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Summary

A database of structurally heterogeneous chemical structures with their experimental values of Lowest Observed Adverse Effect
Levels (LOAELs) was modeled using graph theoretical descriptors. Variable selection for multiple linear regression (MLR) and
linear discriminant analysis (LDA) was accomplished by the Internal Test Set (ITS) method in order to achieve true predicted
LOAEL values. The results obtained can be considered good if we take in count the structural diversity of the training set.

Introduction

The modeling of toxicological properties is an extremely im-
portant problem. No empirical toxicological data are avail-
able for most chemicals, and the growing new ones must
be evaluated or, at least estimated. Thus, reliable methods to
predict environmental toxicity are required. Furthermore, the
presence of toxic substances in high trophic levels can affect
humans. Particular interest in the estimation of chronic low-
est observed adverse effect level (LOAEL) has been raised
recently due to its environmental implications. LOAEL was
defined by the IUPAC as the lowest concentration or amount
of a substance, found by experiment or observation, which
causes an adverse alteration of morphology, functional ca-
pacity, growth, development, or life span of a target organism
distinguishable from normal (control) organisms of the same
species and strain under defined conditions of exposure [1].

Topological indices (TIs) are non-empirical descriptors
calculated from the representation of the molecules as math-
ematical graphs [2, 3]. These descriptors are able to char-
acterise the most important features of molecular structure:
molecular size, binding and branching. The computation of
TIs is very swift and they also have the advantage of being
true structural invariants. This means that the TIs are inde-
pendent of the spatial position of the atoms in a particular
moment. However, extensions of the TIs that give account of
the three-dimensional structure have been also devised [4–6].

TIs have been useful in the prediction of physical [7,
8], chemical and biological properties, even for groups of
compounds that show considerable structural diversity. It

can be pointed out, among the properties modelled, various
therapeutic activities as well as toxicological properties [9],
the drug-like character [10, 11], or the molecular similar-
ity/diversity [12].

Today, it is known that topostructural and topochemical
information explains the main part of the predicted properties,
and that the inclusion of three-dimensional features results in
slightly improved predictive models [13].

Logarithms of octanol-water partition coefficients (logP)
have been exhaustively used to model toxicological proper-
ties. The main reason that moves us to not using it is that
logP is a physical empirical descriptor while we attempted to
describe toxicological properties only with graph-theoretical
structural parameters, which would be capable to give the
information contained in logP.

In the QSAR field, mathematical models often are pre-
sented as a lineal equation of certain descriptors selected in a
particular way with a good adjustment for the experimental
data within the series. In this work only linear models will
be discussed. These models usually come accompanied by
a test of validation of leave-one-out (L-1-O) type in which
the value of the property for each molecule is evaluated by
an equation obtained with the whole rest of the population,
in which the selected variables remain fixed. However, when
applying the equations to molecules that do not appear in the
series of training, the results of prediction of the property
are usually very poor. In part, this is due to the particular
procedure which has been followed in order to perform the
cross-validation. The methodology explored here is called
the Internal Tests Sets (ITS) protocol and, as it will be seen,
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constitutes a more severe L-1-O or Leave-many-out proce-
dure. Our experience reveals to us that this method also allows
the automatic identification of outliers.

The aim of the present research was to model the true
prediction of chronic LOAELs for a heterogeneous group of
chemicals by using TIs as molecular descriptors. This study
continues from a previous article [14] which has analyzed a
compiled database of 234 compounds from different sources
[15] in order to assess its homogeneity. This study has con-
cluded that data were not homogeneous, and that only those
from the U.S. Environmental Protection Agency (EPA) re-
ports could be well modelled with graph theoretical descrip-
tors by multilinear regression (MLR) and linear discriminant
analysis (LDA). In contrast, data estimated from specific
procedures from the National Toxicology Program (NTP)
database introduced noise and did not render good models
either alone, or in combination with the EPA data. In spite of
this, this database has been used in a LOAEL prediction study
with five submodels for acyclics, alicyclics, single benzenes,
multiple benzenes and heteroaromatics; and constitutes part
of the training set in which is based the LOAEL module of
program TOPKAT [16].

