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Abstract

We study the combination problem for credal sets via
the robust Bayesian combination operator. We extend
Walley’s notion of degree of imprecision and introduce
a measure for degree of conflict between two credal
sets. Several examples are presented in order to ex-
plore the behavior of the robust Bayesian combination
operator in terms of imprecision and conflict. We fur-
ther propose a discounting operator that suppresses
a source given an interval of reliability weights, and
highlight the importance of using such weights when-
ever additional information about the reliability of a
source is available.

Keywords. Imprecise probabilities, robust Bayesian
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sion

1 Introduction

We define the combination problem as the problem of
combining evidences regarding some reality of inter-
est (cf., [9]). The problem has gained much attention
in several different research fields, in particular infor-
mation fusion (see, e.g., [2]) and artificial intelligence
(see, e.g., [18]). We have here taken a “set-point-wise
Bayesian”, or credal [11, 5], approach to the combi-
nation problem via the robust Bayesian combination
operator. One important advantage with such an ap-
proach is that it is easily adoptable for practitioners
and researchers that already are familiar with (stan-
dard) Bayesian theory. It should be emphasized that
the combination problem is different from the aggrega-
tion problem where the main goal is to find a common
agreement among sources. If an aggregation operator
[19, Section 1.1] is applied to identical operands, typ-
ically the result will also be the same, since it repre-
sents a “perfect agreement”. If we consider the same
scenario, using a combination operator instead, the re-
sult usually represents stronger evidence in compari-
son to any of the operands, since both sources agree on

some hypotheses, i.e., the result is different from the
operands. Several researchers have addressed the ag-
gregation problem (see, e.g., [12, 13, 20]), however, the
combination problem is an overlooked area in the case
of general credal sets. Combination of evidences in the
form of so-called mass functions (which can be trans-
formed into a particular type of credal set [2]), have
been thoroughly studied within evidence theory [16],
mainly via some variant of Dempster’s rule. However,
it has been shown that Dempster’s rule can yield dis-
parate results in comparison to the robust Bayesian
combination operator, in fact, the results can even be
disjoint [2].

Our main concern in this paper is to characterize the
behavior, interpretation, and implications of utiliz-
ing the robust Bayesian combination operator for the
combination problem. Furthermore, we introduce a
discounting operator which can be used whenever an
interval of reliability weights are known for the sources
involved in the combination.

The paper is organized as follows: in Section 2, we
elaborate on credal set theory1 and derive the ro-
bust Bayesian combination operator. In Section 3,
we elaborate on imprecision and conflict with respect
to credal sets. In Section 4, we present three exam-
ples and utilize imprecision and conflict in order to
investigate the results. In Section 5, we introduce the
discounting operator and revisit two of the mentioned
examples. Lastly, in Section 6, we present a summary,
our conclusions, and ideas for future work.

2 Preliminaries

We here present some background on credal set theory
and derive the robust Bayesian combination operator
via its precise counterpart, the Bayesian combination
operator.

1Also known as theory of credal sets. We choose the term
“credal set theory” since it is coherent with “Bayesian theory”.



2.1 Credal Set Theory

Credal set theory [4, 5, 6, 11] is a generalization of
Bayesian theory where one acknowledges that there
might be more than one reasonable probability distri-
bution for representing belief. As a consequence one
is allowed to adopt a closed convex set of such dis-
tributions, commonly referred to as a credal set, as
the fundamental representation of belief. In order to
update such belief, one applies Bayes’ theorem point-
wise to a credal set of priors and a convex set of like-
lihood functions. As a last step one utilizes a convex
hull operation. Note that in the special case of sin-
gleton sets, the theory reduces to standard Bayesian
theory.

Let us denote a credal set by PX , containing proba-
bility distributions of the form p(X), PX|y for distri-
butions in the conditional form p(X|y), and PX,Y for
joint probability distributions p(X,Y ). Let ext (PX)
denote the set of extreme points (also known as ver-
tices) of PX , i.e., distributions that cannot be ex-
pressed as a convex combination2 of any other dis-
tributions in the set. We only consider credal sets
that have a finite set of extreme points (also known
as polytopes). Each credal set PX can be described as
the set of convex combinations of points in ext (PX),
in other words, it suffices to maintain a credal sets’
extreme points in order to represent it. In a number
of places throughout this paper we will use the credal
set that contains all probability distribution for some
random variable. Let us therefore formally define this
credal set:

