
Lazy Preemption to Enable Path-Based Analysis of
Interrupt-Driven Code

Wei Le, Jing Yang, Mary Lou Soffa and Kamin Whitehouse
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22904

{weile,jy8y,soffa,whitehouse}@virginia.edu

ABSTRACT

One of the important factors in ensuring the correct functionality
of wireless sensor networks (WSNs) is the reliability of the soft-
ware running on individual sensor nodes. Research has shown that
path-sensitive static analysis is effective for bug detection and fault
diagnosis; however, path-sensitive analysis is prohibitively expen-
sive when applied to a WSN application due to the large state space
caused by arbitrary interrupt preemptions. In this paper, we pro-
pose a new execution model called lazy preemption that reduces
this state space by restricting interrupt handlers to a set of pre-
determined preemption points, if possible. This execution model
allows us to represent the program with an inter-interrupt control

flow graph (IICFG), which is easier to analyze than the original
CFGs with arbitrary interrupt preemptions.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
Reliability

General Terms

Reliability, Algorithms

Keywords

Lazy preemption, Path-based analysis, Interrupt-driven

1. INTRODUCTION
Reliability is important for wireless sensor networks (WSNs),

especially when they are deployed in mission-critical applications
such as security monitoring or power plant control. Software re-
liability is particularly challenging because WSN programs often
use interrupt-driven code, which is difficult for developers to rea-
son about and is highly susceptible to race conditions and other
bugs [13]. To make matters worse, traditional tools and techniques
for software reliability are handicapped in the WSN domain. For
example, resource constraints limit the use of debuggers, virtualiza-
tion, memory sandboxing, and other runtime protections. Further-
more, sensor nodes are often deployed in remote locations where

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SESENA ’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0583-9/11/05 ...$10.00.

continuous debugging and reprogramming is not an option. Finally,
testing and debugging are limited by the large range of possible in-
put sequences, and real deployment environments are difficult to
emulate in a testing environment.

Static analysis can improve software reliability without paying a
runtime cost because it is performed before the code is deployed.
However, WSN programs are especially difficult to analyze be-
cause they are interrupt-driven. Preemptive interrupts allow the
code to be highly responsive to the environment, but exponentially
increase the number of possible paths through a program that must
be analyzed: if k different interrupt handlers can be run at n dif-
ferent points along a path then kn new variants of the path must
be considered during program analysis. Even more variants must
be considered if interrupts can preempt other interrupts. Thus, it
is intractable for path-based analysis to achieve reasonable cover-
age of interrupt-driven code, even for very small programs. Exist-
ing static analysis tools designed for the WSN domain address this
challenge by either 1) sacrificing code coverage by analyzing only
a limited number of paths [12], or 2) sacrificing accuracy by using
path-insensitive analysis that can produce a large number of false
positives or false negatives [2, 3, 11].

In this paper, we propose to address this problem with lazy pre-

emption, a new execution model that runs interrupt handlers only
when necessary or convenient. This execution model reduces the
number of interleavings caused by asynchronous interrupt preemp-
tion, thereby simplifying path-based analysis. To use lazy preemp-
tion, a maximum frequency fi and maximum response time ri must
be defined for every hardware interrupt i. The default values are
fi = 500 Hz (the interrupt occurs at most twice every 1 msec) and
ri = 1 msec (the handler must be executed within 1 msec of the
hardware interrupt). Then, we split all interrupt handlers into two
parts: the record handler and the action handler. The record han-
dler executes immediately when a hardware interrupt occurs and
can record the state of the hardware, but cannot share variables
with any code other than its action handler. The action handler pro-
cesses the state and updates shared variables, but it can only execute
at pre-determined preemption points, which are chosen at compile
time based on static timing analysis such that timing constraints
are satisfied. This lazy preemption model enables a new intermedi-
ate representation of the program called the Inter-Interrupt Control

Flow Graph (IICFG) that models interleavings of action handlers
only at their correspondent preemption points. Record handlers do
not need to be modeled because they do not use shared variables.
The IICFG is easier to analyze than the original CFGs with arbi-
trary interrupt preemption because it represents far fewer possible
program paths.