Materials and methods

The EPA database of rat chronic LOAELs consisted of 87
compounds. Some of these chemicals are sodium salts. Since
these substances are dissociated in water, only the corre-
sponding anion was considered as toxic agent in the cal-
culations. LOAEL data were originally expressed in units of
milligrams of chemical per kilograms of body weight per day
(mg/(Kg·day)). These values were converted to their corre-
sponding μmol/Kg in order to compare the respective corre-
lations. Regressions were performed with log(LOAEL). The
descriptors used are listed in Table 1. They were calculated
with the DESCRI [17] and Molconn-Z [18] programs.

Standard statistical methods have been traditionally used
to obtain statistically sound models. The statistical program
package BMDP New System 2.0/Dynamic Release 7.0 was
used for these calculations in this work [19]. Variable selec-
tion was performed by means of the Furnival-Wilson algo-
rithm in MLR and variable sets with the minimal Mallows
Cp were selected as best equations, while stepwise proce-
dure was used with LDA [20]. Two tests were performed to
test the robustness of the models: randomness and valida-
tion in an external set. The first one consists of scrambling
the dependent variable value among the molecules. This is
particularly interesting in our data set since there are some
cases in which different chemical structures show the same
experimental LOAEL value. The second is the testing of the
prediction power in a set not used in the obtaining of the
equation.

Nevertheless, the classical leave-one-out (L-1-O) MLR
fitting procedure implemented in most programs, as in

BMDP, consists of fixing a set of descriptors and a posteriori
perform the operations of successive remove/replacement of
molecules. In this way, the parameters (selected descriptors)
entering into the linear equation are maintained fixed during
the iterative process of L-1-O. Commonly, some statistical
parameters are calculated (r2, q2, F, p) in order to be opti-
mized, but this calculation is repeated every time a new set of
descriptors is being considered. From the algorithmic point of
view, in this classical procedure the external loop is attached
to the parameters combination selection and, then, internally,
the hide/replace-a-molecule operation (the L-1-O) is done.
Usually, the final descriptors entering in the proposed model
are the subset which optimizes one of the goal parameters
(r2, q2, F, p). Recently Livingstone and Salt [21] have jus-
tified that this procedure can generate artificial impressive
statistical parameters. This is so because the algorithms used
try to find optimal goal function values while several sets
of descriptors (some times hundreds or millions) are being
tested.

In our laboratory we implemented an alternative unsu-
pervised approach, the Internal Tests Sets (ITS) procedure.
This protocol demands much more computation time and it
consists in performing the hide- molecules operation in the
algorithmic external loop and, then, select the descriptors in
the internal or core procedure. This constitutes a true cross-
validation, as the indices entering the equation are re-selected
from scratch every time a molecule is hidden from the sys-
tem. This leads to a different model equation (having different
coefficients or even different descriptors) attached to every
molecule that is ‘left-out’. Every equation is used to make
the prediction over the removed structure. It is noticeable
that this prediction is unique. So, concerning the predictions,
the method is much more risky than the classical approach,
but it simulates a real situation: to first build a model and then
make predictions with it over a really unknown structure. ITS
calculations have been done with a build in-house program,
REGRE [22]. This program is able to deal with MLR models
or with LDA ones. Its nuclear module iteratively searches
for the best set of descriptors entering into the model. The
program does not build models in a stepwise manner, but
performs an exhaustive search of descriptors combinations.
When MLR models are being found, the r2 parameter is op-
timized. If the models are LDA functions, the selected model
is the one presenting a maximal Mahalanobis distance be-
tween two groups (active and less active in our case). This is
equivalent to maximizing the Wilks λ parameter.