Definition 1. Let P∗X denote the set of all probabil-
ity distributions for a random variable X with state
space ΩX , i.e., P∗X , {p : 0 ≤ p(xi) ≤ 1, 1 ≤ i ≤
|ΩX |,

∑|ΩX |
i=1 p(xi) = 1}

One controversy in credal set theory is how one
should define independence between variables (for an
overview see [3]). We here adopt the most commonly
used such definition, referred to as strong indepen-
dence [6]:

Definition 2. X and Y are strongly independent iff
each pi ∈ ext (PX,Y ) can be expressed as pi = pjpk,
where pj ∈ PX and pk ∈ PY . X and Y are
strongly conditionally independent given Z iff pi ∈
ext
(
PX,Y |z

)
can be expressed as pi = pjpk, ∀z ∈ ΩZ ,

where pj ∈ PX|z and pk ∈ PY |z.

2A convex combination of points {pi : 1 ≤ i ≤ n} is defined
as
∑n

i=1 λipi, where
∑n

i=1 λi = 1, λi ≥ 0

2.2 The Robust Bayesian Combination
Operator

Let us first derive, via Bayes’ theorem, the Bayesian
combination operator, which we then generalize to op-
erate on credal sets. The derivation is inspired by
Arnborg [1, 2]. The derivation has previously been
utilized in order to define distinctness of evidences in
variants of evidence theory [17, Sect. 3.1]. Assume
that two sources have made observations y1 and y2,
respectively, related to a random variable X. If one
wants to formulate one’s belief regarding X, based
on the observations made by the sources, one utilizes
Bayes’ theorem:

p(X|y1, y2) =
p(y1, y2|X)p(X)∑

x∈ΩX

p(y1, y2|x)p(x)
(1)

We see that the posterior belief p(X|y1, y2) is af-
fected by the observations through the joint likelihood
p(y1, y2|X). Hence, it is reasonable to interpret such
likelihood as being evidence regarding X [9]. Now,
if one’s posterior belief p(X|y1, y2) should be a repre-
sentation of the available evidence solely, i.e., the pos-
terior belief should be equal to the normalized joint
likelihood function, then we need to set our prior be-
lief p(X) to the uniform distribution over ΩX . If we
also can assume that the sources have made condi-
tionally independent observations given X, i.e.,:

p(y1, y2|X) = p(y1|X)p(y2|X) (2)

and that both sources have adopted the uniform dis-
tribution as their prior belief p(X), i.e., their belief is
completely determined by likelihoods, then we get:

p(X|y1, y2) =
p(y1|X)p(y2|X)p(X)∑

x∈ΩX

p(y1|x)p(y2|x)p(x)
(3)

=

p(X|y1)p(y1)
p(X)

p(X|y2)p(y2)
p(X)∑

x∈ΩX

p(x|y1)p(y1)
p(x)

p(x|y2)p(y2)
p(x)

(4)

=
p(X|y1)p(X|y2)∑

x∈ΩX

p(x|y1)p(x|y2)
(5)

We know that:

p(X|yi) =
p(yi|X)p(X)∑

x∈ΩX

p(yi|x)p(x)

=
p(yi|X)∑

x∈ΩX

p(yi|x)
,

(6)



i ∈ {1, 2}, since the sources have adopted the uni-
form distribution as prior belief. Hence, Eq. 5 consti-
tutes an operator that takes two probability functions,
interpreted as evidences, i.e., normalized likelihoods,
as operands, and returns a new such function, repre-
senting the combined evidence, i.e., normalized joint
likelihood. We are now ready to define the Bayesian
combination operator [1, 2]:

Definition 3. The Bayesian Combination (BC) Op-
erator3 is defined as:

p1(X)⊗B p2(X) ,
p1(X)p2(X)∑

x∈ΩX

p1(x)p2(x)
,

where p1(X) and p2(X) are interpreted as con-
ditionally independent evidences, i.e., normalized
likelihoods that are conditionally independent given
X (see Eq. 2). The operator is undefined when∑

x∈ΩX
p1(x)p2(x) = 0.

Let us first comment on the case when∑
x∈ΩX

p1(x)p2(x) = 0. The case implies that
likelihoods are such that at least one of them is
zero for every x ∈ ΩX , which is exceptional in
any properly modeled system. The exact way of
dealing with such an exceptional case is application
dependent. One technique for resolving the case is
to utilize discounting with reliability weights strictly
smaller than one (see further Sect. 5).

