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Abstract

IRT models are widely used, but often relies on distributional assumptions about the
latent variable. For a simple class of IRT models, the Rasch models, conditional inference
is feasible. This enables consistent estimation of item parameters without reference to the
distribution of the latent variable in the population. Traditionally, specialized software has
been needed for this, but conditional maximum likelihood estimation can be done using
standard software for fitting generalized linear models. This paper describes a SAS macro
%rasch_cml that fits polytomous Rasch models. The macro estimates item parameters using
conditional maximum likelihood (CML) estimation and person locations using MLE and
Warm’s Weighted likelihood estimation (WLE). Graphical presentations are included: plots
of item characteristic curves (ICC’s) and a graphical goodness-of-fit-test is also produced.
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1 Introduction

Item response theory (IRT) models were developed to describe probabilistic relationships between
correct responses on a set of test items and continuous latent traits [1]. In addition to educational
and psychological testing, IRT models have been also used in other areas of research, e.g. in
health status measurement and evaluation of Patient Reported Outcomes (PRO’s) like physical
functioning and psychological well-being are typical in applications of IRT models. Traditional
applications in education often use dichotomous (correct/incorrect) item scoring, but polytomous
items are common in other applications.

Formally IRT models deal with the situation where several questions (called items) are used for
ordering of a group of subjects with respect to a unidimensional latent variable. Before ordering
of subjects can be done in a meaningful way a number of requirements must be met

(i) Items should measure only one latent variable.

(ii) Items should be increase with the underlying latent variable.

(iii) Items should be sufficiently different to avoid redundance.

(iv) Items should function in the same way in any sub population.

These requirements are standard in educational tests where (i) items should deal with only one
subject (e.g. not be a mixture of math and language items), (ii) the probability of a correct
answer should increase with ability, (iii) items should not ask the same thing twice and (iv) the
difficulty of an item should depend only on the ability of the student, e.g. an item should not
have features that makes it easier for boys than for girls at the same level of ability.

Let θ denote the latent variable and let X = (Xi)i=1,...,I denote the vector of item responses.
The two first requirements can be written

(i) θ is a scalar.

(ii) θ 7→ E(Xi|θ) is increasing for all items i.

One would expect two similar items to be highly correlated, and to have a an even higher corre-
lation than the underlying latent variable accounts for and it is usual to impose the requirement
of local independence

(iii) P (X = x|θ) =
∏I

i=1 P (Xi = xi|θ) for all θ.

This requirement is related to the requirement of non-redundancy. The firth requirement can be
written

(iv) P (Xi = xi|Y, θ) = P (Xi = xi|θ) for all items i and all variables Y .

The requirements (i)- (iv) are referred to as unidimensionality, monotonicity, local independence
and absence of differential item functioning (DIF), respectively. Fitting observed data to an IRT
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model enables us to test if these requirements are met. Evaluation of model fit is crucial and
many fit statistics exist [4], but the issue of fit can also be addressed graphically.

This paper describes a SAS macro %rasch_cml that fits an IRT model, the polytomous Rasch
model [2, 3]. The SAS macro is available from

http:\\biostat.ku.dk\~kach.

it estimates item parameters, plots item characteristic curves, estimates person locations, and
produces graphical tests of fit.

2 The Polytomous Rasch Model

Consider I items, where item i has mi + 1 response categories represented by the numbers
0, . . . ,mi. Let Xi be the response to item i with realization xi. For items i = 1, ..., I the
polytomous Rasch model is given by probabilities

P (Xi = xi|θ) = exp(xiθ + ηixi
)K−1i (1)

where ηi = (ηih)h=1,...,mi is the vector of item parameters for item i, ηi0 = 0 for all i, and

Ki = Ki(θ, ηi) =

mi∑
l=0

exp(lθ + ηil)

a normalizing constant. An alternative way of parameterizing is in terms of the thresholds
βik = −(ηik − ηik−1), for i = 1, . . . , I and k = 1, . . . ,mi that are easily interpreted, since
βik is the location on the latent continuum where scale where the probability, for item i, of
choosing category k− 1 equals the probability of choosing category k. This model was originally
proposed by Andersen [5], see also [24]. Masters [23] called this models the Partial Credit
model and derived the probabilities (1) from the requirement that the conditional probabilities
P (Xi = k|Xi ∈ {k − 1, k}; θ), for k = 1, . . . ,mi fit a dichotomous Rasch model:

P (Xi = k|Xi ∈ {k − 1, k}; θ) =
exp (θ − βik)

1 + exp (θ − βik)
.