Additionally, the REGRE core module can be called it-
eratively removing information from one structure at a time.
This implements the L-1-O- ITS protocol described above,
as the obtained model is used to make only a single predic-
tion. The module is called as many times as molecules are in
the database, thus generating as many models as molecules.
Under completion, all the predictions are collected and sta-
tistically analyzed. From the numerical point of view, the
statistical parameters attached to the predictions are not so
spectacular as those coming from simple fittings over entire
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Table 1. Descriptors used in this study.

Symbol Name Definition Refs.

MW Molecular weight –

R Ramification Number of single structural branches [25]

Nel Number of elements Number of different elements in the compound -

nrings Rings Number of rings –

PRk

k = 0–3

Pairs of ramifications at distance k Number of pairs of single branches at distance k in terms of

bonds

[25]

kχt

k = 0–4

t = p, c, pc

Randić-like indices of order k and

type path (p), cluster (c) and

path-cluster (pc)

kχt =
k nt∑
j=1

( ∏
i∈S j

δi

)−1/2

δi , number of bonds, σ or π , of the atom i to non-hydrogen

atoms. S j , jth sub-structure of order k and type t

[26, 27]

kχv
t
k = 0–4

t = p, c, pc

Kier-Hall indices of order k and type

path (p), cluster (c) and

path-cluster (pc)

kχv
t =

k nt∑
j=1

( ∏
i∈S j

δv
i

)−1/2

δi
v , Kier-Hall valence of the atom i. S j , jth sub-structure of

order k and type t.

[28]

Gk

k = 1–5

Topological charge indices of order k Gk =
N−1∑
i=1

N∑
j=i+1

|Mi j − M j i |δ(k, Di j )

M = AQ, product of the adjacency and inverse squared

distance matrices for the hydrogen-depleted molecular

graph. D, distance matrix. δ, Kronecker delta

[29]

Gk
v

k = 1–5

Valence topological charge indices of

order k
Gv

k =
N−1∑
i=1

N∑
j=i+1

|Mv
i j − Mv

j i |δ(k, Di j )

Mv=AvQ, product of the electronegativity-modified

adjacency and inverse squared distance matrices for the

hydrogen-depleted molecular graph. D, distance matrix.

δ, Kronecker delta

[29]

Jk and J v
k

k = 1–5

Normalized topological charge

indices of order k
Jk = Gk

N−1 J v
k = Gv

k
N−1 [29]

kDt and kCt

k = 0–4

t = p, c, pc

Connectivity differences and

quotients of order k and type path

(p), cluster (c) and path-cluster

(pc)

k Dt = kχt − kχv
t

kCt = kχt
kχv

t
[25]

ST
i Atom type electrotopological state

indices

Sum of E-state values for all the atoms of a given atom type [30]

κ2 Kappa simple index (second-order) κ2 = (A−1)(A−2)2

(2 Pi )
2

A = number of atoms; 2 Pi = number of two-path fragments

[31]

κα1 Kappa alpha index (first-order) κα1 = (A + α)(A + α − 1)2(1 Pi + α)2 α = ( rx
rCsp3

) − 1

rx = covalent radius of atom x
[31]

molecular tests (and some times selecting a few descriptors
from a big pool), but the advantage is that our results consti-
tute a reliable measure of the predictive power of the selected
kind of models (MLR or LDA) and descriptors. Addition-
ally, unstabilities among predictions can be associated with
the presence of outliers.

Results and discussion

Equations with LOAELs in molar units gave always better
correlation coefficients that in original form. This is reason-
able since molar concentrations are measures of the number
of molecules that exert the activity, but it is not possible to
establish a priori that molar units will be always better pre-
dicted than weight ones, since the main part of the molecular
descriptors show positive correlation with the molecular mass
[23]. Thus, only results with molar units are presented. The

MLR correlated property is, then, the decimal logarithm of
rat chronic LOAEL expressed in Micromoles of chemical per
kilogram of body weight per day μmol/(Kg·day)).

