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Abstract. We have presented an optimal algorithm for minimal cost loop prob-
lem (MCLP), which consists of finding a set of minimum cost loops rooted at a 
source node. In the MCLP, the objective function is to minimize the total link 
cost. The proposed algorithm is composed of two phases: in the first phase, it 
generates feasible paths to satisfy the traffic capacity constraint, and finds the 
exact solution through matching in the second phase. In addition, we have de-
rived several properties of the proposed algorithm. Performance evaluation 
shows that the proposed algorithm has good efficiency for small network with 
light traffic. Our proposed algorithm can be applied to find multicast loops for 
real-time multimedia traffic distribution. 

1   Introduction 

Current computer networks consist of backbone networks that serve as the major 
highways to transfer large volumes of communication traffic, and local networks that 
feed traffic between the backbone node and end-user nodes connected to the back-
bone. Several researchers have proposed algorithms for discovering the topology of 
the Internet backbone [1-2].  A local area network (LAN) connected to a backbone 
node, can be regarded as an end-user node. A local network, therefore, consists of a 
backbone node and several end-user nodes hanging off a LAN. 

In a local network, the total traffic volume of end-user nodes that can be served by 
a port of the backbone node is limited. So, the local network consists of a backbone 
node (source node) and several trees or loops that cover all end-user nodes to satisfy 
the constraints on traffic volume. Topology discovery is required to find all the trees 
or loops in a local network that satisfies the constraints.  

Issues related to topology discovery for local network has been classified into two 
problems in the literature: capacitated minimum spanning tree problem (CMSTP) 
[3,4] and minimum cost loop problem (MCLP) [5,6]. The CMSTP finds the best way 
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in the least cost aspect to link end-user nodes to a source node. It determines a set of 
minimal spanning trees with a capacity constraint. In the MCLP, end-user nodes are 
linked together by a loop that is connected to a port in the backbone node. The links 
connecting end-user nodes have a finite capacity and can handle a restricted amount 
of traffic, thus limit the number of end-user nodes that can be served by a single loop. 
The objective of the design is to form a collection of loops that serve all user nodes 
with a minimal connection cost.   
    The objective of this paper is to formulate the MCLP and to develop an exact algo-
rithm to solve the problem. We propose a dynamic programming-based exact algo-
rithm. Our proposed algorithm solves the MCLP in two phases: In the first phase, the 
algorithm uses dynamic programming to generate feasible solutions to satisfy the 
traffic capacity constraint. In the second phase, it finds exact solution by applying the 
matching procedure to the set of the capacitated loops found in the first phase.  
   Our performance evaluation results demonstrate that the time complexity of our 
proposed exact algorithm is large when the number of nodes in the local network is 
large. Since the MCLP is NP-hard [7], it is difficult to find the exact solution for large 
network in short computing time. We, therefore, suggest using our exact algorithm 
for small local networks (less than thirty nodes), and heuristic methods can be used 
for large local networks.  

The main contributions of this paper are: (i) formulation of the MCLP, (ii) propos-
ing and evaluating its exact solution, and (iii) determining the threshold in choosing 
between heuristic methods and the exact algorithm depending on the size of the local 
network.   

The suggested algorithm can be applied to the design of synchronous optical net-
work (SONET) and the finding of multicast loops rooted at a source node in order to 
transfer the message to end-user nodes in the local network.  

The rest of the paper is organized as follows. Section 2 presents the mathematical 
formulation of the MCLP. Section 3 describes our proposed dynamic programming 
based algorithm for the MCLP. Section 4 evaluates the computational complexity and 
execution time of our proposed algorithm. Finally, concluding remarks are given in 
section 5.  

