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Abstract Fluorescence spectroscopy Excitation Emission

Matrix (EEM) measurements were applied on human blood

plasma samples from a case control study on colorectal

cancer. Samples were collected before large bowel

endoscopy and included patients with colorectal cancer or

with adenomas, and from individuals with other non

malignant findings or no findings (N = 308). The objective

of the study was to explore the possibilities for applying

fluorescence spectroscopy as a tool for detection of colo-

rectal cancer. Parallel Factor Analysis (PARAFAC) was

applied to decompose the fluorescence EEMs into esti-

mates of the underlying fluorophores in the sample. Both

the pooled score matrix from PARAFAC, holding the rel-

ative concentrations of the derived components, and the

raw unfolded spectra were used as basis for discrimination

models between cancer and the various controls. Both

methods gave test set validated sensitivity and specificity

values around 0.75 between cancer and controls, and poor

discriminations between the various controls. The PARA-

FAC solution gave better options for analyzing the

chemical mechanisms behind the discrimination, and

revealed a blue shift in tryptophan emission in the cancer

patients, a result that supports previous findings. The

present findings show how fluorescence spectroscopy and

chemometrics can help in cancer diagnostics, and with

PARAFAC fluorescence spectroscopy can be a potential

metabonomic tool.

Keywords Fluorescence spectroscopy � Colorectal

cancer � Chemometrics � PARAFAC � Metabonomics

1 Introduction

The idea of using autofluorescence measurements of blood

to discriminate people with cancer from non-cancer was

first presented by Leiner, Wolbeis and co-workers in the

1980s. They considered the fluorescence excitation emis-

sion matrix (EEM) of a diluted blood serum sample as a

base for pattern recognition to monitor the health status of

a person. The hypothesis was that, due to the high sensi-

tivity of fluorescence spectroscopy, it would be possible

to observe even small deviations in the fluorescence spec-

trum from ‘‘normal’’ healthy subjects to diseased subjects

(Leiner et al. 1983, 1986; Wolfbeis and Leiner 1985). This

hypothesis actually fits well into the present theories of

metabonomic based diagnostics. Metabonomic based

diagnostics explores metabolites in a biological system and

its response to a stress situation such as disease. Metabo-

nomics is often based on non-targeted quantitative and

qualitative measurements using nuclear magnetic reso-

nance spectroscopy (NMR) or chromatography [liquid

(LC) or gas (GC)] combined with mass spectroscopy (MS)

(Nordström and Lewensohn 2010; Zhang et al. 2007).

In the present study we explore the possibilities for
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introducing fluorescence spectroscopy of blood plasma

samples as an alternative metabonomic tool for detection

of cancer.

Other publications have followed up on the work from

Leiner and co-workers or applied other strategies in using

autofluorescence on blood to detect cancer (Hubmann et al.

1990; Kalaivani et al. 2008; Leineret al. 1986; Madhuri

et al. 1997, 1999, 2003; Masilamani et al. 2004; Nørgaard

et al. 2007; Uppal et al. 2005; Xu et al. 1988). Different

approaches have been used; some use extracts or controlled

fractions of the plasma, whereas others use the plasma

or serum merely diluted or with no sample treatment at

all. The studies by Madhuri et al. (1999, 2003) and by

Masilamani et al. (2004) use an acetone extract of blood

plasma in order to reduce spectral interference in their

attempt to measure emission from porphyrins. The results

from these studies show elevated levels of porphyrins in

cancer patients compared to healthy patients. In the present

study we will therefore also have a focus on emission from

porphyrins.

Common for almost all of the previous studies was the

use of only few or single specific wavelength pairs as

opposed to the whole spectral approach combined with

chemometrics used in the present study. Only the study

from Nørgaard et al. (2007) applied chemometrics in their

data analysis, and they got promising results on serum

samples from breast cancer patients. The use of chemo-

metrics allows us to use the whole spectrum instead of

focusing on single wavelength pairs. Multivariate data

analysis/chemometrics is a cornerstone in metabonomics

used to extract important information from the complex

data output, and hereby hopefully identify specific metabo-

lites with discriminatory or predictive ability (biomarkers)

that can be used e.g. for a diagnostic purpose (Ragazzi

et al. 2006; Ward et al. 2006). The lack of methods to

extract the useful information from the EEMs was exactly a

problem for Leiner and co-workers and hence, despite the

rather complex EEM measurements, the outcome of their

analysis was a simple ratio between two wavelength pairs.

In the present study, we apply chemometrics on the fluo-

rescence spectra to discriminate between blood plasma

samples from colorectal cancer (CRC) patients and healthy

individuals. We apply two different methods of data

analysis; one which has been applied previously using the

raw spectra as input to the classification model, and one

where we extract underlying chemical information from

the spectra by Parallel Factor Analysis (PARAFAC) (see

materials and methods for a description of PARAFAC).