Standard MLR

A six variable (4χPC , GV
4 , J2, J V

5 , PR0, PR1) equation has
been presented in a previous article [14]. It was obtained with
a more reduced pool of variables. The best MLR equation ob-
tained here by standard statistical methods gave the calculated
vs. experimental LOAEL (μmol/Kg) shown in Figure 1. The
MLR equation consisted of a linear combination of 11 vari-
ables. The coefficients and statistical parameters are shown
in Table 2. The presence of the three electro-topological in-
dices (ST ( C<), ST ( N ), ST (P)) and the two kappa (κ2,
κα1) diminishes SEE 22% in relation to the six variable
equation. The set of descriptors selected showed generally
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Figure 1. Calculated vs. experimental chronic LOAEL values. Numerical values identify a training molecule. Underlined values stand for test molecules (bold

for 11 terms equation and italic for the ITS 2 terms model).

low values of intercorrelation, with an average absolute
correlation = 0.196. The strongest intercorrelation indices
were ρ(κ2, κα1) = −0.873, ρ(GV

4 , J V
5 ) = −0.718, ρ (PR0,

PR1) = 0.549 and ρ(PR0, κ2) = 0.500.

Table 2. Statistical parameters of the 11-variable equation in the

QSAR study for the training group.

Variable Coefficient SE T -Stat Contribution to r2

Intercept 3.884 0.218 17.84 –

κ2 0.295 0.080 3.66 0.0372

κα1 −0.281 0.059 −4.77 0.0631

ST ( C<) −0.363 0.108 −3.35 0.0312

ST ( N) −0.112 0.030 −3.67 0.0374

ST (P) 0.347 0.073 4.77 0.0632
4χPC −0.621 0.127 −4.90 0.0665

GV
4 0.712 0.151 4.70 0.0613

J2 −0.997 0.309 −3.22 0.0288

J V
5 −16.136 3.549 −4.55 0.0574

PR0 0.862 0.200 4.32 0.0517

PR1 0.318 0.055 5.82 0.0941

N = 86; r2 = 0.795; SEE = 0.517; r2
cv = 0.719; SEEcv = 0.564;

F(11, 74) = 26.0; p < 0.00001.

The maximum r2 obtained in ten runs of the random-
ness test was 0.14, and the minimum SEE, 0.958, that corre-
sponded to the same equation.

Table 3 shows the experimental data, the results of predic-
tion with the 11 variable equation for the training set and the
results of cross-validation prediction. This is the prediction
for a compound obtained with an equation with the same vari-
ables (as said above) whose coefficients have been adjusted
with all the rest of training compounds (L-1-O). A number of
61 out of 86 compounds (71%) show residuals lower than ±1
SEE. Only two, maleic hydrazide and acrylamide, have resid-
ual values greater than ±2 SEE. There are four compounds
with residuals greater than ±2 SEE in the crossvalidation re-
sults: maleic hydrazide, acrylamide, Bis (2-chloroisopropyl)
ether and tralomethrin. They must be considered as
outliers.

This model has given good prediction results in an exter-
nal set of compounds. For this validation, predictions were
made for 16 molecules separated prior to training. The re-
sults are shown in Table 4 (column four). The equation is able
to recognize the most toxic compounds, logLOAEL low, ex-
cept in the case of tetrachlorovinphos. This model is, then,
reasonably robust.
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Table 3. CAS registry number, name of chemicals and Log chronic

LOAEL values obtained in the QSAR study for the training group.

Chronic LOAEL

(Log) (μmol/kg)