Using the assumption (iii) of local independence the vector X = (Xi)i=1,...,I with realization
x = (xi)i=1,...,I

P (X = x|θ) = exp(

I∑
i=1

(xiθ + ηixi
))K(θ)−1

= exp(rθ) exp(

I∑
i=1

ηixi
)K(θ)−1 (2)

where r =
∑I

i=1 xi and K(θ) =
∏I

i=1Ki(θ, ηi). By Neyman’s factorization theorem it is clear

from (2) that the sum of item responses R =
∑I

i=1Xi is sufficient for θ. The joint log likelihood
for a sample of v = 1, ..., N persons is given by

l(η1, . . . , ηI ; θ) =

N∑
v=1

Rvθv +

N∑
v=1

I∑
i=1

ηixvi −
N∑

v=1

logK(θv) (3)
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where θ = (θ1, . . . , θN )T . Jointly estimating all parameters from (3) does not provide consistent
estimates, since the number of parameters increase with the sample size. If our interest is
estimating the item parameters the person parameters can be interpreted as incidental or nuisance
parameters [6].

3 Conditional maximum likelihood estimation

The joint log likelihood function (3) can be written

l(η1, . . . , ηI ; θ) =

N∑
v=1

θvRv +

I∑
i=1

mi∑
h=1

Cih − logK (4)

where K =
∏N

v=1

∏I
i=1Ki(θv, ηi), rv =

∑N
i=1 xvi is the total score observed for person v =

1, . . . , N and (Cih)i=1,...,I;h=1,...,mi
defined by

Cih =

N∑
v=1

1(Xvi=h)

are the item margins. Note that from (??) it can be seen that the total score Rv is sufficient for
the person location θv and that for each i = 1, . . . , I the item margin (Cih)h=1,...,mi

is sufficient
for the item parameter ηi.

Restrictions are needed to ensure that the model (??) is identified since from (1) it is clear that
for all (θ, ηi)

P (Xvi = xvi|θ, ηi) = P (Xvi = xvi|θ∗, η∗i )

for (θ∗, η∗i ) defined by θ∗ = θ − k and

η∗ih = ηih + kh (5)

for h = 1, . . . ,mi.

To obtain consistent item parameters estimates marginal or conditional maximum likelihood
estimation is used. The marginal approach to item parameter estimation assumes that the latent
variables are sampled from a population and introduces an assumption about the distribution
of the latent variable. The sufficiency property can also be used to overcome the problem of
inconsistency of item parameter estimates. This can be done by conditioning on the sum Rv of
the entire response vector Xv = (Xv1, . . . , Xvk) yielding conditional maximum likelihood (CML)
inference. For a vector Xv = (Xv1, . . . , Xvk) from the Rasch model, the distribution of the score

Rv =
∑k

i=1Xvi is given by the probabilities

Pr(Rv = r|θ) =
∑

x∈X(r)

Pr(X = x|θ)

=
∑

x∈X(r)

exp(rθ +
∑k

i=1 ηixi
)∏k

i=1Ki(ηi, θ)
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where summation is over the set X(r) of all response vectors x = (x1, . . . , xk) with
∑k

i=1 xi = r.
The probability can be written

Pr(Rv = r|θ) =
exp(rθ)∏k

i=1Ki(ηi, θ)

∑
x∈X(r)

exp(

k∑
i=1

ηixi
).

Let the last sum be denoted by

γr = γr(η1, . . . , ηk) =
∑

x∈X(r)

exp

(
k∑

i=1

ηixi

)
.