Note that if the operands strongly agree on some
x ∈ ΩX as being the most probable, then the op-
erator will reinforce such probability in the resulting
posterior function. As mentioned in the introduction,
such behavior is clearly different from what one would
expect from an aggregation operator. The reason for
why such behavior is reasonable is due to the assump-
tion of conditionally independence between evidences
given X, as described by Eq. 2. Let us demonstrate
this behavior of the BC operator with a simple exam-
ple:

Example 1. Assume that two sources reports the fol-
lowing probability distributions as a representation of
conditionally independent evidences regarding the ran-
dom variable X with state space ΩX :

p1(x1) = 0.7, p1(x2) = 0.2, p1(x3) = 0.1
p2(x1) = 0.8, p2(x2) = 0.1, p2(x3) = 0.1,

Applying the BC operator to p1 and p2, i.e., p1⊗B p2,
yields the following distribution:

p1,2(x1) ≈ 0.95, p1,2(x2) ≈ 0.03, p1,2(x3) ≈ 0.02,

3Arnborg [2] referred to this operator as Laplace’s parallel
composition

Hence, the result constitutes stronger evidence for x1

than any of the operands.

Now if we want to define an operator that generalizes
the BC operator, in the sense of “point-wise Bayesian-
ism”, then one can substitute the operand single dis-
tributions to credal sets and apply the BC operator
point-wise on every pair of distributions within the
sets. Indeed, such an operator exists under the name
robust Bayesian combination operator [1, 2]:

Definition 4. The Robust Bayesian Combination
(RBC) Operator 4:

P1
X ⊗R P2

X , CH

{
pi(X)⊗B pj(X) :

pi ∈ P1
X , pj ∈ P2

X

}
,

where CH denotes the convex hull, P1
X and P2

X are
interpreted as strongly conditionally independent evi-
dences, i.e., convex sets of normalized likelihoods that
are strongly conditionally independent given X (see
Def. 2). The operator is undefined if there exists pi ∈
P1

X and pj ∈ P2
X such that

∑
x∈ΩX

pi(x)pj(x) = 0.

The operator is both associative and commutative.
Note that the case regarding division by zero is inher-
ited from the BC operator (Def. 3). Discounting the
operands (see further Sect. 5) using reliability weights
strictly smaller than one, resolves such case (see fur-
ther the discussion following Def. 3). Throughout the
remainder of the paper we will assume that some tech-
nique, guaranteeing

∑
x∈ΩX

pi(x)pj(x) > 0, for all
pi ∈ P1

X and pj ∈ P2
X , has been utilized (e.g., dis-

counting).

The following theorem facilitates computation with
the RBC operator (the theorem was implicitly men-
tioned in [2], with no proof, and explicitly stated in [1,
Theorem 1], where only a “proof hint” was provided):

Theorem 1.

P1
X ⊗R P2

X = ext(P1
X)⊗R ext(P2

X)

Proof. The proof is partly inspired by Noack et al. [14,
Theorem 2]. First note that ext(P1

X) ⊗R ext(P2
X) ⊆

P1
X ⊗R P2

X is trivial. Assume that ext(P1
X) ⊗R

ext(P2
X) is strictly smaller than P1

X ⊗R P2
X , i.e.,

ext(P1
X)⊗R ext(P2

X) ⊂ P1
X ⊗R P2

X . Then there must
exists at least one u ∈ ext(P1

X ⊗R P2
X) such that

u /∈ ext(P1
X) ⊗R ext(P2

X), where u has the follow-
ing form: u = p1p2/

∑
x∈ΩX

p1(x)p2(x), p1 ∈ P1
X and

4Arnborg [2] defined the operator without the inclusion of a
convex-hull operator (however he mentioned in the discussion
following his definition that such an operator should be utilized)



p2 ∈ P2
X , where at least one of p1 and p2 is not an

extreme point. We can express p1 and p2 as:

p1 =
m∑

i=1

λivi

p2 =
n∑

j=1

αjwj ,

(7)

where vi ∈ ext(P1
X), wj ∈ ext(P2

X), λi ≥ 0, αj ≥ 0,
1 ≤ i ≤ m, 1 ≤ j ≤ n,

∑m
i=1 λi =

∑n
j=1 αi = 1.