The combination of fluorescence spectroscopy and

PARAFAC has not previously been applied in a diagnostic

test approach. The combination of PARAFAC and three-

way fluorescence data (the EEMs) is especially fruitful, as

the parameters of the PARAFAC model can be seen as

estimates of the relative concentrations (scores) and the

emission and excitation spectra (loadings) of the fluoro-

phores in the sample (Andersen and Bro 2003; Bro 1997).

As for conventional NMR and LC–MS this chemical

identification opens for fluorescence spectroscopy as a

metabonomic tool.

Fluorescence spectroscopy is widely applied in bio-

marker research though almost solely in the field of labeled

fluorescence, where designed fluorescence probes are used

to detect the presence of specific biomarkers (Hamdan

2007). In autofluorescence or intrinsic fluorescence, natu-

rally occurring fluorophores are measured with or without

minimal sample preparation (Lakowicz 2006). The number

of fluorophores in a blood sample is limited compared to

the number of compounds detectable by MS and NMR,

though among the fluorophores, biologically important

compounds are found. In blood for example, the amino

acids tryptophan, tyrosine and phenylalanine and also some

cofactors and flavonoids NAP, NAD(P)H, FAD are among

the fluorophores (Wolfbeis and Leiner 1985). Compared to

MS and NMR, fluorescence spectroscopy is highly sensi-

tive and can thus measure concentrations down to parts per

billion (Lakowicz 2006). The fluorescent signal from a

fluorophore is dependent on the surrounding environment.

For example, tryptophan groups in different proteins or on

different positions in the same protein can have different

excitation and emission maxima, and can thus be distin-

guished from each other (Abugo et al. 2000). In fact Leiner

et al. (1986) showed a difference in the fluorescence from

the amino acid tryptophan in human serum from healthy

individuals and patients with gynaecological malignancies.

In the practical data acquisition, fluorescence spectros-

copy has some advantages compared to both traditional

metabonomic techniques. Sample preparation is limited to

a minimum of only diluting the sample, and the time of

acquisition can be down to few minutes, depending on the

spectral area covered and the integration time. A spectro-

fluorometer can be small and compact compared to MS and

NMR, and the price is often much lower. Compared to

standard diagnostic tools such as X-ray, MR and CT

scanning, fluorescence spectroscopy is very cheap, but at

the present stage not a viable alternative. Compared to

targeted methods for single biomarkers based on immuno-

chemical tests the onetime investment in fluorescence

spectroscopy is, like in MS and NMR, relatively high, but

the running costs are much lower, and fluorescence spec-

troscopy is faster and easy to use.

Some drawbacks of fluorescence spectroscopy are the

instrument dependent results that call for spectral correction

before they are globally comparable (DeRose and Resch-

Genger 2010). The fluorescence intensity is also highly

dependent on the overall absorbance of the sample. At low

concentrations of fluorophores (and/or low absorbance), the
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linear relation between concentration and intensity known

from Lambert-Beers law is also valid in fluorescence

spectroscopy. At higher concentrations/high absorbance

this relation is broken. This phenomenon is called concen-

tration quenching or the inner filter effect (Lakowicz 2006).

Blood plasma is highly absorbent, and thus precautions

must be taken to avoid or reduce inner filter effects. In the

present study the samples are both diluted and undiluted.

For the undiluted samples the pathway of the exciting light

is reduced to reduce absorbance.

Colorectal cancer is one of the most frequent malignant

diseases for both women and men in the western world. In

Denmark in 2008, 4194 cases of CRC were diagnosed, which

accounted for more than 12% of all malignant diseases (The

Danish Cancer Society 2010; The Danish National Board of

Health 2010). The 5-year survival rate of CRC patients is

approximately 50%, only ovarian, lung, and pancreas can-

cers have lower rates (UK, national statistics, 2010). The low

rate is primarily due to high recurrence frequencies in some

patients undergoing intended curative resection and dis-

seminated disease at the time of diagnosis in other patients.

At present fecal occult blood test (FOBT) combined with

subsequent colonoscopy in those with positive tests is the

method of choice for early detection of colorectal cancer. In

recent years national screening programs based on FOBT

have been introduced in several countries. The FOBT has

been criticized for limited compliance rates, which reduce

the advantage of the test, and therefore new, improved

screening modalities with high compliance rates are urgently

needed (Jenkinson and Steele 2010). The only accepted

serum biomarker for CRC is carcinoembryonic antigen

(CEA), but with sensitivity and specificity values of 0.34/

0.93, this is only accepted for prognosis after detection.

