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Why do Fish Have a “Fish-Like
Geometry”?
Most fish share a common geometry, a streamlined anterior body and a deep caudal fin,
connected to each other at a tail-base neck, where the body almost shrinks to a point.
This work attempts to explain the reason that fish exhibit this type of geometry. Assuming
that the fish-like geometry is a result of evolution over millions of years, or, that bodies of
modern-day fish have been optimized in some manner as a result of evolution, this work
investigates the optimum geometry for a swimming object through existing mathematical
optimization techniques to check whether the result obtained is the same as the naturally
observed fish-like geometry. In this analysis, the work done by a swimming object is taken
as the objective function of the optimization. It is found that a fish-like geometry is in fact
obtained mathematically, provided that the appropriate constraints are imposed on the
optimization process, which, in turn, provides some clues that explain the reason that fish
have a fish-like geometry. [DOI: 10.1115/1.4025646]

1 Introduction

Almost all species of fish exhibit a characteristic bodily feature,
that is, they have a fish-like geometry. In our terms, a fish-like ge-
ometry is that composed of a streamlined anterior body and a
deep caudal fin that are connected to each other at the tail-base
neck where the body almost shrinks to a point. It is also character-
istic that a fish undulates its body laterally in a progressing wave
mode when it swims. Lighthill [1] showed how a thrust force
could be produced by undulating motions using what he refers to
as an “elongated-body” theory. Wu [2] obtained the explicit
expression of a thrust force composed of two terms, one of which
is identical to Lighthill’s result and the other of which represents
the effect of the vortices shed from the contracting part of a fish
body. Recent studies have revealed that fish are exploiting vorti-
ces generated by their own motions in thrusting or maneuvering
their bodies, while actively manipulating vortices by their tail fin
(Wolfgang et al. [3] and Triantafyllou et al. [4]). Vorticity gener-
ated by their undulations of the body merges with the vorticity
shed at the trailing edge of the tail resulting in a pair of counter-
rotating vortices and; hence, thrust jet (Wolfgang et al. [3]). It has
also been clarified that proper combination of lateral and angular
motions (amplitude, phase, and frequency) of their bodies results
in high efficiency of their swimming, which may really be
employed by existing fish (Triantafyllou et al. [5]).

The objective of this paper is to answer a self-imposed ques-
tion: Why do fish have a fish-like geometry? If we believe that the
geometry of fish has been optimized over millions of years by
evolution for the act of swimming, then it may be reproduced by a
computerized optimization process beginning with an arbitrary
geometry. This optimization process was previously carried out
by Kagemoto et al. [6]. They demonstrated that a fish-like geome-
try could be reproduced through mathematical means. This pres-
ent paper is the extension of that previous work.

In this study, assuming the principles of evolution mentioned
above, an optimum geometry of a swimming object is determined
such that the work done by its muscles while it is swimming is
minimized. The swimming object is replaced by an elastic beam
of a spatially varying cross section having a spatially varying elas-
tic modulus. With this, the swimming motion is modeled as an os-
cillation of the elastic beam that undulates laterally with a

progressing wave mode under the forces exerted by the ambient
flow as well as from the muscles.

Optimization methods used for a swimming object have
recently appeared in several papers. Among them, Kern and
Koumoutsakos [7] identified the optimum undulation modes of a
swimming object using an evolutionary algorithm and account-
ing for both burst swimming speed and swimming efficiency as
objective functions. This previous work showed that the kine-
matics of burst swimming is characterized by the large ampli-
tude of tail undulations while in efficient swimming, significant
lateral undulation occurs along the entire length of the body.
The work of Eloy and Schouveiler [8] identified optimal swim-
ming modes in the propulsion performance of a flexible plate
undergoing an arbitrary harmonic motion in a two-dimensional,
inviscid fluid.

In each of those studies, optimum swimming motions were
identified through the optimization process while the fish geome-
try was given a priori. The work of Tokic and Yue [9], on the
other hand, performed a multiobjective optimization for two con-
flicting locomotive performance measures: maximum sustained
swimming speed and minimum cost of transport of a fish, and ulti-
mately identified an optimal shape as well as an optimal undulat-
ing swimming motion. In their work, the optimization process
also considered physiological feasibility of an identified shape and
motion such that only realistic characteristics could be optimized.