Therefore (remember that the denominator is as-
sumed not to be equal to zero, see the discussion fol-
lowing Def. 3 and Def. 4):

u =

m∑
i=1

n∑
j=1

λiαjviwj

∑
x∈ΩX

 m∑
i=1

n∑
j=1

λiαjvi(x)wj(x)

 (8)

Let us introduce the following notation:

γi,j ,

λiαj

∑
x∈ΩX

vi(x)wj(x)

∑
x∈ΩX

 m∑
i=1

n∑
j=1

λiαjvi(x)wj(x)

 (9)

We can now rephrase u as:

u =
m∑

i=1

n∑
j=1

γi,j
viwj∑

x∈ΩX

vi(x)wj(x)
(10)

Since:
viwj∑

x∈ΩX

vi(x)wj(x)
∈ ext(P1

X)⊗R ext(P2
X),

(11)

and γi,j ≥ 0,
∑m

i=1

∑n
j=1 γi,j = 1, we get u ∈

ext(P1
X)⊗R ext(P2

X), which is a contradiction. Hence
we must conclude that P1

X ⊗R P2
X = ext(P1

X) ⊗R
ext(P2

X).

3 Imprecision and Conflict

We here define measures for degree of imprecision and
conflict.

3.1 Degree of Imprecision

Obviously, since credal set theory belongs to the fam-
ily of theories referred to as imprecise probabilities
[23], imprecision is an important concept to define.

Walley [21, Section 5.1.4] has introduced a measure
which he refers to as the degree of imprecision for an
event xi ∈ ΩX :

∆(xi) , max
p∈PX

p(xi)− min
p∈PX

p(xi) (12)

However, the measure does not capture the impreci-
sion of a credal set, since it only operates on single
events. At first, one might be tempted to think of the
imprecision of a credal set as its volume. However, the
volume can be made arbitrarily small while a high de-
gree of imprecision for some event is preserved, some-
thing that is counterintuitive. Let us therefore base
our measure of degree of imprecision for a credal set
on Walley’s measure in the following way:
Definition 5. Degree of Imprecision:

I(PX) ,
1
n

∑
x∈ΩX

∆(x)

where PX ⊆ Rn and n = |ΩX |

The optimization problems involved in the definition
of I are linear, hence, the solutions can be found by
iterating through the extreme points.

3.2 Degree of Conflict

Assume that two sources report (strongly condition-
ally independent) evidence in the form of credal sets
P1

X and P2
X and that one wants to formulate the com-

bined evidence concerning X based on these sets. If
both sources report exactly the same credal set, then
they are willing to act according to any distribution
within any of their sets. In other cases, i.e., when the
credal sets are not equal, then there exists a distribu-
tion which not both sources are willing to act upon,
i.e., a certain degree of conflict is present. Intuitively,
the degree of conflict between P1

X and P2
X should be

related to some distance between the sets. Indeed,
there exists such distance measure, which goes under
the name of Hausdorff distance [10]. Let us therefore
define a degree of conflict between two credal sets in
the following way:
Definition 6. Degree of Conflict:

K(P1
X ,P2

X) ,
H(P1

X ,P2
X)√

2
,

where the denominator is a constant constituting
the diameter of the set P∗X (see Def. 1), i.e.,
maxpi∈P∗X

{
maxpj∈P∗X d(pi, pj)

}
=
√

2 (the diameter
of a credal set is found in the set of distances between
extreme points [7, Theorem 12]) where d denotes the
Euclidean distance, and H is the Hausdorff distance
defined by:

H(P1
X ,P2

X) , max
{−→
H(P1

X ,P2
X),
−→
H(P2

X ,P1
X)
}
,
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Figure 1: P1
X (circles) and P2

X (squares) projected on
two-dimensional space. The triangle where extreme
points p(x1) = p(x2) = p(x3) = 1 have been, marked
constitutes P∗X (see Def. 1).

where
−→
H is the forward Hausdorff distance defined by:

−→
H(F1,F2) , max

fi∈F1

{
min

fj∈F2
d(fi, fj)

}
,

where F1 and F2 are general closed convex sets in Rn.