Calc

# CAS registry Compound Exp. Calc (cv)

1 50-18-0 Cyclophosphamide 0.58 0.81 0.85

2 63-25-2 Carbaryl 1.89 2.61 2.63

3 67-45-8 Furazolidone 1.35 1.72 1.74

4 67-66-3 Chloroform 2.73 2.91 2.94

5 71-55-6 1,1,1-Trichloroethane 3.60 3.39 3.34

6 75-09-2 Dichloromethane 2.77 3.47 3.53

7 75-69-4 Fluorotrichloromethane 3.40 3.41 3.41

8 75-71-8 Dichlorodifluoromethane 3.09 3.51 3.60

9 75-99-0 Dalapon 2.29 2.09 2.05

10 79-06-1 Acrylamide 1.45 2.74 2.83

11 80-62-6 Methyl-methacrylate 3.25 2.46 2.43

12 81-07-2 Saccharin 4.07 3.14 3.04

13 84-66-2 Diethylphthalate 4.05 3.79 3.77

14 84-72-0 Ethylphthalyl-ethyl-glycolate 3.95 4.00 4.02

15 85-44-9 Phthalic-anhydride 3.70 3.30 3.26

16 87-68-3 Hexachlorobutadiene 0.88 1.14 1.20

17 87-84-3 1,2,3,4,5-Pentabromo-6-

chlorocyclohexane

0.29 0.85 1.16

18 87-86-5 Pentachlorophenol 1.57 2.12 2.25

19 92-52-4 1,1′-Biphenyl 3.21 2.91 2.90

20 93-65-2 2-(2-Methyl-4-chloro-

phenoxy) propionic acid

2.08 1.95 1.94

21 93-76-5 Trichlorophenoxy 1.59 1.90 1.93

22 94-75-7 2,4-Dichlorophenoxy 1.35 2.06 2.11

23 95-53-4 2-Toluidine 3.15 2.82 2.81

24 95-57-8 2-Chlorophenol 2.59 2.64 2.64

25 95-70-5 Toluene-2,5-diamine 3.18 2.62 2.58

26 97-63-2 Ethylmethacrylate 3.20 2.51 2.48

27 100-21-0 4-Phthalic acid 3.48 3.51 3.52

28 101-21-3 Chlorpropham 2.85 2.30 2.26

29 103-69-5 N-Ethylaniline 2.08 2.75 2.78

30 106-50-3 4-Phenylenediamine 2.54 2.66 2.67

31 107-07-3 Chloroethanol 2.76 3.50 3.56

32 107-15-3 Ethylenediamine 3.58 3.59 3.60

33 107-21-1 Ethylene-glycol 4.21 3.59 3.54

34 108-31-6 Maleic-anhydride 2.51 2.16 2.11

35 108-60-1 Bis (2-chloroisopropyl) ether 2.62 1.54 1.42

36 108-91-8 Cyclohexylamine 2.78 2.82 2.82

37 109-78-4 Ethylene cyanohydrin 1.85 2.55 2.85

38 110-80-5 2-Ethoxyethanol 3.60 3.47 3.45

39 111-90-0 Diethylene-glycol-

monoethyl-ether

3.85 3.49 3.38

40 117-81-7 Di-2-ethylhexyl phtalate 2.71 2.74 2.75

41 120-36-5 Dichloroprop 2.03 1.68 1.66

42 120-61-6 Dimethyl terephthalate 2.81 3.12 3.14

43 120-82-1 1,2,4-Trichlorobenzene 2.24 2.18 2.17

44 120-83-2 2,4-Dichlorophenol 2.26 2.24 2.24

45 121-82-4 RDX Cyclonite 0.83 1.09 1.16

(Continued)

Table 3. (Continued)

Chronic LOAEL

(Log) (μmol/kg)