In this present study, we identify an optimum geometrical shape
of a swimming object by taking the work done by the object as
the objective function. Additionally, the spatial variation of the
elastic modulus along the object and the phase speed of the undu-
lating motion are also included as the design parameters.

2 Optimization of a Swimming Object

2.1 Equation of Motion and the Work Done by a Fish. We
assume that fish have evolved into ingenious swimmers and can
proceed through a fluid, encumbered, while performing the least
amount work. In order to examine the work done by a swimming
object, we model the body of the swimming object as an elastic
beam with both variable cross-sectional geometry and elastic
modulus E. The equation of the motion of the swimming object
may be written as follows:
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h(x, t): lateral displacement, S(x): cross-sectional area, E(x)I(x):
bending rigidity, and q(x): mass density.

Here F(x, t) represents the external force, which is assumed to
be decomposed into the following two parts:

Fðx; tÞ ¼ F1 þ F2 (2)

where F1 and F2 represent the force exerted by muscles and the
force exerted by ambient fluids, respectively.

According to Lighthill [1], we suppose F2 can be expressed in
the following form:

F2ðx; tÞ ¼ �
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U represents the fish’s swimming speed and qwAðxÞ represents the
local added mass associated with the object’s lateral motion
h(x, t). Using the above decomposition, the equation of motion is
rewritten as follows:
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The mean work W done by the fish’s muscles in one period T of
the undulating motion is written

W ¼ 1

T
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where ‘ denotes the fish’s length.
Here, we further assume that the objective function that should

be minimized is W0, which is defined in the following form, rather
than W:
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Although the validity of the usage of W0 instead of W is not
obvious, the definition of W0 accounts for the fact of the mechani-
cal systems of living creatures that their muscles cannot extract
energy back from negative work.

2.2 Optimization of a Swimming Object. In this section, we
identify the optimum configuration of a swimming object that
minimizes the objective function W0, given by Eq. (6). Among
various existing optimization techniques, one of the nonlinear pro-
gramming techniques [11, 12] is used in the present study.

2.2.1 Description of the Problem. Substituting F1(x, t) given
by Eq. (4) into Eq. (6), we minimize the following objective func-
tion C:
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under the following constraints.

Thrust¼ drag. The mean thrust force (T) should exactly coun-
teract the mean drag force (D) so that the fish can swim with a
constant averaged speed. If we follow Lighthill’s elongated body
theory [1], T can be expressed in the following form:

T ¼ 1
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Here, the overbar indicates that the mean value in time is to be taken.
As for the drag force, we assume it can be written as follows:

D ¼ 1

2
qwSf U

2 � Cf (9)

qwAð‘Þ; Sf ;Cf represent the added mass of the tail-end section (at
x ¼ ‘), the surface area of the object, and the drag coefficient,
respectively.

The Lighthill’s elongated-body theory [1], which was adapted
in the present study, assumes steadily translating body and its
wake. The theory is relatively simple but thrust forces predicted
by the theory agrees fairly well with those predicted by a more
rigorous vortex-lattice flow model, as observed in, e.g., Kagemoto
et al. [10], although the vortex-lattice theory also assumes that the
wake profile remains to be the same and translates with the same
speed as that of the swimming body. It is indicated that a wake
structure of even a steadily swimming body is essentially unsteady
and quite complex (e.g., Wolfgang et al. [3]). Therefore, it may be
desirable to account for the effect of the unsteadiness on the
hydrodynamic forces acting on a swimming body, but, as shown
in Kagemoto et al. [10], experimental results of the thrust forces
produced by a steadily swimming body turned out to be explained
fairly well by the vortex-lattice theory. These facts may justify the
fact that the present work used the Lighthill’s theory [1] for the
prediction of thrust forces induced by a steadily swimming body.

The total volume (r) should at least have a certain value (Vc).
It may be reasonable to assume that a fish should have certain
amount of volume Vc that contains all of its necessary physiologi-
cal matter. (From the sole viewpoint of the minimization of work,
it is apparent that a smaller volume is better.)

The maximum depth (dmax) of the anterior region of the swim-
ming object is equal to the tail-end depth (dx¼‘). Although this
constraint may seem to be intentional to obtain a fish-like geome-
try, it is imposed as a constraint in order to avoid the geometry in
which most of the mass is concentrated around the head where lat-
eral motion is small, which is an unrealistic configuration from
the physiological point of view.