The forward Hausdorff-distance can be calculated in
O(|ext(F1)||fac(F2)|) [10], where fac denotes the set
of faces. Let us demonstrate the conflict measure by
a simple example:

Example 2. Consider Fig. 1 where two credal sets,
P1

X and P2
X , for a random variable X with ΩX =

{x1, x2, x3}, has been plotted. From the figure, it is
seen that

−→
H(P2

X ,P1
X) >

−→
H(P1

X ,P2
X), since there ex-

ists at least one point in P2
X (e.g., the lower right

extreme point) from where the minimum distance to
P1

X is larger than the distance from any point in P1
X

to a point in P2
X . Hence, the Hausdorff distance

H(P1
X ,P2

X) must be equal to the forward Hausdorff
distance

−→
H(P2

X ,P1
X), which is the maximum of the

set of distances from the set of extreme points of
P2

X to P1
X ’s faces [10]. In this example, the maxi-

mum such distance, approximately equal to 0.16, is
found among the distances between the lower extreme
points of P2

X to the lower extreme points of P1
X , i.e.,

H(P1
X ,P2

X) ≈
−→
H(P2

X ,P1
X) ≈ 0.16, yielding a degree

of conflict K(P1
X ,P2

X) ≈ 0.11.

Notice that if P1
X = P2

X then K(P1
X ,P1

X) = 0. Also,
if ext(P1

X) ⊆ ext(P∗X) and ext(P2
X) ⊆ ext(P∗X), and

ext(P1
X) ∩ ext(P2

X) = ∅ then K(P1
X ,P1

X) = 1 (since
the distance between two different extreme points of
the set P∗X is

√
2).

4 Examples

We will here give some examples of utilizing the robust
Bayesian combination (RBC) operator in scenarios
where there are different degrees of conflict present.
For simplicity, let us utilize the family of credal sets
that can be obtained by the imprecise Dirichlet model
(IDM) [22] for constructing the operand credal sets.
Note that these sets stem from a credal set of priors
(hence not from a set of likelihoods) and that we are
only utilizing the IDM as a convenient way of con-
structing different geometrical shapes of credal sets
for the examples. Consider a random variable X with
state space ΩX = {x1, x2, x3}. A credal set obtained
from the IDM for this state space can be parameter-
ized according to:

IDM(α, s) ,{
p :

αi

3∑
i=1

αi + s

≤ p(xi) ≤
αi + s

3∑
i=1

αi + s

,

1 ≤ i ≤ 3,
3∑

i=1

p(xi) = 1

}
,

(13)

where αi denotes the ith component of α.

4.1 Low Conflict

Let us start with an example where there exists a low
degree of conflict between the sources. We define the
example by utilizing Eq. (13) on the following param-
eters:

P1
X = IDM((1, 5, 1), 2)

P2
X = IDM((1, 3, 1), 2)

(14)

The corresponding credal sets are shown in Fig. 2(a),
where the sets have been projected on the compo-
nents p(x1) and p(x2) (this enables one to see the
probabilities directly from the plot). The line seg-
ment defined by coordinates (0, 1) and (1, 0) corre-
sponds to the set of distributions where p(x3) = 0.
From the figure we see that there is only a slight con-
flict, K(P1

X ,P2
X) ≈ 0.11, and that both sources essen-

tially agree on “x2” as being most probable. There-
fore the result, denoted by P1,2

X (I(P1,2
X ) ≈ 0.34), is

reinforced towards a high probability for “x2”, as is
seen in Fig. 2(b).

4.2 Balanced Conflict

Consider an example where the evidences from the
sources are strongly conflicting:

P1
X = IDM((20, 10−3, 10−3), 2)

P2
X = IDM((10−3, 20, 10−3), 2)

(15)
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Since the sources expresses the same degree of im-
precision, we refer to the conflict as balanced. The
operand credal sets and result can be seen in Fig. 3.
We see that there is a high degree of conflict,
K(P1

X ,P2
X) ≈ 0.91 and that the resulting credal set

P1,2
X has a high degree of imprecision, I(P1,2

X ) ≈ 1.
The main reason for this is due to that the “point-
wise” combination of the lower left extreme points of
P1

X and P2
X results in the lower left extreme point of

P1,2
X ; a case that is similar to the well-known Zadeh’s

(counter) example for Dempster’s rule [24]. The rea-
son for such behavior is due to that the extreme points
component-wise suppress each other for events x1 and
x2.