Calc

# CAS registry Compound Exp. Calc (cv)

46 122-39-4 N,N-Diphenylamine 2.96 2.64 2.62

47 123-33-1 Maleic hydrazide 3.65 2.46 2.35

48 131-11-3 Dimethyl phthalate 4.31 3.50 3.43

49 139-40-2 Propazine 2.34 1.87 1.75

50 148-18-5 Sodium diethyl dithiocarbamate 2.62 2.32 2.29

51 298-00-0 O,O-Dimethyl-O-

(4-nitrophenyl)phosphorothioate

−0.02 0.26 0.32

52 330-55-2 Linuron 2.10 1.71 1.69

53 732-11-6 Phosmet 1.80 1.56 1.51

54 823-40-5 Toluene-2,6-diamine 2.11 2.64 2.67

55 886-50-0 Terbutryn 1.79 2.19 2.29

56 1031-47-6 Triamiphos −1.00 −1.09 −1.14

57 1071-83-6 Glyphosate 2.25 1.65 1.35

58 1861-32-1 Dacthal 3.18 3.06 3.02

59 1929-77-7 Vernolate 1.39 2.21 2.32

60 2921-88-2 Chlorpyrifos 0.45 0.50 0.51

61 3761-53-3 Sodium 3-OH-4-(2,4-xylylazo)-

2,7-Napthalenedisulfonate

2.36 2.42 2.44

62 6923-22-4 Monocrotophos 0.05 0.54 0.66

63 15299-99-7 Napropamide 2.57 2.62 2.63

64 19666-30-9 Oxadiazon 1.16 1.39 1.41

65 21725-46-2 Cyanazine 1.02 1.47 1.68

66 23135-22-0 Oxamyl 1.43 1.63 1.65

67 23564-05-8 Thiophanatemethyl 1.97 1.21 0.99

68 28249-77-6 Thiobencarb 1.29 1.75 1.78

69 34014-18-1 Tebuthiuron 1.64 1.88 1.90

70 40487-42-1 Pendimethalin 1.25 1.50 1.54

71 43121-43-3 Bayleton 1.93 1.63 1.60

72 51218-45-2 Metolachlor 2.72 2.58 2.56

73 51235-04-2 Hexazinone 2.30 1.94 1.81

74 52645-53-1 Permethrin 1.81 1.46 1.41

75 55285-14-8 Carbosulfan 1.82 1.45 1.40

76 55290-64-7 Dimethipin 1.68 1.92 2.05

77 59756-60-4 Fluridone 1.88 2.13 2.17

78 62476-59-9 Sodiumacifluorfen 1.84 2.00 2.02

79 64902-72-3 Chlorsulfuron 1.84 2.25 2.28

80 66841-25-6 Tralomethrin 0.65 −0.27 −0.68

81 68085-85-8 Cyhalothrin 0.52 0.97 1.20

82 68359-37-5 Baythroid 1.24 0.74 0.57

83 74223-64-6 Ally 2.82 2.84 2.84

84 76578-14-8 Assure 1.00 1.64 1.71

85 79277-27-3 Harmony R© 1.81 2.49 2.60

86 82558-50-7 Isoxaben 2.18 2.04 2.02

ITS-MLR

REGRE program has been used to obtain linear models under
the ITS protocol described above. Table 5 gives the r2 val-
ues between experimental properties and the predicted ones
obtained with each number of variables. Note that, for each
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Table 4. CAS registry number, name of chemicals and LogLOAEL values obtained in the QSAR study for the

external test group (11 variable equation and 2 variable equation).

logLOAEL (μmol/kg)

CAS Calculated Calculated

registry # Compound Experimental (11 variables) (2 variables)

87 57-74-9 Chlordane −0.92 −1.00 −2.38

88 60-57-1 Dieldrin −0.88 0.09 −2.15

89 75-35-4 1,1-Dichloroethylene 1.97 2.36 2.94

90 76-44-8 Heptachlor −0.17 −0.76 −1.96

91 78-59-1 Isophorone 3.11 2.53 2.08

92 80-05-7 Bisphenol A 2.34 1.56 1.40

93 99-55-8 2-Methyl-5-nitroaniline 1.21 2.08 2.45

94 101-61-1 4,4′-Methylenebis-(N ,N -dimethylaniline) 1.92 1.59 2.15

95 103-23-1 Di-(2-ethylhexyl)adipate 3.61 1.88 1.87

96 105-60-2 Caprolactam 3.34 2.89 2.76

97 133-06-2 Captan 1.92 2.81 2.34

98 309-00-2 Aldrin −1.10 −0.20 −2.00

99 319-84-6 α-Hexachloro-cyclohexane 0.93 1.08 1.53

100 630-20-6 1,1,1,2-Tetrachloroethane 2.73 2.43 2.18

101 959-98-8 α-Endosulfan −0.43 −1.01 −2.38

102 961-11-5 Tetrachlorovinphos 1.23 −0.54 1.37

Table 5. Maximum r2 obtained with

ITS for each number of variables.