The score is sufficient for θ and the item parameters can be estimated consistently using the
conditional distribution of the responses given the scores. The conditional distribution of the
vector Xv = (Xv1, . . . , Xvk) of item responses given the score is given by the probabilities

Pr(Xv = xv|Rv = r,Θv = θv) =
exp

(∑k
i=1 ηixvi

)
γr

.

These do not depend on the value of θv and the conditional likelihood function is the product

LC(η1, . . . , ηk) =

n∏
v=1

exp(
∑k

i=1 ηixvi
)

γrv
.

Again a linear restriction on the parameters is needed in order to ensure that the model is
identified. Maximizing this likelihood yields item parameter estimates which are conditionally
consistent. If, for each possible response vector x = (x1, . . . , xk), we let n(x) denote the number
of persons with this response vector and for each possible score r and n(r) denote the observed
number of persons with this value of the score this likelihood function can be written

LC(η1, . . . , ηk) =

∏
x exp(n(x)

∑k
i=1 ηi,xi)∏

r γr
n(r)

and, using the indicator functions (Ivih)v=1,...,n;i=1,...,k;h=1,...,m, this likelihood function can be
rewritten

LC(η1, . . . , ηk) =

∏n
v=1 exp(

∑k
i=1

∑m
h=1Xvihηih)∏

r γr

n(r)

yielding the conditional log likelihood function

lC(η1, . . . , ηk) =

k∑
i=1

m∑
h=1

X.ihηih −
km∑
r=0

nr log(γr)

where X.ih =
∑n

v=1Xvih are the sufficient statistics for the item parameters. These sufficient
statistics, called item margins, are the number of persons giving the response h to item i. The
item parameters in this model can be estimated by solving the likelihood equations that equate
the sufficient statistics (X.ih)i=1,...,k;h=1,...,m to their expected values conditional on the observed
value r = (r1, . . . , rn) of the vector R = (R1, . . . , Rn) of scores. These expected values have the
form

E(X.ih|R = r) =

n∑
v=1

Pr(Xvi = h|Rv = rv)
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and for an item i these can be written in terms of the probabilities of having a score of r− h on
the remaining items yielding

E(X.ih|R = r) = exp(ηih)

km∑
r=0

n(r)
γ
(i)
r−h
γr

.

Because these likelihood equations have the same form as those in a generalized linear model
[7, 8, 9] the item parameters can be estimated using standard software like SPSS [10] or SAS
[11].

4 Estimation of person locations

There are various ways of estimating the person locations. An important feature of the Rasch
model is that the sum score R =

∑I
i=1Xi is sufficient for θ and consequently that the likelihood

function for estimating θv is proportional to the probabilities

P (R = r|θ) =
∑

x∈X(r)

P (X = x|θ)

= exp(rθ)K(θ)−1
∑

x∈X(r)

exp(

I∑
i=1

mi∑
h=0

ηixi)

where, as before, summation is over the X(r) = {x|
∑I

i=1 xi = r} of all response vectors with
sum r. Now, define the γ-polynomials

γr = γr(η1, . . . , ηI) =
∑

x∈ArX(r)

exp

( I∑
i=1

mi∑
h=0

xihηih

)

to obtain the expression

P (R = r|θ) = exp(rθ)γrK(θ)−1. (6)

Note from this that the normalizing constant K(θ) can be written as a function of the γ’s

K(θ) =

I∏
i=1

mi∑
k=0

exp(kθ + ηik) =

R∑
r=0

exp(rθ)γr.