Lazy preemption creates a new tradeoff between software veri-
fiability and software responsiveness, and allows a user to balance

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357523935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the two by specifying the frequency and response time constraints
accordingly; if a high maximum frequence and low maximum re-
sponse time are specified, the program will be more responsive at
run time but analysis will take longer at compile time, and vice
versa. In this paper, we argue that a large fraction of WSN pro-
grams would benefit by reducing responsiveness and improving
verifiability. The key insight is that the physical world changes
much more slowly (on the order of seconds) than the time required
to execute typical software routines (on the order of milliseconds).
For example, low-power WSNs deliberately turn down the sensing
frequency to increase battery lifetime, sensing every few seconds
or even every few minutes. Even timing-critical systems that de-
tect fires or heart attacks can tolerate a second or two of latency. In
comparison, we found that 75% of tasks and interrupt handlers in
TinyOS-1.x have less than 1000 lines of code, and most can execute
in less than a millisecond. Thus, it should be possible to substan-
tially reduce software complexity caused by preemption simply by
postponing interrupt handler routines, without paying a significant
penalty in terms of responsiveness.

Of course, some interrupts need to be handled immediately and
some tasks can run for seconds or even minutes. We envision three
types of lazy preemption: 1) fully-preemptive: the interrupt must
be handled immediately, 2) restricted-preemptive: the maximum
response time is less than the time required to execute certain soft-
ware routines in the program, and fixed preemption points must
be defined, and 3) non-preemptive: the maximum response time is
large enough with respect to software execution time that the inter-
rupt handler can be queued and run whenever the stack is empty.
In the latter case, all subroutines are essentially atomic and static
analysis is greatly simplified. We envision that each program will
have a combination of these preemption models, perhaps one for
each interrupt.

We have developed an initial prototype that uses demand-driven,
path-based static analysis on the IICFG built based on the non-
preemptive model. Demand-driven fault detection starts at program
points where a fault potentially occurs and examines the program
paths reachable from these program points [6, 7]. The prototype
is able to detect buffer overflows, integer faults and null-pointer
dereferences. We are still implementing the static timing analysis
and the dynamic monitor.

2. BACKGROUND
Our techniques presented in this paper model software running

on individual sensor nodes, rather than the behavior of an entire
wireless sensor network. To explain the techniques, we use TinyOS
as an example which compiles programs written in nesC to C code;
for hardware-dependent features, we use the AVR platform. Our
techniques are generally applicable for WSN applications written
in other languages and can be adapted to other hardware platforms.

In this section, we present the execution model of WSN applica-
tions. The focus is to explain the characteristics of WSN applica-
tions that are not commonly seen in traditional software. We also
discuss the types of faults that have been reported for WSN applica-
tions. The goal is to determine the requirements for static analysis
that is able to detect these faults.

2.1 The Execution Model
Compared to traditional software, a WSN application is typically

smaller, ranging from hundreds to 20 k lines of C code [3]. Three
major components in a WSN application include the main func-
tion, tasks and interrupt handlers, as shown in Figure 1. The major
role of the main function is to fetch tasks from the task queue and
execute them in FIFO (see the loop in the main function). A task

Init

Post Task 1

Run_Tasks

Start

Task 1

tmp = start()

tmp == 0U

Post Task n

Task n…

Main Interrupt Handler

tmp+=interval ()

Event

a WSN application

Task Queue

Figure 1: Execution model of a WSN application.

is a basic computational unit that accomplishes a desired function-
ality. Tasks are implemented as function calls in C, using special
naming conventions to distinguish them from other function calls.
Tasks can be posted by the main function, by interrupt handlers or
by other tasks. The interrupt handlers are invoked to respond exter-
nal signals. In most WSN applications, the signals come at a fixed
frequency. The frequency is potentially known from the hardware
specification or the documentation. To process the signal, tasks
are invoked and placed in the task queue. There are often global
variables in the interrupt handlers that can record the accumulated
status for the captured signals.