4.3 Unbalanced Conflict

Now consider an example where one of the operand
credal set is highly imprecise while the other is not:

P1
X = IDM((20, 10−3, 10−3), 2)

P2
X = IDM((10−3, 10−3, 10−3), 2)

(16)

The corresponding credal sets can be seen in Fig. 4.
We see that the resulting credal set P1,2

X has been
strongly affected by the second source since I(P1,2

X ) ≈
1. However, since there exist distributions in P2

X

that are positioned at a large distance from any dis-
tribution in P1

X , there is a strong conflict present:
K(P1

X ,P2
X) ≈ 0.91. Since the conflict in this case is

due to differences in imprecision, we will refer to the
conflict as unbalanced.

5 Discounting

Assume that one possesses information concerning the
reliability of the sources and that one encodes this in-
formation via a convex set of reliability weights W 5,
i.e., an interval. If one knows that some source is not
fully reliable, e.g., a sensor of low quality, then one
should suppress the statement from that source ac-
cordingly, i.e., the source should have less influence
on the end result. Such procedure is commonly re-
ferred to as discounting in the literature [16]. If both
the credal set and set of reliability weights are single-
ton, then discounting is achieved by transforming the
single distribution, with respect to the weight, to a
new distribution that is more similar to the uniform
distribution. The reason for this is that the uniform
distribution represents evidence that has no influence
on the end result when combined with another distri-
bution, i.e., the latter is always returned as result in
such case.

5Imprecision in reliability weights was inspired by Troffaes
[20]

Now, if we generalize the above approach to credal
sets and set of reliability weights, preserving the idea
of “point-wise Bayesianism”, we obtain the following
discounting operator:
Definition 7. The RBC Discounting Operator:

D(PX ,W) , CH {wp+ (1− w)pu : w ∈ W, p ∈ PX} ,

where PX ⊆ Rn, W ⊆ [0, 1]2 is an interval of relia-
bility weights, and pu ∈ Rn, n = |ΩX |, is the uniform
distribution over ΩX .

The RBC discounting operator collapses a credal set
“towards” the uniform distribution. Note that when
the uniform distribution is combined, using the RBC
operator, with any other credal set, the latter is ob-
tained as result. Hence, by applying the RBC dis-
counting operator on an operand, the end result will
be less influenced by that operand, depending on W
(the collapse towards the uniform distribution should
therefore not be interpreted as a “bias” towards the
uniform distribution as it would have been for an ag-
gregation operator). The following theorem allows
one to perform computation with the RBC discount-
ing operator:
Theorem 2.

D(PX ,W) = D(ext (PX) , ext (W))

Proof. First note that D (ext (PX) , ext (W)) ⊆
D (PX ,W) is trivial. Assume that
D (ext (PX) , ext (W)) is strictly smaller than
D (PX ,W), i.e., D (ext (PX) , ext (W)) ⊂ D (PX ,W).
Then there must exists at least one u ∈
ext(D (PX ,W)) such that u /∈ D (ext (PX) , ext (W))
where u has the following form: u = wp+ (1− w)pu,
w ∈ W, and p ∈ PX , where at least one of w and p is
not an extreme point. There are three cases:

Case 1 – p ∈ ext (PX), w /∈ ext (W):
We know that w can be expressed as:

w = λw1 + (1− λ)w2, (17)

where w1 6= w2, w1, w2 ∈ ext (W), λ ∈ (0, 1). We get:

u = wp+ (1− w)pu

= pu + (λw1 + (1− λ)w2)(p− pu)
= pu + λw1(p− pu) + (1− λ)w2(p− pu)

+ λpu − λpu

= λ(pu + w1(p− pu)) + (1− λ)pu

+ (1− λ)w2(p− pu)
= λ(pu + w1(p− pu))

+ (1− λ)(pu + w2(p− pu))
= λ(w1p+ (1− w1)pu)

+ (1− λ)(w2p+ (1− w2)pu)

(18)



Hence u ∈ D (ext (PX) , ext (W)), which is a contra-
diction.

Case 2 – p /∈ ext (PX), w ∈ ext (W):
We know that p can be expressed as:

p =
n∑

i=1

αipi, (19)

where pi ∈ ext (PX), αi ≥ 0,
∑n

i=1 αi = 1. Therefore:

u = w

(
n∑

i=1

αipi

)
+ (1− w)pu

=

(
n∑

i=1

wαipi

)
+ (1− w)pu

+

(
n∑

i=1

αi(1− w)pu

)

−

(
n∑

i=1

αi(1− w)pu

)

=

(
n∑

i=1

αi(wpi + (1− w)pu)

)

+ (1− w)pu −

(
n∑

i=1

αi(1− w)pu

)

=
n∑

i=1

αi(wpi + (1− w)pu)

(20)

Hence u ∈ D (ext (PX) , ext (W)), which is a contra-
diction.