2   Formulation of the MCLP 

The MCLP (see Fig. 1) is concerned with finding a set of minimal cost loops that are 
used form the multicast paths for real time traffic, such as multimedia. The end-user 
nodes are linked together by a loop connected to a port in the backbone node, where 
the links connecting the end-user nodes have finite capacity, i.e. they can handle 
limited amount of traffic (Q). This translates to restricting the number of end-user 
nodes served by a single loop. The solution of the MCLP results in a collection of 
loops that serve all end-user nodes with a minimal connection cost. 
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Fig. 1 MCLP 
 
We now consider the modeling of the MCLP. Assume that there is graph, G=(V, E), 
where V={0,1,2,..,n}, traffic requirement at node is Wi (i∈V-{0}) and link cost be-
tween node i and node j is dij (j∈V-{0} and (i,j) ∈E). Q represents maximum traffic 
served by single loop. Index 0 represents the source node and can be viewed as an 
object such as the backbone router with several ports. End-user nodes originate traf-
fics and can be regarded as hosts or switching hubs. The problem formulation for the 
MCLP is described by Eq. (1). The objective of the MCLP is to find a collection of 
least-cost loops rooted at node 0. Lp is the pth loop (p=1,2,..,lcnt: where lcnt is the 
number of loops in the solution) whose two of nodes are connected the source node. 
A particular case occurs when each Wi is equal to one. In that case, the constraint 
means that no more than Q nodes can belong to any loop of the solution. With this 
constraint, we can confine the fault to the loop only in which it occurred. xij repre-
sents link between node i and node j (i,j: i=1,2..,n; j=1,2…,n). If link (i,j) is included 
in any loop (Lp) of the solution, then xij is set to 1. m represents the number of links in 
the solution. 
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3   Solution of the MCLP 

Having formulated the MCLP in the previous section, we now develop solution for 
the problem. Our solution consists of two phases: feasible path generation phase and 
matching phase as described below. 
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3.1 Feasible Path Generation Phase   
 
To generate the feasible paths for the MCLP using dynamic programming, we define 
stage variable and state variables: Stage variable, k (k=1,2…), is the number of nodes 
to form a path rooted at the source node to any arbitrary node j. State variables, j and 
S are the node index to be connected and the set of node indexes included in the path 
in order to connect node j, respectively. Then, using the principle of optimality, the 
recurrence relation can be obtained as shown in Eq. (2). 
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In Eq. (2), fk(j,S) represents the least cost to connect node j with the paths of which 

the number of nodes included in S is k to connect node j. fk(j,S) is set to infinity when 
the sum of traffics at end-user nodes exceeds Q. 

Since boundary condition represents the cost to connect from the source node to 
node j directly without intermediate nodes, it is defined by Eq. (3). 
 

 f0(j,-) = d0j                                                                                                 (3) 
 

To obtain a feasible solution, we compute f1(j,S) for all (j,S) satisfying 
QWW j

Sq
q ≤+∑

∈
 by using  f0. Then, f2(j,S) is computed using f1. By repeating this 

procedure, we reach the phase where QWW j
Sq

q >+∑
∈

, for all (j,S).   

Since fk(j,S) are infinity for all (j,S) at such a phase, we set L=k. This means that 
the loop cannot be extended any further. So, paths obtained at the previous stage k 
(0,1,2,..,L-1) are feasible solutions.  
 
3.2 Matching Phase   
 
At stage k of the feasible path generation phase, fk(j,S) represents the cost of the path 
composed of the same elements as j∪S, but the order of elements included in the set 
is different.  

Among fk(j,S), the minimum cost, f'k(Pm) is computed. That is, the cost for Pm at 
stage k, f'k(Pm) is as follows: 
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 f'0(Pm) = f0(j,-) + dj0,                            k = 0                             (4) 
     f'k(Pm)=Min[fk(j,S) + dj0],                    k = 1,2,..,L-1 

                              ∀ (j,S) such that Pm –{j∩S} = φ      
 
    The value of f'k(Pm) from Eq. (4) represents the cost of the loop including the con-
nection cost to the source node, which is composed of the same node indexes of dif-
ferent order. Node set of the optimal policy, Rm corresponds to f'k(Pm). Rm is the set of 
node indexes included in the loop rooted from the source node and represents the 
node sequence of loop by adding the source node to both end-side indexes. Of course, 
node 0 is not included in Rm. 