No recoils. The following quantities are called recoils (Light-
hill [1]) and should be as small as possible, R1, R2. Recoils physi-
cally represent the force and the angular moment that the
corresponding swimming object suffers as rigid-body motions in
order to compensate for the difference between the hydrodynamic
force/moment and the mass inertia force/moment associated with
the lateral motions h,
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This constraint was imposed because large recoils should be
uncomfortable for fish as well as because large recoils of fish are
not observed in nature.

Other than these constraints, we suppose that the lateral dis-
placement h(x, t) of a swimming object is expressed in the follow-
ing form:

h ¼ a
x

‘
� x0

‘

	 
2

cosðkx� xtÞ (12)
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k: wave number 2p/k, where k is the wavelength of the body
undulation, and x: angular frequency of the body undulation.

An example of the undulating motion of the swimming object
given by the above mathematical form is depicted in Fig. 1. The
curves shown in the figure are the instantaneous geometries of the
swimming object at t¼ 0, T/4, T/2, 3T/4, where T represents the
period of the undulating motion, when the parameters in Eq. (12)
are assumed to be as follows:

x0 ¼ 0:3; k ¼ 2p; x=k ¼ 5:5; a ¼ 1=7

x0 in Eq. (12) represents the pivoting point where the displace-
ment is always zero. Equation (12) can be considered to represent
the so-called carangiform motion, in which the fish’s lateral undu-
lating motion is mostly confined to the posterior part of the fish.

We allow the following three design variables to vary in the
optimization process:

(1) the local depth of a swimming object, d(x).
(2) the local elastic modulus of a swimming object, E(x).
(3) the ratio of the phase speed c of the lateral undulating

motion to the swimming speed U, hereafter denoted as c.

The phase speed c of the lateral undulating motion is related to
k, x of Eq. (12) as

c ¼ x
k

(13)

We express the volume r, surface area Sf of the swimming object,
second moment of area of the local cross section I(x), and the
added mass qwAðxÞ in terms of the three design variables, as
follows:

r ¼
ð‘

0

bd2ðxÞdx (14)

Sf ¼ 2

ð‘
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dðxÞdx (15)

IðxÞ ¼ 1

12
bdð Þ3��dðxÞ (16)

qwAðxÞ � p
4

qwd2ðxÞ (17)

Here, it is assumed that the local cross section is approximated by
a rectangle of depth d(x) and width b � dðxÞ, where b is assumed
to be of constant value (in the present analysis, b¼ 0.1 is used).

Using Eqs. (12), (15), and (17), the mean thrust force T and the
drag force D are, respectively, rewritten, as follows:

T ¼ p
16

qwd2ð‘ÞU2

� akð Þ2 1� x0=‘ð Þf g4 c2 � 1
� �

� 4 a=‘ð Þ2 1� x0=‘ð Þf g2
h i

(18)

D ¼ qw

ð‘
0

dðxÞdx � U2 � Cf (19)

We express the square of the local depth d2(x) and the local elastic
modulus E(x) by the following simple polynomials:

d2ðxÞ ¼
XM

m¼1

amxm; EðxÞ ¼
XM�1

m¼0

bmxm (20)

The polynomial for d2(x) begins with m¼ 1 instead of m¼ 0 so
that the depth of the head (x¼ 0) is always zero, in other words, it
is assumed that the swimming object is point-nosed.

For the present analysis, M¼ 10 was used.
By making use of one of the existing nonlinear programming

techniques [11, 12], the minimization of the objective function C
(Eq. (7)) under the four constraints mentioned above can be trans-
formed into the minimization of a new objective function C0, with
no constraints. In the present case, the new objective function C0

that should be minimized is written as follows:
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e1; e2;… are certain small positive numbers that are added so that
each term in Eq. (21) becomes more or less of the same order.

The last three terms are added to ensure that positive
dðxÞ;EðxÞ; c are obtained.

The fourth term accounts for the constraint T¼D, since,
as thrust force (T) deviates from the drag force (D), the
term becomes disproportionately large, the requirement of
minimization of C0 imposes the thrust force T to be around
the drag force D. Similarly, the fifth and sixth terms account for
the second and third constraints, respectively. The second and
third terms ensure that the constraints associated with the recoils
are satisfied.