At any given time, the CPU executes instructions from either the
main function, a task or an interrupt handler. An interrupt handler
can preempt a task or another interrupt handler. When the execution
is not declared as atomic, the system examines the interrupt vector
table at each instruction and processes the cached interrupts based
on their priority. The table can only store one interrupt of a type at
one time. When the task and the interrupt handler are preempted,
the program state is pushed onto the stack and resumed after the
preempting interrupt handlers terminate.

For some WSN applications, interrupts must be handled in a
timely manner. The real-time constraints are often specified in
terms of response time for external events. The arrival frequency of
an interrupt (f) and its response time (r) are related. Since the sys-
tem is not able to record more than one interrupt of the same type at
a time, for a system where missing an interrupt is consequential, the
response time should be [r ≤ 1

f
]. In some cases, missing interrupts

is tolerable. For example, the WSN protocol ensures that a missed
radio signal will be resent if the acknowledgment (sent from the in-
terrupt handler) is not received. In this case, the response time can
be [r > 1

f
].

2.2 The Requirement for a Fault Detector
Common types of faults in WSN applications include memory

access violations (e.g., buffer overflows and null-pointer derefer-
ences), concurrency bugs (e.g., deadlocks and race conditions), and
interrupt handling violations (e.g., task queue overflow and stack
overflow). Based on the characteristics of these bugs, an effective
static analyzer should include three important features.

Both detecting and reporting faults should be based on pro-

gram paths. Given a program point where a fault occurs, not all
execution paths that traverse the program point are actually faulty.
In path-insensitive analysis, the information collected along differ-
ent paths is merged, indicating all of the program paths contain a
same property. A conservative approximation at the merge point
can cause false positives, while an aggressive approximation may
lead to false negatives. Path information is also important for diag-

Bug Type Number of Bugs

Deadlock 4
Interrupt Race Condition 2
Related Atomicity Violation 1
Bugs Task Queue Overflow 2

Stack Overflow 1

Logic Violation Bugs 5

Table 1: Interrupt-related bugs accounts for 66.7% of all severe

bugs sampled from the TinyOS bug repository.

nosing and fixing the detected bug because paths explain how the
fault is actually produced.

The interactions between interrupts and tasks should be mod-

eled. In WSN applications, many of the faults, especially con-
currency bugs, are related to incorrect interactions between inter-
rupts and tasks. For example, when a global variable is accessed
by multiple interrupt handlers and tasks, incorrect orders in which
the variable is accessed may lead to deadlocks or race conditions.
We randomly sampled 15 bugs from the most-severe-bug-pool in
the TinyOs bug repository and categorized them based on their
root causes. Our inspection shows that 66.7% of the sampled bugs
are interrupt related (see Table 1). Among these bugs, task queue
overflows occur when the processor is occupied by responding to
high-frequency interrupts and no tasks can be fetched from the task
queue, and stack overflows occur when interrupt handlers are con-
tinuously pushed onto the stack but not able to be executed in time.

Timing analysis should be performed. When the response time
is not able to be satisfied in a WSN application, a real-time con-
straint violation occurs. For example, the low priority interrupts
are never handled when the higher priority interrupts arrive at a
very high frequency. Another example is that if it takes too long
to handle an interrupt, the arrival interrupts of the same type have
to be discarded. To statically determine such potential violations,
we need to perform timing analysis and calculate the potential ex-
ecution time for each task and interrupt handler. The worst case
execution time (WCET) is often used to compare with the real-time
constraints.