Other biomarkers have been suggested with similar or better

performance, for example free DNA (Flamini et al. 2006)

and plasma lysophosphatidylcholine levels (Zhao et al.

2007). None of these biomarkers have yet been clinically

accepted. In search for alternative methods with improved

detection rates, and/or better compliance rates in screening

for CRC, a metabonomic approach with broad unbiased

search for changes in the metabolic profile is a possible

solution. Interesting results have been published by Ward

et al. (2006) by use of MALDI MS. The present paper will

explore whether a solution with fluorescence spectroscopy

could be an interesting approach.

2 Materials and methods

2.1 Samples

Human plasma samples (sodium citrate anticoagulant)

from 308 individuals were used for the experiment. The

samples are a part of a larger sample set from a multi-

centre cross sectional study conducted at six Danish hos-

pitals of patients undergoing large bowel endoscopy due to

symptoms associated with CRC (Nielsen et al. 2008). The

present sample set is designed as a case control study with

one case group (verified CRC) and three different control

groups. The three control groups are (1) healthy subjects

with no findings at endoscopy, (2) subjects with other, non

malignant findings and (3) subjects with pathologically

verified adenomas (Lomholt et al. 2009). Each of the groups,

case and controls, consisted of samples from 77 individuals.

Additional control samples, standardized pooled human

citrate plasma, were purchased from 3H-Biomedical AB,

Sweden.

2.2 Sample handling and data acquisition

Before measurements, the samples were defrosted on wet

ice (0�C) for app. one hour, or until thawed, and each

sample was divided in four aliquots of 200 lL to 1 mL for

different analytical methods. The divided samples were

immediately refrozen at -80�C. The standardized plasma

samples were received in 50 mL aliquots, and stored at

-80�C. Before use they were thawed at 0�C and divided

into aliquots of 300 lL, and refrozen at -80�C. For fluo-

rescence measurements, the samples were defrosted on wet

ice (0�C) for app. 40 min.

The samples were measured both undiluted and in a

hundred fold dilution in Phosphate Buffered Saline (PBS)

(pH 7.4). The diluted samples were prepared immediately

after the samples were thawed, and then stored on wet ice

(0�C) until measured (app. 20 min). The non diluted frac-

tions of the samples were measured as fast as possible after

thawing. Fluorescence spectra were acquired on an FS920

spectrometer (Edinburgh Instruments) with double mono-

chromators and a red sensitive photomultiplier (R928P,

Hamamatsu) in a cooled detector house. The EEMs were

acquired for the samples using the following settings.

Diluted and undiluted samples were measured with exci-

tation from 250 to 450 nm with a 5 nm increment, and

emission from 300 to 600 nm with a 1 nm increment.

Integration time was 0.05 s. This spectral area consists of

light in both the ultra violet and visual area. The ultra violet

area is dominated by excitation and emission from the

aromatic aminoacids tyrosine and tryptophan hence the

fluorescence from proteins. The visual area covers among

other things excitation and emission from vitamins and

cofactors (for example riboflavin and NAD(P)H) (Wolfbeis

and Leiner 1985). In an attempt to capture emission from

porphyrins, additional EEMs were acquired from the

undiluted samples with excitation wavelengths from 385 to

425 nm with a 5 nm increment and emission wavelengths

from 585 to 680 nm with a 1 nm increment, and an
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integration time of 0.2 s. Every day a spectrum of the PBS

used for dilution was measured with the same settings as

the diluted samples. Excitation and emission slit widths

were set at 4 nm for all measurements. The fluorescence

data were corrected for the wavelength dependent excita-

tion intensity by an internal reference detector in the

spectrometer. Likewise the spectra were corrected for

instrument dependent emission spectral biases by a cor-

rection factor supplied with the instrument. Total time

spent for measuring all three EEMs was app. 40 min.

Diluted samples were measured in a 10 9 10 mm

quartz cuvette. To reduce inner filter effect in the undiluted

samples, these were measured in a 2 9 10 mm quartz

cuvette with the 2 mm in the emission direction.

An external cooling system was mounted on the spec-

trometer keeping the measurement temperature constant at

15�C. To monitor the performance of the fluorescence

instrument, a standard plasma sample was measured every

day. All spectra were saved as ASCII and exported to

Matlab� by an in-house routine. The raw spectra are

available for download at http://www.models.life.ku.dk/.

2.3 Data analysis

Some samples were discarded due to either obviously

erroneous measurements, or too little sample material.