Finally, since n nodes have to be included in any loop (Rm) rooted at the source 
node without duplicate inclusion in the optimal solution, the optimal solution can be 
obtained by substituting f(Rm) for f'k(Pm) from Eq. (4). There can be several collec-
tions which have the element, Rm, to satisfy the split condition of set N'. Thus, the 
global optimal value, F, is the least value among the cost, f(Rm), corresponding to Rm, 
and can be expressed by Eq. (5). 

  
F = Min [∑ f(Rm) ],                                                                 (5) 

∀ Rm such that ∪Rm = N' and Ri ∩Rj =φ  (i ≠ j) 
 
3.3 Optimal MCLP Algorithm   
 
From the above model, the optimal MCLP algorithm is described as the following. 

     
OPTIMAL MCLP ALGORITHM 
Feasible path generation Phase 
1.  for k = 0 and  for all j such that j∉N' do  
2.             f0(j,-) ← d0j  
3.  end for 
4.  while fk(j,S) ≠ ∞, ∀ (j,S) do  

5.      if ∑ ≤+
∈Sq

jq QWW ,     then 

6.            for all  k such that k = 1, 2,.., S and S⊆Nj do 
7.                       ]    }){,([  ),(

, qj1kjqSqk dqSqfMinSjf +−← −≠∈
 

8.            end for 
9.      else   fk(j, S) ←∞ 
10.    end if 
11. end while 
12. L ← k 
Matching Phase 
13. for k = 0 and  for all  j such that  j∉N' do  
14.       f'0(Pj) ← f0(j,-)+dj0 
15. end for 
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16. for all k such that  k=1,2,..,L-1  do 
17.            m ← 1 
18.       for all  j such that 

Sq
qj

∈
< }Min{  do 

19.                  Pm ← {j}∉S 
20.                  m  ← m+1 
21.        end for 
22. end for 
23. for all k such that k=1,2,..,L-1 do 
24.            m ← 1 
25.        for all (j, S) such that Pm - {j∉S} = ∅ do 
26.                    f'k(Pm) ← Min [fk(j,S) +dj0]  
27.                    m ← m+1 
28.        end for 
29. end for 
30. for all m do 
31.        for all Rm such that ∪Rm = N'  and Ri∩Rj = ∅ (i≠j) do 
32.                   find  f(Rm)  
33.        end for   
34. end for 
35. for all m  do 
36.        F ← Min [f(Rm)] 
37. end for 
38. find the set of optimal loops(R) corresponding to F.            

4   Performance Evaluation 

Having formulated the MCLP and its solution in Sections 2 and 3, in this section, we 
evaluate the performance of the algorithm in terms of its computational complexity. 
 
4.1 Properties of MCLP algorithm   

 
We present the following Lemmas in order to show the properties of the proposed 
algorithm (referred hereafter simply MCLP algorithm). 
 
Lemma 1.  Feasible path generation phase ends in the finite stages. 
Proof) The finish time of feasible path generation phase depends on the relationship 
between Σn

i=1 Wi  and Q.  In the worst case (Σn
i=1 Wi ≈ Q), we might generate maximum 

feasible paths. In such a case, k is close to n. The maximum of k (= L) can be nearly 
same as n-1, but more than or equal to n. If L is equal to n, we will find single loop. 
This is against our assumption (Σn

i=1 Wi > Q). Thus, we can finish the feasible path 
generation phase in at most n-1 stages.                                                            
Lemma 2.  The number of additions and comparisons in the feasible path generation 
phase are n(n-1)2L and n(n-2)2L, respectively. 
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Proof) In each stage (k=1,2..,L), we have to add n-1Ck for n nodes, and compare n-1Ck 
for the previous stage and n nodes. Therefore, the number of additions 
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   )1(  ≈ n(n-1)2L – n(2L-1) = n(n-2)2L.                                                                       