Figure 2 illustrates an example where timing analysis is neces-
sary to detect a complicated bug. This bug occurred in the CC1000
radio stack and was corrected in revision 1.30 of the TinyOS-1.x
source tree. In the example, SpiByteFifo.rxMode() at line 5
and CC1000Control.RxMode() at line 6 are called under case
TXSTATE_DONE (line 3). These calls implement busy waiting, which
take a long time (400 microseconds) to finish. When the post fails
(e.g., the task queue is full), RadioState at line 9 is not reset to the
idle state. Same execution paths will be taken when the application
responds to next SPI interrupts at lines 13-15. Since the CPU is
mostly busy waiting at lines 5 and 6 and no time to execute the task
queue, the post will still fail at line 8; as a result, RadioState, the
key state for exiting the current radio transmission, is still not set;
the application enters an infinite loop. Clearly, without the knowl-
edge of busy waiting time and SPI interrupt frequency, it is very
difficult to statically detect this bug.

3. INTERRUPT HANDLING MODELS
To statically detect faults in WSN applications, we first need to

model the control flow related to interrupt handling routines. In ex-
isting WSN applications, interrupts are handled fully preemptively
in that the execution of a task or interrupt handler can be suspended
at any program point, except in the atomic or interrupt-disabled sec-
tions. Verifying such a large state space is challenging. To reduce

1 result_t SpiByteFifo.dataReady(uint8_t data_in) {

2

3 case TXSTATE_DONE:

4 default:

5 call SpiByteFifo.rxMode();

6 call CC1000Control.RxMode();

7 bTxPending = FALSE;

8 if (post PacketSent()) {

9 RadioState = IDLE_STATE;

10

11 }

12

13 TOSH_SIGNAL(SIG_SPI) {

14

15 signal SpiByteFifo.dataReady(temp);

16 }

Figure 2: A livelock bug found in the CC1000 radio stack.

the state space a static tool handles, we present two types of lazy
preemption, namely non-preemptive and restricted-preemptive in-
terrupt scheduling models, where the interrupts are preempted only
at selected program points. These program points are statically de-
termined based on the real-time requirement. In Figure 3, we use a
simple example to explain the models and discuss the tradeoffs to
implement these models.

In Figure 3(a), we present control flow graphs (CFGs) for a task
(left) and an interrupt handler (right). Suppose each block in CFGs
is atomic, and interrupts are enabled in both routines. In fully-
preemptive interrupt scheduling, every program point is preempt-
able, shown in Figure 3(b). We call the program points where in-
terrupts are allowed to preempt preemption points. At preemption
points, the control flow potentially transfers from the task on the
left to the entry of the interrupt handler on the right. We use a
dash line in the figure to represent the transition. In the figure, we
show that if such control flow transition is considered, the program
potentially executes six paths, 〈1, 5, (2|3), 4〉, 〈1, (2|3), 5, 4〉 and
〈1, (2|3), 4, 5〉.

In the fully-preemptive model, the state space of a program is
related to the number of types of interrupts a system supports (typ-
ically 5 to 8 types), the size of tasks and interrupt handlers, and
the size of atomic sections extant in a program. We perform a
study on the 29 WSN applications in the TinyOS-1.x source tree to
determine the latter two sizes, using a context-sensitive and flow-
insensitive static analysis. Here, context-sensitive means that we
follow each function call to add up the lines of code in callees re-
cursively; flow-insensitive means that we do not consider the exact
control flow in a procedure. In Figure 4, we show that more than
half of the atomic sections in the 29 WSN applications are under
20 lines of code (LOC) (with a mean of 33.5 and max of 6, 197).
Figure 5 shows that the total size of tasks and interrupt handlers
are much larger than the size of atomic sections (with a mean of
1, 303.9 and max of 1, 563, 835). If fully-preemptive models are
implemented, as in current WSN applications, the number of po-
tential interleavings of interrupt handlers is very large.

As described in Section 1, our key observation is that in practi-
cal WSN applications, the required response time of typical inter-
rupts is larger than the execution time of most tasks and interrupt
handlers. Based on this insight, we developed the non-preemptive
model, shown in Figure 3(c). In this model, the control flow tran-
sition between the task and the interrupt handler only occurs at the
end of the task, indicated by the dash line between the two CFGs in
the figure. At runtime, when the interrupts arrive, we cache them in
the system; only when the system stack is empty, i.e., when other
interrupt handlers or tasks are finished, we invoke the interrupt han-

1

2 3

4

5

(a) Task, Interrupt Handler and their CFGs

Task Interrupt Handler

(b) Fully-Preemptive

1

2 3

4

5

Task Interrupt Handler

(c) Non-Preemptive

51

2 3

4

Task Interrupt Handler

(d) Restricted-Preemptive

51

2 3

4

<1,3,5,4>

<1, 2, 4, 5>

Task Interrupt Handler

Figure 3: Interrupt handling models.