From the three different EEMs acquired, the numbers of

samples ready for data analysis were then 301, 295 and 300

from low wavelength undiluted, high wavelength undiluted

and diluted, respectively. Before the actual data analysis,

the data were subjected to certain signal processing steps

meant to appropriately handle and minimize the influence

from non-relevant artifacts. When measuring fluorescence

EEMs, non-chemical phenomena such as Rayleigh scatter

and second order fluorescence may be present (Lakowicz

2006). These were removed and replaced with missing data

and zeros using in-house software (Andersen and Bro

2003). For the diluted samples, a background spectrum of

the solute PBS, measured the same day as the sample, was

subtracted from each sample in order to remove possible

Raman scatter (McKnight et al. 2001). All samples were

intensity calibrated by normalizing to the integrated area of

the water Raman peak of a sealed water sample measured

each day prior to the measurements. This converts the scale

into Raman units and allows comparison of intensity of

samples measured on other fluorescence spectrometers

(Lawaetz and Stedmon 2009).

A data reduction/decomposition of the fluorescence

EEMs to less complex features was performed using the

multi-way decomposition method called PARAFAC. A set

of fluorescence EEMs can be seen as a three-way data array

(I 9 J 9 K), where I is the number of samples measured

(objects), J the number of emission wavelengths, and K the

number of excitation wavelengths. Just as PCA is decom-

posing a two-way data matrix, a three-way data structure

can be decomposed by PARAFAC into a number of latent

PARAFAC components, by minimizing the sum of squared

residuals e in the PARAFAC model (equation below).

Xijk ¼
XF

f¼1

aif bjf ckf þ eijk

aif is the ith element of the score vector, bjf the jth element

of the loading vector of the emission mode and ckf the kth

element of the loading vector for the excitation mode, for

the fth PARAFAC component. If the correct number of

PARAFAC components is used to decompose data with an

approximately true trilinear structure and an appropriate

signal to noise value, the solution from the PARAFAC

model will give estimates of the true underlying profiles of

the variables. This makes PARAFAC perfect for fluores-

cence spectroscopy when applied on EEMs. The loadings

and scores can be treated as estimates of the excitation and

emission spectra, and relative concentrations of the fluo-

rophores in the samples respectively (Andersen and Bro

2003; Bro 1997).

PARAFAC models were fitted applying nonnegativity

constraints on all parameters in the model (Andersen and

Bro 2003); hence the estimated parameters were found in

such a way that they would not be negative. Models were

validated by split-half analysis (Harshman and DeSarbo

1984) combined with trained judgment of the loadings.

PARAFAC models were fitted separately to each of the

three sets of EEMs. The score matrices from the PARA-

FAC analyses were pooled to one matrix with 19 variables,

which were subjected to further data analysis. PCA was

fitted to get a preliminary overview of the data. Classifi-

cation models were built using PLS-DA, a PLS regression

with the pooled PARAFAC scores as independent X vari-

ables and a dummy matrix as the dependent Y variable

with ones for samples belonging to the class, and zeros for

samples not belonging to the class (Wold et al. 2001).

Forward selection was applied for variable selection. For

all classifications, the data sets were divided into training

and test sets (10–30% in test set). The training sets were

used for model building, and the test samples were used for

validating the models. During model building of the

training sets, the models were cross validated with 10% of

the samples randomly removed in each segment and

averaging over ten repetitions for each cross-validation run.

The test sets for subsequent model validation were ran-

domly selected from the data with the same relative

number of samples removed from each class.

As an alternative to building classification models on the

three combined PARAFAC score matrices, classification

was tried directly with the raw spectra as the independent
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variables. Variable selection was applied using Interval

PLS (iPLS) (Nørgaard et al. 2000). Before the direct

classification the three-way array of EEMs were unfolded

to a two-way matrix.

All data analyses were performed in Matlab R2010�

(The Mathworks Inc.) and chemometric analyses were

performed in PLS_Toolbox v.5.8.2 (Eigenvector Research,

Inc).

3 Results and discussion

Spectra from the three setups are seen in Fig. 1. Comparing

the spectra from one undiluted sample and a sample diluted

100 times (leftmost and rightmost spectra respectively in

the figure) the effect of dilution is clear. In both the raw

undiluted sample and in the diluted, the major peak is in the

region with fluorescence from the aromatic amino acids

tryptophan and tyrosine (phenylalanine is also among the

fluorescing amino acids, but it has excitation/emission

maximum outside the measured area). For the undiluted

sample there are two distinct peaks in that area, whereas in

the diluted sample there is only one distinct peak. Fur-

thermore in the undiluted sample a distinct peak is seen

with emission maximum at a higher wavelength. The

complex peak structure indicates that it is a mixture of

several peaks, which could reflect analytes such as

NAD(P)H, FAD, Riboflavin etc. (Wolfbeis and Leiner

1985). This peak structure is not apparently visible in the

diluted sample.