Fig. 1 The assumed instantaneous lateral displacement of a
swimming object
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For e, the following values were used in the present study:

e1 ¼ qwVcg � T � 0:1

e2 ¼ qwVcg � T � ‘
2
� 0:1

e3 ¼
1

2
qwSf Cf U

2 � 0:05

e4 ¼ Vc � 0:05

e5 ¼ d � 10�4

e6 ¼ d � ‘� 10�3

e7 ¼ E � ‘� 10�4

e8 ¼ 10�8

(22)

The values with the overbars are certain standard values given as
follows:
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2.2.2 Parameters. In order to identify the optimum
dðxÞ;EðxÞ, and c, we need to choose appropriate values for several
parameters. First, we assume that the Strouhal number St, which is
defined as follows, is always 0.30,

St �
f � 2Am

U
(23)

where f � 2Am represents product of the frequency and the double
amplitude of the tail-end motion. The value of 0.30 is derived
from the stability analysis of a fish’s wake (Triantafyllou et al.
[13]). Other than the stability analysis, in Triantafyllou et al. [5]
empirical values of the Strouhal number obtained from the obser-
vations of real fish are summarized, all of which are distributed
around 0.30 regardless of swimming speed, tail-beat frequency,
and body length.

The values of the other parameters used for the present analysis
are

VC ¼ 0:015‘3

x0=‘ ¼ 0:3

Cf ¼ 0:004

Am ¼ 0:1 � ‘
U ¼ 10‘; 5‘; 2‘ per unit time

(24)

If we follow the Schoenherr line, the above skin-friction drag
coefficient Cf corresponds a Reynolds number of �106.

As for the swimming speeds, we can observe from the data in
Table 1 of Ref. [14] (Bainbridge) that the swimming speeds of
fish are distributed over U ¼ 2‘ � 10‘ per second, and therefore,

U ¼ 2‘; 5‘, and 10‘ are chosen as representative speeds, with
‘ ¼ 1:0m.

From Eq. (23), only two of the three parameters from among
U;Am; f can be independently chosen. From the values of Am;U
specified above, the tail-beat frequencies f are determined as
f ¼ 15Hz; 7:5Hz; 3Hz, respectively, corresponding to U ¼ 10‘;
5‘; 2‘. Bainbridge [14] presented the laboratory observed rela-
tionships between the fish’s speed U and the frequency f of the
tail-beat. From the observation facts presented in the paper, it can
be known that, regardless of the species of fish and swimming
speeds, the speed (U) is approximately related to the frequency (f)
by the following formula:

U

‘
� 3

4
f (25)

Substitution of Eq. (25) into Eq. (23) gives

Am ¼ 0:1125 � ‘ (26)

which justifies the assumed amplitude Am of the tail specified in
Eq. (24). (Triantafyllou et al. [5] refers to the results of Payatet-
skiy [15] obtained from the observations of three Black Sea
species saying that the same linear relationship between U=‘ and
f holds with the proportional coefficient 1/1.39 (against 1/1.33
in the case of Eq. (25)) and the amplitude/length ratio
Am=‘ ¼ 0:10� 0:12 for all the three species regardless of their
body length.

2.3 Results and Discussion

2.3.1 Optimum Shape. Figure 2 shows the configuration iden-
tified as optimum when U ¼ 5‘. The horizontal axis of the figure
represents the x coordinate (head: x¼ 0, tail: x¼ 1). Although the
tail-base neck is not as distinct as that of a fish, the identified
shape is similar in appearance to a fish. If compared the present
optimal shape (mass¼�20 kg, swimming speed¼ 2–10 m/s) with
those shown in Fig. 4 of Tokic and Yue [9], they are similar to
each other in that both of them exhibit a streamed-line anterior
body connected via tail-base neck with a posterior body possess-
ing a significant depth at its end.

Figure 3 shows the minimization of the objective function in
the optimization process, which may validate the correctness of
the result shown in Fig. 2 in that the value of the objective func-
tion given by Eq. (21) is reduced to a very small value. While use-
ful, this result does not necessarily guarantee that the identified
value is a global minimum.