0−9 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 90−99>=100
0%

10%

20%

30%

40%

50%

60%

Lines of Code

P
e

rc
e

n
ta

g
e

Figure 4: Size of atomic sections in terms of LOC.

0−9 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 90−99>=100
0%

5%

10%

15%

20%

25%

Tens of Lines of Code

P
e

rc
e

n
ta

g
e

Figure 5: Size of tasks & interrupt handlers in terms of LOC.

dling routines for the cached interrupts. Adding this constraint for
interrupt scheduling, we largely reduce the complexity of a pro-
gram caused by the interleavings of interrupt handlers. As shown
in Figure 3(c), the state space is reduced from six to two paths,
〈1, (2|3), 4, 5〉.

In the non-preemptive model, interrupt handling is potentially
delayed. The delay can cause two problems. First, the system re-
sponse time decreases, which is not acceptable for critical real-time
applications. Second, since the waiting time increases, the second
interrupt of the same type potentially arrives before the first inter-
rupt can be handled. As we discussed in Section 2, in WSN appli-
cations, the system is only able to record one interrupt of a type; in
this case, we potentially miss interrupts, which is not always toler-
able for a WSN system.

To solve the problems, we also developed the restricted-preemptive
model, shown in Figure 3(d). In this model, preemption is en-
abled in tasks and interrupt handlers only when the real-time con-
straints are potentially violated otherwise. In Figure 3(d), suppose
the real-time constraint cannot be satisfied along path 〈1, 3, 4, 5〉
(e.g., block 3 takes a long time to finish) in a non-preemptive model.
To resolve this real-time constraint violation, we perform a static
timing analysis and determine that, to achieve the desired response
time, the preemption at node 3 has to be enabled. The timing anal-
ysis reports that no preemption is required along path 〈1, 2, 4, 5〉.
We thus insert preemption points at the correspondent locations
in the CFGs. The figure shows that, in the restricted-preemptive
model, the state space still only contains two paths: 〈1, 3, 5, 4〉 and
〈1, 2, 5, 4〉.

To perform static analysis for the program that implements the
models, we build an intermediate representation for the program
source, namely inter-interrupt control flow graph (IICFG). Exam-
ples of IICFGs are given in Figure 3. The graph consists of CFGs
for tasks and interrupt handlers and also integrates a set of spe-
cial edges that connect the preemption points to the entry of the
interrupt handler as well as the exits of interrupt handler to the pre-
emption points.

nesC

Compiler
WSN App

in nesC

C program

CFGs
IICFG

Execution

based on

IICFG

Faults

Path-Based Fault Detection for WSN applications

Static Timing

Analysis

Runtime

Enforcement

Demand-Driven

AnalysisFix Bugs

Figure 6: Work flow and components of the framework.

4. HYBRID PATH-BASED TECHNIQUES
In this section, we present a framework that applies the lazy pre-

emption models to detect faults in WSN applications. The frame-
work contains static timing analysis, a demand-driven, path-based
bug detector, and a dynamic component that enforces the lazy pre-
emption models for an application at runtime. In Figure 6, we show
the workflow of our approach and the three main components of the
framework.

Giving a WSN application written in nesC, we first compile it to
a C program using the nesC compiler. CFGs of the C program are
built (see Figure 3(a)). The static timing analysis component takes
the CFGs of the program and finds preemption points in the CFGs
for the correspondent types of interrupts, generating the IICFG. The
demand-driven, path-based analysis component performs the anal-
ysis on the IICFG and detects bugs of desired types. Based on the
preemption points marked on the IICFG, the runtime enforcement

module inserts instrumentations at the specific points to enable and
disable interrupts for a WSN application at runtime.