It is also worth noticing that the intensity of the diluted

sample is higher than the raw. This shows that even though

the raw sample is measured in a micro cuvette, it still

suffers from inner filter effect. Though it was also observed

that the dilution in PBS buffer had an effect besides the

reduced inner filter effect, a slight blue shift was observed

in emission following excitation at 295 nm in the diluted

samples. This might be explained by a slight change in the

configuration of the proteins, which can change the emis-

sion profile.

The high wavelength area of the undiluted samples was

measured separately in order to capture possible fluores-

cence from porphyrins. In the diluted samples this area

gave no signal and was therefore not measured. In Fig. 1,

middle plot, the high wavelength area primarily shows the

descending tail of a peak with maximum outside the

measured area, but a closer inspection of the EEM reveals a

little bump at app. 405/610 nm which is in accordance with

literature values of porphyrin fluorescence (Madhuri et al.

2003).

In order to monitor the performance of the fluorescence

spectrometer, a standard plasma sample was measured

every day. The standard deviation among these standard

samples was up to five times lower than the standard

deviation for the real samples, indicating good performance

of the instrument and consistent sample handling, and at

the same time revealing a large biological variation among

the real samples.

On each of the three measured areas, a PARAFAC

model was fitted. Due to the high complexity of the plasma

matrix and the large biological variation in the samples, a

large number of PARAFAC components was expected,

which makes modelling more challenging. For the undi-

luted samples in the main spectral area (excitation from

250 to 450 nm, emission from 300 to 600 nm), ten

PARAFAC components were chosen. To the spectra from

the diluted samples, a model of six PARAFAC components

was fitted. Only a reduced area of the spectra from the

diluted samples was used, as the highest emission and

excitation wavelengths did not contribute positively to the

model. To the last selected area, the high wavelength area

of the undiluted samples, a three component PARAFAC

model was fitted. The number of PARAFAC components

reflects the chemical rank of the system. For each com-

ponent we get a set of loadings and scores, which are

estimates of the excitation and emission profiles for the

underlying chemical compounds. The excitation and

emission loadings for the three models are seen in Fig. 2.

Many of the components can be identified chemically but

some are more difficult and even impossible to assign to

specific chemical analytes. Despite the large number of

PARAFAC components it is possible that some of these

peaks reflect more than one chemical compound and the

non-Gaussian peak shape of some of the loadings supports

this.

In case of ‘‘just’’ making a model to discriminate

between cancer and non cancer the issue would be to;

objectively and in an unsupervised manner reflect the

underlying variation, and then chemical assignment is of

secondary concern. On the other hand if we at the same

time want to gain knowledge about the reason for the

discrimination and hereby move fluorescence spectroscopy

into the world of metabonomics, chemical identification is

an important parameter. A perfect PARAFAC model will

give loadings which are estimates of the underlying exci-

tation and emission spectra, and therefore we expected

more unambiguous loadings with better options for

chemical assignment. The reason for such non-ideal

behaviour can be a low signal of some analytes, correlation

between different compounds or non-linear behaviour due

to quenching and similar phenomena. Given the relatively

low number of samples and that some of the samples are

not diluted, it is actually impressive that the PARAFAC

models come out as chemically interpretable as they do.

Still, we anticipate that the interpretability would be pos-

sible to improve if many more samples were included in
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the model and possibly also by using targeted standard

addition of hypothesized analytes in the modelling phase.

Qualified presumptions on the chemical origin of some

of the loadings are made. In both the undiluted and the

diluted samples, several loadings are seen with excitation

maximum from 250 to 305 nm, and emission maximum

from app. 330 to 350 nm. In this region, fluorescence from

protein-bound tryptophan is strong. The emission from

Fig. 1 Different EEMs

recorded on one sample. Left:
undiluted sample in main

spectral area. Middle: undiluted

sample in high wavelength area

(notice the axes are different

from the two other). Right:
sample diluted 100 times in PBS

Fig. 2 PARAFAC excitation

and emission loadings from the

three datasets. Upper: undiluted

main area. Middle: undiluted

high wavelength area. Lower:

diluted main area
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tryptophan can shift when the polarity of the microenvi-

ronment changes, hence tryptophan which is bound to

different proteins, or at the internal or external parts of a

protein, can give rise to different emission maxima. In fact,

literature values are reported for tryptophan emissions from

307 to 355 nm (Vivian and Callis 2001). This can explain

the numerous peaks for tryptophan emission. Some of the

excitation loadings fit well with excitation of tyrosine (app.