Figure 4 compares the optimum shape of the swimming object
identified for different swimming speeds U ¼ 2‘; 5‘, and 10‘. It is

Table 1 Optimum value of c

U ¼ 2‘ U ¼ 5‘ U ¼ 10‘

c 1.0684 1.0687 1.0705
Fig. 2 Optimum shape of an object swimming with U ¼ 5‘
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observed that the optimum shape is almost the same regardless of
the swimming speed.

2.3.2 Optimum Elastic Modulus. Figure 5 compares the opti-
mum lengthwise distribution of the elastic modulus E(x) for dif-
ferent swimming speeds, U ¼ 2‘; 5‘, and 10‘. The unit of the
vertical axis is N/m2.

According to the results shown in the figure, the optimum
lengthwise distribution of the elastic modulus E(x) decreases from
head to tail. This is seemingly the case even when the swimming

speed is changed, although the optimum value of the elastic mod-
ulus is susceptible to swimming speed as observed in the results
shown in Fig. 5, as the modulus becomes minimum just before the
tail end and then increases slightly after it. As an elucidating exer-
cise, it may be fortuitous to compare the identified E with those of
other materials (for example, steel: 2:0� 1010ðN=m

2Þ or nylon:
2:0� 108ðN=m

2Þ, polyethylene: 1:2� 107ðN=m
2Þ, or rubber:

1:0� 105ðN=m
2Þ).

Quantitatively, the overall value of the optimum elastic modu-
lus shown in Fig. 5 decreases roughly in proportion to the square
of the swimming speed, which may be justified as follows.

The integrand of the objective function (Eq. (7)) is written as
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When the spatial change of EI(x) is slow, the lower approximation
in Eq. (27) is valid.

If the lateral displacement is written as
hðx; tÞ ¼ h0 � cosðkx� xtÞ, which is approximately the case in the
present study,

F1 �
@h

@t
� �x2 qSþ qwA 1þ 1

c

� �2
( )

þ EIk4 (28)

then we know the integrand, and therefore, the objective function
has the minimum value when the following relationship is
satisfied:

EIk4 ¼ x2 qSþ qwA 1þ 1

c

� �2
( )

(29)

Since the amplitude of the tail-end motion Am and the Strouhal
number St are not changed with speed, then, from Eq. (23), f/U,
and therefore, x/U should also be of the same value for all speeds.

If cð¼ c=UÞ remains unchanged for all speeds, kð¼ x=cUÞ is
also unchanged with all speeds because it is constant. Thus, it
may be concluded that EI should be proportional to x2ðor U2Þ in
order to minimize the integrand. This partly explains why the opti-
mum value of the elastic modulus E(x) decreases in proportion to
U2 as the swimming speed decreases.

2.3.3 Optimum Undulating Motion. The optimum value of c
identified varies very slightly with speed, as shown by the data in
Table 1. This fact confirms Lighthill’s argument [1] that good effi-
ciency and substantial thrust are obtained when c is close to but
slightly larger than U, meaning that c is close to but slightly
higher than unity.

Table 2 lists the corresponding optimum values of k (wave-
length of undulating motion). We can observe that the wavelength
of the optimum undulating motion is independent of the swim-
ming speed.

Fig. 3 Reduction of an objective function in the optimization
process

Fig. 5 Comparison of optimum elastic modulus distribution
identified for U 5 2‘;5‘; 10‘

Table 2 Optimum value of k

U ¼ 2‘ U ¼ 5‘ U ¼ 10‘

k=‘ 0.712 0.712 0.713

Fig. 4 Comparison of the optimum shapes identified for
U 5 2‘; 5‘;10‘
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When the drag coefficient Cf does not change with speed, then
from Eq. (19), the drag force D acting on a fish should be propor-
tional to U2 which, in turn, implies that the thrust force T should
be proportional to U2. On the other hand, x/U should also be the
same value for all speeds, as described above. Then, since the
mean thrust force T in Eq. (18) is rewritten as

T ¼ p
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we can conclude that 1� 1
c2 remains unchanged with speed, and

thus, c remains unchanged with speed.

2.3.4 Sensitivity to Initial Conditions. Figure 6(a) shows the
optimum shape for U ¼ 5‘, starting from a different initial shape
than that shown in Fig. 2. The final result is similar to but not
exactly the same as that shown in Fig. 2. As for the optimum elas-
tic modulus, Fig. 6(b) shows the optimum lengthwise distribution
of the elastic modulus for U ¼ 5‘, starting from different initial
distributions. Again, the final results are similar to each other but
not exactly the same.