4.1 Static Timing Analysis
The goal of static timing analysis is to find preemption points in

tasks and interrupt handlers, and construct an IICFG for a program.
The information we use in the timing analysis includes the program
source and the domain knowledge. In particular, our analysis needs

to know for each type of interrupt a WSN application supports, the
arrival frequency of the interrupt, f , and the required response time,
r. We also need to know the priority of interrupts. The knowledge
can be found in the hardware specifications or provided by the do-
main experts. Since the hardware on the sensor nodes is simple and
the code we see can be considered as the code we execute, we use
instruction count, the number of instructions executed, as a met-
ric to statically estimate the execution time for an application. Our
timing analysis is conservative in that we always assume that the
interrupts arrive in a worst case scenario.

In Figure 7, we use an example to explain our timing analysis
technique. The example consists of a main function, a task and
the handlers for interrupts A and B. Besides the source code, we
also know that: 1) interrupt A arrives at frequency f1 and requires
the response time r1; 2) interrupt B arrives at frequency f2 and
requires the response time r2; and 3) the priority of B is higher
than A.

Figure 7 gives a worst case scenario. Suppose the task starts at
time s, and interrupts A and B arrive immediately after the task
starts. We assume the preemption point for interrupt A is found at
p. We therefore can construct the formula: T = x + Tb + Ta,
where x is the time used to execute the task atomically between s

and p, Tb is the time used to handle interrupts B1,B2,..., and Bm

that arrive during T , and Ta is the time used to handle interrupts
A1,A2,..., and An that arrive during T . Based on the formula, we
build real-time constraints:

T = x + Tf2h2 + Tf1h1 (1)

T − (Tf1 − 1)h1 ≤ r1 (2)

T − (Tf1 − 2)h1 −
1

f1
≤ r1 (3)

.

.

. (4)

T −
Tf1 − 1

f1
≤ r1 (5)

T − Tf1h1 − (Tf2 − 1)h2 ≤ r2 (6)

T − Tf1h1 − (Tf2 − 2)h2 −
1

f2
≤ r2 (7)

.

.

. (8)

T − Tf1h1 −
Tf2 − 1

f2
≤ r2 (9)

Here, equation (1) is derived by replacing Tb with Tf2h2 and
Ta with Tf1h1 in the formula T = x + Tb + Ta. Tf2 and Tf1
are the numbers of interrupts that can arrive during T for interrupts
B and A respectively. h2 and h1 are the time needed to handle
the two interrupts, which can be statically computed based on the
program source. Constraints (2) to (5) specify that for each inter-
rupt of type A, the actual response time, calculated using the time
when the handler is completed minus the time when the interrupt
arrives (see the left of the inequality), should be less than or equal
to the required response time r1. Similarly, constraints (6)-(9) are
real-time requirements for handling interrupts of type B.

Given the set of constraints shown above, our goal is to compute
the maximum value of x. If such an x never exists, the preemption
points cannot be found, the program contains a bug and the real-
time constraints will be violated at runtime. If x is larger than or
equal to the WCET of the task, the non-preemptive model can be
applied, and the preemption point can be added at the end of the
task; Tf2 + Tf1 is the maximum storage overhead for caching the
interrupts. If x is otherwise less than the WCET, preemption points
should be inserted along paths in the task. We perform instruction
counting along all execution paths for the task and determine the

x

T

Interrupts A, B arrive

A1 A2 An
……

B1 B2
…

Domain

Knowledge

A: f1, r1

B: f2, r2

Priority: B > A

Tb

Ta

p

s

e

Bm

Execution time
Task Starts

Figure 7: Static timing analysis.

preemption points based on x. Loops and the special instructions
such as sleep are modeled to get conservative instruction counts.
One approach is to use a constant or upper bound for loop itera-
tions. Based on the detected preemption points, we then construct
the IICFG.

