [2], the lesser changes of functional 
   3 Copyright © 2008 by ASME
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requirements under influence of uncontrollable factors, the 
more robustness system achieved. From the perspective of 
probability and statistics, robust design means that 
performance function of system concentrates near an expected 
value with a high probability.  
E(Fr) represents the expected value of functional requirement 
Fr. According to the definition of variance, we know that σF

2 

reveals the deviations of function from its expected value 
E(Fr). If Fr concentrates near E(Fr) , σF

2 is small. Otherwise, 
it means a large dispersion, and σF

2 will be large. Therefore, 
σF

2 describes decentralization of functional requirements of 
system comparing to its expected value. It can be used to 
measure robustness of system.  
According to Equation (20) we have:  

σF
2 = σD

2
2

F

n
′D                                                               (24) 

Therefore, according to the analysis above, we can establish a 
robust optimization model as follows:  

Minimize    σF
2 = σD

2
2

F

n
′D                              (25) 

subject to:   ε1
2Dj1

2 + ε2
2Dj2

2 + …+ εm
2Djm

2  
= ε1

2Dk1
2 + ε2
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2Dkm
2              (26) 

where  D' is a n × m transformed design matrix, Dij are 
elements of design matrix D, and 
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εi are constants larger than 0, i = 1, 2, …, m  j = 1, 2, …, n;  k 
= 1, 2, …, n;  j ≠ k 

 
If s = [s1, s2, …, sp]T represents system’s structural 
characteristics, design matrix D will be a function of s. 
Therefore, D reflects and determines structural characteristics 
of system. As εi i = 1, 2, …, m have direct relations with 
variance of uncontrollable factors, then transformed design 
matrix D' represents system’s structural characteristics, also 
donates relationships of uncontrollable factors.  
The analyses indicate that sensitivity index Sv

2 and variance of 
functional requirements σF

2 have direct relationships with 
system’s structural characteristics and uncontrollable factors. 
However, no obvious relationships with means of design 
parameters have been determined. According to analysis of 
system sensitivity and the robust optimization model, it was 
found that system's robustness is mainly determined by 
system’s structural characteristics as well as uncontrollable 
factors, but does not have obvious relationships with mean of 
design parameter E(Dp) with under this system model. 

4 DISCUSSION 
Angeles [5] has qualitatively discussed the relationships 
between system robustness and D · DT which relative to ||D´||F 
based on Suh’s Axiomatic Design and the traditional robust 
design technique. Integrations of the independent analysis and 
robust analysis have been introduced in reference [3]. But all 
 4
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those discussions were base on the conditions that standard 
variations of both uncontrollable factors and changes on 
functional requirements have uniform values for σF and σD 
respectively, and their Variance and Covariance are simply 
considered to be isotropic. In this paper, those preconditions 
have been removed as they may be obstacles in the real 
engineering projects. We conducted an analysis on 
constitution of robustness. Blow is the discussion about 
relations of functional requirements which discussed in [3] on 
point of the Axiomatic Design. 
 
For a system of multi-purpose functional requirements, as the 
functional changes can be expressed as: 

ΔFri = Fri – E(Fri)                                                          (27) 
the following relationship can be established: 

E{[ΔFri] [ΔFrj]} = E{[Fri – E(Fri)] [Frj – E(Frj)]} 
                                   = Cov(Fri, Frj)                                     (28) 
where  i = 1, 2, …, n   j = 1, 2, …, n,  i ≠ j 
From Equation (13), the following relationships about 
functional requirements hold: 

VC(ΔFr) = 
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Through Equation (29), we know that Variance-Covariance 
matrix of changes of function requirements indicates mutual 
relationships of functional requirements. In order to fulfill 
requirements from real engineering project, more systematic 
and comprehensive analyses are required to develop mutual 
relationships of functional requirements, and provide more 
information necessary for the Axiomatic Design. For example, 
if in real engineering systems, it is acceptable to make the 
functional requirement Fri and Frj mutually independent, 
correlation coefficient ρ will be 0, that is equal to Cov(Fri, Frj) 
= 0 (as the following analysis in Case 2 of the Example 
Section of the paper); if functional requirements Fri and Frj 
follow a linear relationship, that means Cov(Fri, Frj) equal to 
kσF

2, where k is coefficient of linear term, σF
2 represents 

variance of functional requirement. 