In optimization problems, it often becomes problematic when
the identified result is undetermined, as to whether it is a global
minimum or a local minimum. Since in the present study, as many
as 21 design variables were involved, it was difficult to ensure
that the global minimum was always obtained. It is, however,
observed in Figs. 6(a) and 6(b) that, at least qualitatively, similar
results were obtained, although they were not quantitatively iden-
tical. The results presented in this paper should be interpreted as
qualitative tendencies of a swimming object, though not necessar-
ily the most optimum tendencies.

2.3.5 Effect of Additional Vortex Shedding. Wu [2] showed
that the mean thrust produced by a slender fish is given as

Fig. 7 Comparison of the optimum shape identified while tak-
ing the vortex shedding from the edge of the body into consid-
eration (Wu) with that identified while neglecting the vortex
shedding from the edge of the body (Lighthill) ðU 5 10‘Þ

Fig. 8 (a) Effect of the constraint on recoils; (b) reduction of
the objective function in the optimization process

Fig. 6 (a) Optimum shape identified starting from a different
initial condition ðU 5 5‘Þ; (b) optimum elastic modulus identi-
fied starting from a different initial condition ðU 5 5‘Þ
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By comparing this with Eq. (8), the first term in Eq. (21) is
found to be exactly the same as that given by Lighthill’s
elongated-body theory [1], while the second term is newly intro-
duced. The second term corresponds to the thrust production
due to the vortex sheet shed from the edge of the body between
x¼ x1 (the maximum depth point) to x¼ x2 (tail-base neck, see
Fig. 7).

Figure 7 compares the optimum shape identified by making
use of Eq. (31) instead of Eq. (8) for the thrust estimation when
the swimming speed is U ¼ 10‘. Although the overall optimum
configuration is not changed much due to the consideration of the
vortex shedding from the edge of the body, the tail-base neck
tends to become more distinct when the vortex shedding from the
edge of the body is taken into account. This may be because of
the dA/dx term that appears in the second term of Eq. (31), which
represents the rate of variation of the added mass in the x direc-
tion, and is larger for steeper constriction toward the tail-base
neck, thereby contributing a larger thrust force. (In Wolfgang
et al. [3], it is said that together with the vorticity shed at the trail-
ing edge of the tail, vorticity is also generated well upstream of
the tail by the undulations of the body, which may support the
Wu’s model [2].)

2.3.6 Effect of Constraints. Figure 8(a) shows how the con-
straint associated with recoils affect the final result. As is observed
in the figure, the tail-base neck completely disappears when the
constraint on recoils is not imposed. As indicated by Lighthill [1],
this implies that a fish’s body is shrunk to a tail-base neck in order
to avoid excessive recoils, because at this point, the lateral undu-
lating motion is large in carangiform motions.

It could be considered that if having minimal recoil is benefici-
ary from the aspect of minimal work then a tail-base neck would
result even without imposing the constraint associated with
recoils. However, as is observed in Fig. 8(b), which shows how
the objective function is minimized in the optimization process
when the constraint on recoils is removed, the objective function
(work done by the swimming object) could be very small even
without the shrinking at the tail-base neck.

Figure 9 shows how the constraint on the minimum volume, Vc

affects the final results. As expected, the volume of the identified
optimum swimming object decreases as Vc is reduced.

3 Conclusions

In order to answer the question as to why fish have a fish-like
geometry, an optimum geometry of a swimming object was iden-
tified by employing as the objective function the work done by the
swimming object. The obtained geometry is similar to that of a
fish and possesses a tail-base neck.

As a result of the present study, it may be concluded that fish
have a fish-like geometry, consisting of a streamlined anterior
body in order to reduce the drag force, a caudal fin of large depth
in order to attain necessary thrust force, and a tail-base neck in
order to reduce excessive recoils.

Along with the optimum geometry, optimum lengthwise distri-
bution of the elastic modulus and optimum phase speed of the lat-
eral undulating motion of a swimming object were identified.
Accounting for the spatial variation of the rigidity along the swim-
ming object in the present formulation affects the power needed
for fish’s muscles significantly.

The obtained results at least qualitatively emulate those of a
fish.
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