4.2 Runtime Enforcement
Our dynamic component enforces the interrupt scheduling based

on the computed preemption points. It accomplishes the following
three tasks.

First, we split all interrupt handlers in an application into two
parts, namely record handler and action handler. The record han-
dler caches an incoming interrupt, and more specifically, it records
the data collected from any hardware ports regarding the interrupt.
It is invoked whenever an interrupt arrives. The action handler is
called when the interrupt is enabled at the preemption points. It
reads the cached data and accomplishes the actions implemented in
the original handler.

Second, at each preemption point, we use the classic injection-
based instrumentation technique to fire cached interrupts. We re-
place the original instruction at the preemption point with a jump
to an extra piece of code we inserted into the binary, referred as a
trampoline. The trampoline checks the cached interrupts and in-
vokes the action handlers accordingly. After that, it executes the
original instruction, and jumps to the instruction that immediately
after the preemption point.

Third, when the program is initially loaded onto the sensor nodes,
values in the interrupt vectors are modified to point to the corre-
sponding record handlers instead of the original handlers.

The net effect of the above process is that when a program ex-
ecutes, interrupts can happen at any time and the input data is
recorded. At any preemption point, the recorded interrupts are
eventually fired through action handlers.

It should be noted that the above techniques are applicable with
the assumption that the interrupts arrive in a fixed frequency. If
the interrupts are triggered by aperiodic events, we take one of the
following two approaches: 1) for systems where violations for real-
time constraints are not critical, we will compute preemption points
using an estimated frequency (e.g., 500 Hz) and response time (e.g.,
1 msec); and 2) for timing critical systems, we will invoke ac-
tion handlers at a constant frequency, rather than at the preemption
points (computed via estimated frequency and response time), to
response the cached interrupts. The more frequently the handler is
invoked, the more runtime overhead it incurs and the less likely the
real-time constraints will be violated.

4.3 Demand-Driven Analysis to Detect Faults
Since our dynamic component enforces a restricted interrupt han-

dling schedule, some of the concurrency bugs caused by interleav-

b = input

b = “test”

strcpy(a,b)1

2 3

4

<1,3,5,4>

<1, 2, 4, 5>

Q1 Len(b)<32Q5 Len(input)<32:Vul

Q2 Len(b)<32

Q4 4 < 32: Safe

5

Task Interrupt Handler

Q3 Len(b)<32

Figure 8: Detecting buffer overflows on the IICFG.

ings that are not allowed in the new scheduling are prevented. In
this section, we present a demand-driven, path-based analysis that
detects memory access violations, interrupt handling violations,
and concurrency bugs that are not able to be prevented from the
new interrupt scheduling.

Take buffer overflow detection as an example. Our demand-
driven analysis first scans the IICFG of a program and identifies
buffer access statements. A query is then raised, inquiring whether
a buffer overflow can occur at the statement. A backward analy-
sis is performed from the statement, along program paths towards
the entry of the main function. The information that is useful to
determine the resolutions of the query is collected. The analysis
terminates when the query is resolved.

In Figure 8, we show how the path of a buffer overflow is discov-
ered by our demand-driven analysis. In the first step, our analysis
finds a buffer write statement, strcpy(a,b), in the interrupt handler.
Suppose here, variable a is a local buffer with the size of 32 bytes,
while variable b is a global buffer which can be modified outside
the interrupt handler. To determine if the buffer access is safe, we
construct query [len(b) < size(a)] at node 5. In this case, the size
of buffer a can be determined statically, and we therefore update the
query to [len(b) < 32]. The query is propagated backwards, first
through edges 〈5, 3〉 and 〈5, 4〉, and arrives at node 3 and node 4 in
the task. At node 3, the query is advanced to node 1; the analysis
finds that buffer b is assigned by the input package without bounds-
checking. A buffer overflow is found. Path 〈1, 3, 5〉 is reported as
faulty. Along branch 〈4, 2〉, we collect information at node 2 and
determine path 〈2, 4, 5〉 is safe.