Lemma 3.  The upper bound for the number of additions and comparisons in the 
matching phase are n(n-1)2L and n(n-2)2L, respectively. 
Proof) In the matching phase, we need not consider the sequence of nodes unlike in 
the feasible path generation phase. The amount of computations is decreased in most 
cases. However, since there might exist the case that the amount of computation is 
same according to the traffic capacity constraint (∑n

i=1 Wi ≤ Q) regardless of the con-
sideration for node sequence, we can state that the number of additions and compari-
sons in the matching phase is same as those in the feasible path generation phase in 
the worst case. Thus, upper bound for the number of additions and comparisons in the 
matching phase are n(n-1)2L and n(n-2)2L, respectively.                                                                                                  
Lemma 4.  MCLP algorithm produces the optimal solution. 
Proof) In the feasible path generation phase, we enumerate the feasible paths by 
using the optimality principle of dynamic programming. So, there can be no other 
feasible paths except our solutions. In the matching phase, we first find partitions of 
which unions compose of the node set, N' = {1,2,..,n}. Next, we generate loops com-
posed of the above partitions. These loops are found by adding the index of the 
source node to indexes of both end nodes included in the partition and are sub-
optimal solutions. Then, we select the least cost solution among sub-optimal solutions. 
Therefore, it is natural for the selected solution to be the global optimal solution.    

 
4.2 Numerical Experiments   

 
We consider the amount of computation in the stage variable (k). It is maximal when 
the traffic requirement at each node is one (Wi =1, ∀i) and the maximum traffic per 
single loop is Q. First, for any stage (k), fk(j,S) must be computed for k×nCn-1 different 
(j,S) pairs. Since such computation requires k additions and k-1 comparisons, where k 
=1 to L, the number of additions and comparisons in the feasible path generation 
phase are n(n-1)2L and n(n-2)2L, respectively by Lemma 2. In addition, the upper 
bound for number of additions and comparisons in the feasible path generation phase 
are n(n-1)2L and n(n-2)2L, respectively by Lemma 3.  

Fig. 1 shows the mean real execution time of MCLP algorithm for three different 
cases (heavy traffc- Q=1/2∑n

i=1 Wi, medium traffc- Q=1/3∑n
i=1

 Wi, and light traffic- 
Q=1/4∑n

i=1
 Wi). For each case, ten problems were randomly generated and executed on 

workstation. MCLP algorithm shows the best efficiency when the sum of the traffics 
is much less than Q. That is, when the number of nodes is 10, mean execution times 
for light, medium, and heavy traffic cases are 0.3, 0.3, and 0.2 seconds respectively 
(since results for 10 nodes are very small, they are not shown in Fig. 1). On the other 
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hand, when the number of nodes is 30, mean execution times for light, medium, and 
heavy traffic cases are 60, 134 and 200 seconds respectively. As the number of nodes 
becomes large, memory access time increases sharply. The reason is why k×nCn-1 
storage spaces are required in each stage k to store fk(j,S). However, the current main 
memory cannot maintain all the results from the previous computation. If we can use 
the huge main memory, we will reduce the computation time. In addition, the reason 
for the less execution time in the light traffics is that since L value in MCLP algorithm 
becomes small in light traffic case, the amount of computations for MCLP algorithm 
also becomes small. To summarize, the proposed MCLP algorithm is affected by the 
traffic volume and Q, and is effective in the case when the number of nodes is less 
than thirty and the traffic volume is light. Since the execution time increases sharply 
as the number of nodes is more than thirty, it is desirable to use the heuristic method 
for the network with large nodes or heavy traffic. 
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Fig. 1 Mean execution time 

5   Conclusions 

In this paper, we have presented the problem formulation and an optimal algorithm 
for the MCLP. The proposed algorithm minimizes the total cost to discover the opti-
mal loops rooted at the source node. It consists of generating the feasible paths using 
dynamic programming and finding the exact solution by matching procedure. Several 
properties about the performance of our algorithm were derived, and through experi-
ments, it was shown that the proposed algorithm is effective for small local network 
of which total traffic volume is relatively smaller than the maximum traffic to be 
served by a port of the source node. Our proposed algorithm can be used to discover 
the multicast loops for real-time multimedia traffic. Future work consists of develop-
ing a heuristic algorithm applicable to local networks with large number of nodes.  
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