265 nm) whereas there is no emission loading supporting

the presence of tyrosine emission (app. 300 nm). Energy

transfer from excited state tyrosine to tryptophan is a

known phenomenon and a reasonable explanation of the

absent emission from tyrosine (Lakowicz 2006).

The peaks with maximum at higher wavelengths in both

the undiluted and diluted samples can possibly be assigned

to compounds such as NAD(P)H, FAD and FMN. In the

model from the high wavelength region, it is worth notic-

ing that the little, hardly visible ‘‘bump’’ in the pure spectra

gives a clear component with excitation/emission maxi-

mum at 400/620 which is in agreement with literature

values for porphyrins. There are two other components in

this model. One has excitation maximum at 420 nm, but

emission maximum outside the measured area, and the

other has both excitation and emission maxima outside the

measured area. The loadings are in agreement with some of

the peaks in the undiluted ‘‘main’’ area (two rightmost

peaks in Fig. 2 upper right), and could be tentatively

assigned to compounds such as NADH or flavins.

The score matrices from the three PARAFAC models

are ‘‘pooled’’ into one common score matrix. This matrix

now contains all the quantitative information extracted

from the fluorescence measurements. Thus we have

reduced the complex spectra with several thousand vari-

ables to a matrix with 19 variables consisting of estimated

relative concentrations of the underlying chemical com-

pounds of the plasma samples. This matrix is now the input

to a classification analysis. Note that absolutely no infor-

mation about the health status of the patients has been used

for building the PARAFAC models. This is important from

a validation point of view, as it ensures that the matrix is

simply an unbiased representation of the raw data.

3.1 Classification

The combined score matrix is used for building classifi-

cation models. An initial exploratory PCA analysis of the

score matrix explains 52% of the variation in the first three

components and needs more than 12 components to explain

95% of the variation. The somewhat low explained varia-

tion is most likely due to the biological variation in the data

and shows that the 19 PARAFAC scores are not overly

redundant. No clear separation of cancer and control

samples is found by the PCA analysis. There is thus no

unsupervised direction in the variable space directly sepa-

rating cancer from controls and hence the major part of the

variation in the data is not related to the cancer/non cancer

issue at all. Supplementary information such as age, gen-

der, smoking habits, and co-morbidity could not explain

further of this variation either. It is most likely just indi-

vidual differences.

The score matrix with 19 variables was used as input to

a PLS-DA classification model. During model building,

some samples were removed as outliers based on evalua-

tion of residuals and Hotellings T2 (Jackson 1991). Clas-

sification models were built for all combinations of cancer

and control and also control/control. Models are cross

validated and the models are tested on a set of samples left

out during model building. The huge biological variation

from the raw data is still reflected in the extracted 19

variables in the score matrix. Therefore it makes sense to

apply variable selection to select those variables of the 19

that reflect the variation relevant for discriminating cancer

and non-cancer. We applied forward selection on the cali-

bration data to find the optimal variables for classification.

In the different models the number of variables was

reduced from 19 variables to between five and 15 variables.

Results from the different models with sensitivity and

specificity values for the cross validated and the tested

models as well as area under the receiver operating char-

acteristic (ROC) curve are seen in Table 1. A PLS-DA

model with all the three control groups pooled to a com-

mon control versus the cancer patients gives an area under

the ROC curve of 0.69 with optimal sensitivity and spec-

ificity values of 0.70 in the cross validated model, and

similar values of 0.73 and 0.77 validated on new samples.

Similar values are obtained on models with cancer vs.

controls from the group of healthy individuals with no

findings, and cancer vs. other non malignant findings.

These models give areas under the ROC curves of 0.75 and

0.77, and sensitivity and specificity values between 0.73

and 0.80. In the models of cancer vs. adenomas, the area

under the curve, sensitivity and specificity values are at the

same level as the model with all controls. The results are to

some extent surprising as one would expect it to be easier

to discriminate between individuals with no findings and

cancer, than between individuals with adenomas and can-

cer. Models of the different controls against each other give

poor models with area under the curve values of 0.5–0.6.

Even though they have different imbalances (adenomas or

other non malignant findings), the controls are thus not

much different from a fluorescence point of view. This

result is important for future work of building better

diagnosis models, as it underlines that the essential dif-

ferences found in this study are related to cancer, non-

cancer. In a different study on the same samples searching

for differences in plasma levels of soluble urokinase
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plasminogen activator receptor (suPAR), the level of dis-

crimination between cancer and other non malignant find-

ings was better than between cancer and no findings. The

discrimination between cancer and adenomas was less

significant in this study (Lomholt et al. 2009).