Variables r2

1 0.362

2 0.419

3 0.378

4 0.307

number of variables, a total of 87 models were found, and
the fitting data of each came from 86 structures. The results
can be considered as good since the predictions are unbiased,
and the results obtained depend exclusively on the informa-
tion that the descriptors are able to contain in relation to the
predicted property.

The most significant result was obtained with two vari-
ables (value of p of the order of 10−10). Models with more
than 2 variables are not so useful to generalize. In this case,
the same indices are always chosen throughout all the 87
models of two variables. This indicates the robustness of the
approach. It must be remembered here that the variables are
freely chosen from the pool and, in a set of random values,
rarely the best predictions would be made with the same pair
twice. The variables chosen were PR1, always with positive
sign, and 4χPC , always with negative sign. The true predic-
tions plot with two variables is shown in Figure 2.

Comparing the ITS result with the standard one, it is note-
worthy that the two ITS-selected variables are included, with
their respective signs, within the 11 variable set. ITS equa-
tions are simplified versions of the standard equation, but al-

lowing a very different kind of statistical interpretation. Now,
we will see how ITS equations predict the studied property in
the external test set used to validate the 11 variable standard
equation. First, once unambiguously selected the two better
variables, PR1 and 4χPC , a single equation was obtained with
the entire train set. This resulted:

log LOAEL = (0.201 ± 0.060)PR1

−(0.719 ± 0.088)4χPC + 2.942 ± 0.136

N = 86 r2 = 0.461 SEE = 0.79

F(2, 83) = 35.97 p = 1.2 × 10−10

The equation explains almost 50% of the logLOAEL vari-
ance, which is a good result if we take account of the
number of data. This equation shows great significance,
p = 1.2 × 10−10, which is the parameter that determines
the chance probability to obtain the same result with random
numbers. Thus, the maximum r2 obtained in ten runs of the
randomness test was 0.02, while SEE gave 0.97 for all the
runs.

This two variable equation gave quadratic deviation =
residuals2 = 20.27, while the 11 variable equation gave 11.62
for the same value. It is not strange since the regression algo-
rithm searches the minimum possible value for this parameter
arranging the variables and coefficients with this objective,
and the variables involved, at least two of them, really afford
structural information to relate the property with the struc-
ture. But if we calculate the Pearson correlation coefficient of
the observed and predicted values, the information obtained
is different. This coefficient, for the 11 variable equation is
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Figure 2. True prediction logLOAEL values for 2 variables obtained following the L-1-O-ITS procedure.

0.844, while for the two variable one is 0.882. In fact tetra-
chlorovinphos toxicity is better predicted using the last equa-
tion. Furthermore, the sign of the predicted values is always
successfully predicted by the simplest equation, while the
complex one, with nine variables more, fails twice, for dield-
rin and for tetrachlorovinphos (see Table 4 and Figure 1).
This fact prompted us to try the true prediction ITS method
with LDA.

ITS-LDA

Using again the REGRE program, the ITS procedure has
been followed to found from 1 up to 3 indices discriminant
models. As the direct computation demands to generate an
inaccessible number of variable combinations, in order to
reach models up to 6 descriptors the parameters entering in
the model of 3 indices were kept fixed. In all the cases, the 87
models of 3 descriptors involved the same three indices: the
number of distinct elements present in the molecule (Nel ),
and the Randić-Kier-Hall 3χ p and 4χ p indices. Table 6 lists
the classification ratios achieved. The best model is the one
combining 3 descriptors. This model not only presents the
best percentage of well done classifications (77%), but also it
is a robust one because in all the calculations the three indices

mentioned above entered into the discriminant equation. Our
experience indicates that, when obtaining predictions follow-
ing the ITS procedure described here, usually a small number
of parameters must enter into the equation. The same occurred
in the above linear models. This constitutes a word of caution,
because it is very common in the literature to present mod-
els of more parameters and be taken as predictive. In fact, in
most of these cases overfitting problems are present, but the
researcher does not realize it.