5 EXAMPLES 
Case 1:  Figure 1 is a schematic drawing of a link with bolts 
under force F0 and moment M. E is gravity center of the link, 
x1 and x2 represent distance of force F0 from two bolts 
respectively, and y1 and y2 represent distance of the gravity 
center from two bolts respectively. Robust design of this 
simple component was carried out for the two bolts.  
  Copyright © 2008 by ASME
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M

F 0

y 1 y 2

Gravity center E

x1 x2

 
Figure 1.  schematic drawing of link under F0 and M 

(overlook) 

In this case, it is assumed that two bolts under influence of 
force F0 and moment M will respectively have two react 
forces F1 and F2 on link. For analysis purpose, it is considered 
the force F1 is composed by F1F and F1M respectively, where 
F1F is caused by F0 and F1M is cause by moment M. likewise, 
F2 is composed by F2F (caused by F0)and F2M (caused by M), 
as Figure 2 and Figure 3 show. Thus, under force F0 (Figure 2), 
one can obtain:  

F 0

x1 x2

F 1F F 2F

 
Figure 2.  analysis under force F0 (overlook) 

F0 = F1F + F2F                                                                 (30) 

F1F(x1 + x2) = F0 x2                                                          (31) 
By using Equations (30) and (31), we obtain: 
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Under moment M (Figure 3),  
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M

F 1M

y 1 y 2

Gravity center E

F 2M

 
Figure 3.  analysis under moment M (overlook) 

If neglecting the friction forces, we obtain: 
M = F1M (y1 + y2)                                                             (34) 

F1M = F2M                                                                        (35) 
By using Equations (34) and (35), we have: 
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According to force synthesis, the following relations will be 
hold, 
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and, 
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from Equation (26) we obtain: 
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when x1 = x2, equation (42) is tenable. No matter to assume 
that x1 + x2 = y1 + y2 = l, so  

0 < l ≤ L                                                                          (43) 
where  L is the whole length of link.    
Bring with Equations (24), (41) and (42) together, we obtain: 
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if l = L, Sv
2 = σD

2 / σF
2 and σF

2 will obtain the minimum value, 
then: 

x1 = x2 = y1 = y2 = L / 2                                                    (45) 
thus the system will become robust as the Figure 4 shows. 

M
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Figure 4.  schematic drawing of link under robust 

condition (overlook) 

Then, the design matrix is: 
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From the design matrix above, if our early robust approach 
introduced in [3] were used, it would be difficult to obtain the 
result of robust design.  
For a linear system, system sensitivity should be defined in 
relation to deviations of design parameters. An analysis should 
be carried out to investigate relationships between sensitivity 
of system and structural characteristics and uncontrollable 
factors. In this case, when the system is robust, l = L. with 
Equation (44) we obtain: 
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Equations (47) and (48) directly reflect sensitivity of system 
robustness relative to structural characteristics as well as the 
uncontrollable factors. With Equation (44), it can be found 
that, when the link is longer, variance of functional 
requirements would be smaller, and more robustness of the 
system would be achieved. Furthermore, under these 
conditions, system sensitivity of robustness relative to 
structural characteristics as well as uncontrollable factors 
would have smaller value. At the same time, robustness of 
system would improve along with increasing of L as well as 
reducing of variance of uncontrollable factors. Otherwise, 
when L is of a smaller value, robustness of system would be 
 6
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lower along with reducing of L as well as increasing of 
variance of the uncontrollable factors. 

Case 2:  A rigid crossbeam under forces of Fs1, Fs2 is shown 
in Figure 5. The whole length of the rigid crossbeam is L. In 
order to be balanced, there needs to exert support forces F1 
and F2 in both sides of crossbeam separately. As we know, Fs1 
and Fs2 are mutually independent and follow normal 
distributions, with values of Fs1 ~ N(1000, 102), Fs2 ~ N(1000, 
102). The design was carried out to determine support forces 
F1, F2 for robust structure of this system. 