The sensitivity and specificity values in Table 1 are

found as the optimal value (maximizing the sum of the

two). In diagnostic models, a high specificity value is often

preferred as this reduces the number of false positives. For

the models cancer vs. other non malignant findings and

cancer vs. no findings we get sensitivity values of 0.48 and

0.43 at specificity values of 0.9. The result achieved by use

of fluorescence spectroscopy and PARAFAC is thus com-

parable to the performance of the known biomarkers for

CRC; CEA that has sensitivity and specificity values of

0.34 and 0.93.

The table above shows the results of the different clas-

sification models. The different models are based on dif-

ferent data, and thus use different variables for

classification. A score and a loading plot for the classifi-

cation model of cancer vs. other non malignant findings

based on the PARAFAC scores are seen in Fig. 3. As

expected from the sensitivity and specificity values, there is

not a perfect separation between the two classes. However,

there is a tendency towards separation along the diagonal

from the second to forth quadrant in the score plot of the

first vs. third PLS-DA component. From the loading plot

we can see which variables are important for this separa-

tion. The loadings are likewise separated along a diagonal,

with samples that are positively correlated to the ‘‘cancer

direction’’ and samples negatively correlated to the ‘‘cancer

direction’’ or positively correlated to the control samples;

in this case the samples with other non malignant findings.

A similar exercise can be done for all models.

Common for the models with cancer vs. one or all

groups of controls is that the variables 1, 2, 8, 16 and 19 for

several of the models are negatively correlated to the

cancer direction, and likewise variables 6, 7 and 10 are

positively correlated to the cancer direction. These vari-

ables are thus important in the discrimination between

cancer and controls, though a model based on only those

variables does not perform as well as models with more

variables. The excitation and emission loadings from

components seven and 10 which are positively correlated

to cancer and likewise from components eight and 17

which are positively correlated to the controls are shown in

Fig. 3 (lower plot). From the excitation and emission

loadings these variables can most likely be assigned to

tryptophan (variables 7 and 17) or tyrosine, with energy

transfer to tryptophan (variables 1 and 4). They have pair

wise similar excitation loadings, but the tryptophan emis-

sions in the ‘‘cancer variables’’ are all shifted to shorter

wavelengths (blue shift) compared to the ‘‘control vari-

ables’’. This confirms the findings from Leiner et al. (1986)

who also experienced a blue shift in tryptophan emission in

blood from cancer patients.

As opposed to what was expected, variable 3 (excita-

tion/emission at 400/620), which corresponds to porphyrin,

was not correlated to cancer. Several studies have shown

elevated porphyrin levels in the blood from cancer patients

(Madhuri et al. 2003; Masilamani et al. 2004; Xu et al.

1988). In this study all the subjects were included due to

symptoms associated with CRC, and thus, even though

three of four do not have cancer, some cellular biochemical

imbalance might be expected, and therefore elevated levels

could be expected in some of these controls. Additionally,

the studies showing porphyrin to be important used acetone

extracts of either blood plasma or cells, and not pure blood

plasma as in the present study.

In the above models, PARAFAC scores were included

from measurements on both diluted and undiluted samples,

and as explained earlier there are some important effects of

dilution. Fluorescence measurements on the undiluted

samples may suffer from inner filter effect due to the high

absorbance from the plasma samples. Diluting the samples

induce physical/chemical changes in the plasma causing

blue shift in the spectra. We found that variables from both

the diluted and undiluted measurements were important for

detecting cancer. Modelling only on scores from the diluted

or undiluted samples gave similar but slightly worse

Table 1 PLS-DA models for classification of different classes based on the PARAFAC scores

Groups Sensitivity CV Specificity CV AUC CV Sensitivity predict Specificity predict

Crc vs. no 0.68 0.84 0.75 0.73 0.77

Crc vs. onf 0.79 0.73 0.76 0.79 0.73

Crc vs. ade 0.73 0.74 0.77 0.92 0.63

Ade vs. no 0.57 0.55 0.50 0.45 0.43

Ade vs. onf 0.47 0.75 0.57 0.47 0.47

Onf vs. no 0.63 0.58 0.59 0.53 0.40

Crc vs. all controls 0.70 0.70 0.69 0.74 0.71

Crc cancer, No no findings, Onf other non malignant findings, Ade adenomas, All all three control groups, CV cross validated
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models compared to the combination of scores from the

diluted and undiluted samples, thus predictive power is

gained by including both. From an analytical point of view,

measuring only on the undiluted samples would be pre-

ferred as it makes the measurements faster and simpler to

perform. Additionally there is a risk that the changes in

sample matrix due to dilution could break some of the

cancer specific correlations/interactions and thus make

discrimination more difficult. A more thorough study

addressing this could be interesting. In fact in analysis of

the raw spectra (see below) better models were obtained

using only the undiluted samples.