5. RELATED WORK
Static techniques for WSN applications mainly include model

checking and dataflow analysis. A category of model checking
techniques focus on verifying the distributed algorithms of WSNs,
rather than the correctness of software running on individual sensor
nodes. In order to reduce the state space, these techniques usually
abstract away the details of single device, such as interrupts [1, 4,
8, 9]. Our research is orthogonal in that we develop techniques to
analyze software on sensor nodes.

Analyses for software running on single sensor nodes have two
approaches. One approach is to apply traditional dataflow analysis,
which is path-insensitive and thus imprecise [2, 3, 11]. Another
approach is to randomly select a limited number of paths and con-
duct precise analysis on them [12]. According to the best of our
knowledge, our work is the first that performs path-based analy-
sis at whole program scale for WSN applications, and we reduce
state space by applying a timing analysis and a demand-driven al-
gorithm.

Techniques for applying restricted preemption scheduling have

been used in testing [10]. The goal of this work is to ensure that
randomly generated scheduling is valid, and their approaches are
purely dynamic. Lai et al. represent interrupt preemptions on the
control flow graph by adding preemption edges; however, no tim-
ing analysis is performed to statically schedule the interrupt han-
dling [5].

6. CONCLUSIONS AND FUTURE WORK
Program paths are important for precisely detecting faults and

also presenting useful information for diagnosing bugs. However,
statically identifying bugs from WSN applications based on pro-
gram paths is hard due to a potentially exponential state space caused
by non-deterministic interleavings between sequential executions
and various interrupts. Based on how preemption is enabled in
tasks and interrupt handlers, we develop lazy preemption models,
which can greatly reduce the state space needed for analysis. We
apply timing analysis to determine interrupt scheduling based on
these models, and develop a lightweight runtime monitor to en-
force the scheduling dynamically. We designed a demand-driven,
path-based static analysis to detect faults on the programs imple-
mented with the models. In the future, we plan to model a set of
faults presented in Section 2.2, and perform bug detection experi-
ments on the framework. We aim to collect the bug detection rates
as well as both static and dynamic overhead of our approach.

7. REFERENCES
[1] P. Ballarini and A. Miller. Model Checking Medium Access

Control for Sensor Networks. In ISoLA ’06, 2006.

[2] D. Brylow, N. Damgaard, and J. Palsberg. Static Checking of
Interrupt-Driven Software. In ICSE ’01, 2001.

[3] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr.
Efficient Memory Safety for TinyOS. In SenSys ’07, 2007.

[4] C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, Death,
and the Critical Transition: Finding Liveness Bugs in
Systems Code. In NSDI ’07, 2007.

[5] Z. Lai, S. Cheung, and W. Chan. Inter-Context Control-Flow
and Data-Flow Test Adequacy Criteria for nesC
Applications. In FSE ’08, 2008.

[6] W. Le and M. L. Soffa. Marple: A Demand-Driven
Path-Sensitive Buffer Overflow Detector. In FSE ’08, 2008.

[7] W. Le and M. L. Soffa. Path-Based Fault Correlation. In FSE

’10, 2010.

[8] P. Li and J. Regehr. T-Check: Bug Finding for Sensor
Networks. In IPSN ’10, 2010.

[9] L. Mottola, T. Voigt, F. Osterlind, J. Eriksson, L. Baresi, and
C. Ghezzi. Anquiro: Enabling Efficient Static Verification of
Sensor Network Software. In SESENA ’10, 2010.

[10] J. Regehr. Random Testing of Interrupt-Driven Software. In
EMSOFT ’05, 2005.

[11] J. Regehr, A. Reid, and K. Webb. Eliminating Stack
Overflow by Abstract Interpretation. ACM Trans. Embed.

Comput. Syst., 4(4), 2005.

[12] B. Schlich. Model Checking of Software for
Microcontrollers. ACM Trans. Embed. Comput. Syst., 9(4),
2010.

[13] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse.
Clairvoyant: A Comprehensive Source-Level Debugger for
Wireless Sensor Networks. In SenSys ’07, 2007.