Fs1 Fs2

F1 F2

L1 L2 L3

 
Figure 5.  schematic drawing of rigid crossbeam under 

forces Fs1 and Fs2

According to the system equilibrium condition, the following 
relationships hold: 

F1 L = Fs1 (L2 + L3) + Fs2 L3                                          (49) 

F2 L = Fs2 (L1 + L2) + Fs1 L1                                           (50) 

By bringing Equations (49) and (50) together, we have: 
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and 
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According to Equation (26), we have the following: 
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From Equation (53) and use L1 + L2 + L3 = L  L > 0, it is found 
that: 

L1 = L3                                                                          (54) 
When F1, F2 are independent, all non-diagonal elements of 
Variance-Covariance matrix of functional changes should be 0. 
Then we have: 

02
21

2
1

2
3

1
32 =⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Δ

+
+Δ⎟

⎠
⎞

⎜
⎝
⎛ Δ+Δ

+
ssss F

L
LLF

L
LF

L
LF

L
LLE

 
 (55) 

Since ΔFs1 and ΔFs2 are mutually independent, and ΔFs1 ~ N(0, 
102)、ΔFs2 ~ N(0, 102), so we have:    
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Dow
L1 = L3 = 0,  L2 = L                                                         (56) 
and 

F1 ~ N(1000, 102),   F2 ~ N(1000, 102)                          (57) 
Figure 6 shows the structures. 

Fs1 Fs2

 
Figure 6.  schematic drawing when support forces are 

independent 

If there is not any relationship restricted between F1 and F2 , 
by manipulating Equations (25) and (26), we have: 
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As L1 + L2 + L3 = L  L > 0 , bring with Equation (58) together, 
we can determine that when L1 = L3 = L / 2 and L2 = 0, 
variance of functional requirements reaches the minimum, 
thus: 

2

2
2 D

F
σσ =                                                                      (59) 

And according to Fs1 ~ N(1000, 102), Fs2 ~ N(1000, 102), the 
following relations will be hold: 

F1 = F2 ~ N(1000, 7.12)                                                  (60) 
Figure 7 shows the structures. 

Fs1+F s2

F1 F2

 
Figure 7.  schematic drawing of robust structure  

According to the discussion above, when support forces F1, F2 
are mutually independent, L1 = L3 = 0, L2 = L. Under the given 
independent conditions, structural characteristics of system 
directly influence system robustness. When there are not any 
restrictive relationships between F1 and F2, the analytical 
approach would lead to a robust design. 
Under the condition as shown in Figure 7, when L1 = L3 = L / 
2，L2 = 0, from Equation (58), we obtain: 
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Equations (61), (62), (63) and (64) show the system robustness 
acquired. When the rigid crossbeam is longer, and variance of 
forces Fs1 and Fs2 become smaller, system robustness would 
obtain a lower sensitivity to changes resulted from structural 
characteristics and uncontrollable factors. The system would 
not be disturbed by small changes of structural characteristics 
and uncontrollable factors.  

6 CONCLUSION 
The analyses carried out in this research showed that there are 
the intrinsic relationships among system robustness, structural 
characteristics, design parameters and uncontrollable factors 
of mechanical systems. By using the proposed analytical 
robust design approach, this research found that linear system 
robustness has a direct relationship with structural 
characteristics and uncontrollable factors. Furthermore, based 
on the analysis of linear system sensitivity to uncontrollable 
factors, a robust optimization model was established for 
determining robust design parameters. According to the 
optimization model (see Equations (25) and (26)) as well as 
the Axiomatic Design principles, structural characteristics of 
system and ranges for tolerance of uncontrollable factors 
should be properly selected for achieving system robustness. It 
should be mentioned that the model and the method 
represented in this paper were developed with assumptions. If 
an application does not satisfy these conditions, this method 
may not be applicable. 
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