3.2 Classification on the raw data

A study similar to this on breast cancer by Nørgaard et al.

(2007) applied discrimination only on the raw spectra. The

authors did recommend applying more advanced tech-

niques such as PARAFAC on the spectra but did not pursue

this. Recall that we have used PARAFAC here, in order to

provide more direct chemical information on how a pos-

sible classification can come about. Nevertheless, it is

interesting to see whether we have gained anything from a

quantitative point of view by applying PARAFAC on the

data. Hence, classification models were built directly on the

raw spectra as well. We have analyzed both diluted and

undiluted samples individually and combined, and

achieved similar results. However, the results from the

undiluted measurements were slightly better than the

alternative results, and are thus the only ones presented

below. In Table 2 the results from the classifications based

on the raw spectra are shown. Compared to the results

based on the PARAFAC scores, these classification models

perform equally well and these results are thus also com-

parable to the performance of CEA. Again the models on

control vs. control perform worse than the cancer vs.

control models. As for the models based on the PARAFAC

scores we have applied variable selection on the models.

Different variables are used for the models, but some of the

same areas are represented in all four models.

Although it is possible to trace the original wavelengths

behind the variables, these do not give the same intuitive

information compared to the PARAFAC loadings. The

scores and loadings for the model classifying cancer and

other non malignant findings (Fig. 4) show a fairly good

separation between the two groups in the first and fifth

components. The loadings can be traced back to wave-

lengths around maxima for tryptophan, and the loading for

the fifth component has a second derivative-like shape,

which can be connected to the shift in the spectra from

control to cancer that was shown above in the models based

on PARAFAC scores. The results are thus similar, which

was expected as it is originally the same data. Still, the

extracted features by PARAFAC make the interpretation

more straight forward and more comprehensive.

4 Conclusion

We have introduced excitation emission matrix fluorescence

measurements on human blood plasma combined with

multivariate data analysis as a potential alternative method

to discriminate CRC patients from healthy controls, and

controls with other cellular imbalances than cancer. With

Fig. 3 Upper left: PLS-DA

score plot of the first vs. third

PLS-DA component from the

model cancer vs. other non

malignant findings on

PARAFAC loadings. Triangles
are cancers and circles are

controls. Upper right:
corresponding loading plot.

Lower: selected PARAFAC

excitation (left) and emission

(right) loadings. Dark gray line
(loading #7) and dark grey with

asterisk (loading #10) are

correlated with cancer, light
gray (#8) and light gray with

asterisk (#17) are correlated

with control samples
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sensitivity and specificity values of app 0.75 on a test set,

the results are comparable to the known biomarker CEA.

Previous studies with fluorescence spectroscopy have

obtained similar results on other types of cancer but with a

smaller number of samples. We obtained similar results in

regards to discrimination whether we applied classification

directly on the raw unfolded spectra or extracted estimates

of the underlying fluorophores by use of PARAFAC. By

the latter method, however, we obtained better conditions

for a chemical interpretation/understanding of the results.

We could see a blue shift in the tryptophan emission from

cancer patients as one of the reasons for discrimination, a

phenomenon described earlier in the literature. The use of

PARAFAC on the fluorescence data to extract qualitative

and quantitative chemical information from the human

blood plasma samples, and base classification on this

information is an example on how fluorescence spectros-

copy can be used as a tool for metabonomic research.

Compared to biomarker tests, fluorescence spectroscopy is

an inexpensive alternative, and with minor sample prep-

aration it is easy to perform the analysis. Further research

is needed but we believe that there is room for fluores-

cence spectroscopy as metabonomic tool in cancer

research.
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Table 2 Results from the PLS-DA on the raw unfolded spectra

Groups Sensitivity CV Specificity CV AUC CV Sensitivity predict Specificity predict

Crc vs. no 0.64 0.79 0.73 0.73 0.67

Crc vs. onf 0.73 0.79 0.75 0.73 0.73

Crc vs. ade 0.78 0.71 0.74 0.64 0.87

Ade vs. no 0.68 0.61 0.63 0.33 0.63

Ade vs. onf 0.84 0.34 0.55 0.70 0.33

Onf vs. no 0.45 0.82 0.62 0.20 0.82

Crc vs. all controls 0.69 0.7 0.73 0.67 0.83

Crc cancer, No no findings, Onf other non malignant findings, Ade adenomas, All all three control groups

Fig. 4 Left: score plot of the

first component vs. the fifth

component for the PLS-DA

model on cancer (triangles) vs.

other non malignant findings

(circles) on the raw spectra.

Right: loadings from the first

component (dark gray) and the

fifth component (light gray)
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