The 87 predictions arising from the models of 3 descrip-
tors are depicted in Figure 3. In abscissas the experimental
property value is represented. The vertical line denotes the
mean experimental value (2.21) and sets the frontier between
toxic (left part) and less active (right part) compounds. In
ordinates, the discriminant function value is represented. A
positive value classifies the compound as being active, and
a negative value classifies it as being less toxic. According
to this, the depicted boxes delimit the correct classifications,
and the points outside them constitute the type I and type
II errors. As expected, most of the errors are found near
the classification limit (discriminant function equal to zero).
The correlation coefficient between the discriminant func-
tion value and the property one (r2 = 0.414, r = −0.644)
seems to be poor. . . but it is not taking into account that the
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Table 6. Classification table for the set of 87 molecules. The last model concerns the global fitted training model. See text for more details.

Percentage of good

classifications among

Classified as actives Classified as inactives Overall classifications the ones classified as
Descriptors

in model Success Wrong Success Wrong Success Wrong Actives Inactives

Overall

percentage of

well classified

1 22 7 37 21 59 28 75.8 63.8 67.8

2 26 10 34 17 60 27 72.2 66.7 69.0

3 33 10 34 10 67 20 76.7 77.3 77.0

4 30 9 35 13 65 22 76.9 72.9 74.7

5 26 16 28 17 54 33 61.9 62.2 62.1

6 29 13 31 14 60 27 69.0 68.9 69.0

3′ 34 9 35 9 69 18 79.1 79.5 79.3

Figure 3. Plot of the true predictions using the 87 models described in the text. In abscissas the experimental property value is represented. In ordinates, the

discriminant function value is used. The boxes delimit the correct classifications. See text for more details.

data displayed in Figure 1 comes from individual true pre-
dictions by molecule. The significance value computed from
the F statistic is p = 0.00004 [24], and this small ratio gives
the probability to obtain such arrangement when performing
predictions.

As in the MLR case, the robustness of the 87 equations
allowed us searching a unique training model involving all the
87 molecules, this model also selected the three parameters

mentioned above:

f = 0.81453 Nel + 1.285163χp − 1.352744χp − 4.71390

n = 87 (44 actives and 43 less actives), λ = 0.598, Maha-
lanobis distance between groups: 1.61

The classification ratios are listed in the last line of Table 6
(model labeled with 3′ descriptors).
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Structure-activity

The training database comprised very structurally diverse
compounds. Among others, unstable compounds can be
pointed out as cyclonite, phenols, chlorinated phenols, or
Michael acceptors. The main part of the training chemicals
was monocyclic substances (38). The following group corre-
sponded to acyclic ones (22), and the remainder were tricy-
cles. This fact could explain why, for test compounds aldrin
(tetracyclic) and dieldrin (pentacyclic), the predictions were
not good. The α-endosulfan is also an outlier because nor-
bornane structures are not represented in training set, making
the number of topological paths greater in the molecule. The
greatest residual is observed for di-(2-ethylhexyl)adipate, a
structurally simple compound with no similar representatives
in the training database. Another outlier is tralomethrin, the
greatest molecule in the set that shows extreme values for the
path and path-cluster connectivity indices and many other
descriptors. Outliers were also maleic hydrazide and acry-
lamide, powerful Michael acceptors. Tetrachlorovinphos,
that contains an enolephosphate, a unique structural fragment
in the database, cannot be predicted from the two models.

Also, PRi and connectivity indices account mainly for
the degree of molecular rigidity and polarisability. These are
descriptors that figure in the best correlations.

Conclusions

Internal Test Set method constitutes a conceptually simple
algorithm to obtain robust true predictions and to avoid model
overfitting. Nevertheless, the equations obtained seem to give
poor results, their predictive potential is balanced between
the training and the test set. By contrast, complex traditional
models often fail to provide better predictions outside the set
used to obtain them, and this behavior may be irrespective of
the attached statistical significance parameters.
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