Case 3 – p /∈ ext (PX)), w /∈ ext (W):
As is explained in case 1 and 2, we know that:

w = λw1 + (1− λ)w2

p =
n∑

i=1

αipi,
(21)

We get:

u = (λw1 + (1− λ)w2)

(
n∑

i=1

αipi

)
+ (1− (λw1 + (1− λ)w2))pu

(22)

From Case 1 we know that Eq. (22) is equivalent to:

u = λ

(
w1

(
n∑

i=1

αipi

)
+ (1− w1)pu

)

+ (1− λ)

(
w2

(
n∑

i=1

αipi

)
+ (1− w2)pu

) (23)

From Case 2 we know that Eq. (23) is equivalent to:

u = λ

(
n∑

i=1

αi(w1pi + (1− w1)pu)

)

+ (1− λ)

(
n∑

i=1

αi(w2pi + (1− w2)pu)

) (24)

Hence u ∈ D (ext (PX) , ext (W)), which is a contra-
diction.

Since all cases lead to contradictions we must conclude
that D(PX ,W) = D(ext (PX) , ext (W)).

Let us now revisit the previous presented examples
where a strong conflict was present.

5.1 Balanced Conflict – Revisited

Assume that the following set of reliability weights
regarding the sources is available:

W1 = [0.80, 0.90]
W2 = [0.90, 0.95]

(25)

The result of applying the RBC discounting operator
on the operands in Sect. 4.2, utilizing the above set
of reliability weights, is seen in Fig. 5, where we de-
note the discounted resulting credal set as P1d,2d

X . We
get I(P1d,2d

X ) ≈ 0.53, hence, a significant difference
compared to the non-discounted case in Fig. 3(b).

5.2 Unbalanced Conflict – Revisited

Assume that the following reliability weights regard-
ing the sources are available:

W1 = [1.00, 1.00]
W2 = [0.75, 0.80],

(26)

The result of applying the RBC discounting operator
on the operands in Sect. 4.3, utilizing the above set of
reliability weights, is seen in Fig. 6, where I(P1d,2d

X ) ≈
0.56. The lower bound of W2 will in this case not
have any effect since P2

X is centered on the uniform
distribution.

6 Summary and Conclusions

We have studied the combination problem for credal
sets via the robust Bayesian combination operator.
We extended Walley’s notion of degree of imprecision
and introduced a measure for degree of conflict be-
tween two credal sets. We investigated the behavior
of the operator through a number of examples where
different degrees of conflict between the operands were
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present. We proposed the RBC discounting operator
to be used with the combination operator when a set
of reliability weights for the sources are available. We
showed that the result of the operators can be com-
puted by utilizing the extreme points of the operand
sets. Both operators preserve the intuitive paradigm
of “point-wise Bayesianism”.

An important aspect to recognize when using the ro-
bust Bayesian combination operator is that a source,
which reports a credal set that is highly imprecise,
can considerably affect the result of the combination
(see Fig. 4). If a strong conflict is present among the
sources, then additional information about the reli-
ability of the sources can be encoded as reliability
weights to be used by the RBC discounting operator.

If no such information is available, the conflict may be
regarded as irrelevant, if a sufficient number of sources
make strong statements that are not in conflict (i.e.,
the sources have made similar observations). For ex-
ample, if a large number of credal sets similar to P1

X

in Fig. 4(a), are combined with P2
X in the same figure,

then the conflict can be sufficiently suppressed to be
regarded as irrelevant

Our next step is to evaluate the robust Bayesian com-
bination and discounting operators against other com-
bination operators, e.g., the Bayesian combination op-
erator and Dempster’s rule. Such an evaluation must
also concern different modeling strategies for obtain-
ing the reliability weights. We are convinced that if
credal set theory is going to be accepted by a broader



body of researchers and practitioners, it is necessary
to thrust towards research where it can be shown that
the theory yields measurable advantages in compari-
son to other broadly accepted theories, e.g., Bayesian
theory.
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