Calculation of the γ’s is thus essential for estimation of the person locations. A recursion formula

is described in what follows. Let γ
(i)
r denote the γ-polynomial based on the first i items. It is

then possible to calculate γ
(i+1)
t by the recursion formula

γ(i+1)
r =

∑
x

exp(ηi+1,x)γ
(i)
r−x

since a total score of r on the items 1, . . . , i + 1 must be obtained by scoring x on item i + 1
and r− x on the items 1, . . . , i. The values of x in the summation in the formula above must be
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chosen in such a way that the sum of the first items is at most
∑i

k=1mk and that item i is at

most mi implying that r can not exceed mi. That is γ
(i)
t becomes

γ(i+1)
r =

min(mi+1,r)∑
x=r−

∑i
k=1 mk

exp(ηi+1,r)γ
(i)
r−x. (7)

Person locations can be estimated using maximum likelihood estimation or Bayes modal estima-
tion. A special case of the latter is so-called weighted likelihood estimation. Since the γ’s do not
depend on θ (6) is an exponential family where the likelihood equation for estimating θ is

R =
∂

∂θ

(
log

[
R∑

r=0

exp(rθ)γr

])
= E(R|θ)

and the maximum likelihood estimator (MLE) θ̂ can be obtained by the Newton-Raphson algo-
rithm. The probabilities (6) show that the score is increasing as a function of θ. For individuals

who have obtained scores of zero or the largest possible score R =
∑I

i=1mi the probabilities (6)
attain their maximum when θ is −∞ and ∞, respectively. The Bayes modal Estimator (BME)
of θ is obtained by choosing a prior density g for the latent parameter and then maximizing the
posterior density

gx(θ) =
P (X = x|θ)g(θ)

P (X = x)
∝ P (X = x|θ)g(θ) (8)

w.r.t. θ keeping item parameters and the observations fixed. The MLE described above is a
special case corresponding to gω ≡ 1. Choosing the prior as the square root of the Fisher
information

g(θ) =
√
I(θ)

results in the weighted maximum likelihood estimator (WLE) [12]. With this prior one obtains
an estimator with minimal bias and the same asymptotic distribution as the MLE. The equation
to be solved in order to obtain the WLE is

R =
∂

∂θ

(
log

[
R∑

r=0

exp(Rθ)γr

]
− 1

2
log I(θ)

)
.

and the Newton-Raphson algorithm can be used for this.

5 Implementation in SAS

The SAS macro %rasch_cml uses PROC GENMOD to estimate item parameters, and PROC
NLMIXED to estimate person locations. It writes person locations estimated by maximum
likelihood estimation (MLE) and by weighted likelihood estimation (WLE) and their asymptotic
standard errors in a data set. Furthermore a copy of input data set with an added column
containing the maximum likelihood estimates is created.
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6 Simulation

Evaluating of model fit can be done by comparing what has been observed with simulated
data describing what could have been observed under the model. The SAS macro %rasch_cml

simulates data sets under the model. These are obtained by first simulating N person scores
locations from the empirical score distribution and then simulating item responses. Let L denote
the set of possible scores and for r ∈ L define Vr = {v|Rv = r} ⊂ {1, . . . , N}. Let Nr = ]Vr
denote the number of persons with each score. First simulate R

(S)
1 , . . . , R

(S)
N with probabilities

P (R
(S)
v = r) = Nr

N , next simulate a data matrix (X
(S)
vi ) using the probabilities

P (X
(S)
vi = · |Rv = R(S)

v ).

This procedure is repeated a number of times yielding data matrices (X
(S)
vi ), S = 1, 2, . . .

7 Graphics

Three graphical representations are made by the SAS macro %rasch_cml: item characteristic
curves (ICC’s) that display the response probabilities along the latent continuum and two item
fit plots. Let Nihr denote the number of persons with total score r giving the answer h to item
i. For for each combination (i, h) ∈ {1, . . . , I} × {0, 1, . . . ,mi} the macro plots the observed
proportion

r 7→ Nihr

Nr

as solid black dots and the expected proportions (the probabilities)

r 7→ P (Xvi = h|Rv = r)

as solid blue lines along with 95% confidence limits as dashed green lines. These plots are
illustrated in Figure 2 and are closely related to plots of the ICC’s

θv 7→ P (Xvi = h|θv),

because Rv is sufficient for θv.

The observed mean score function for item i is

θ 7→ 1

Nr

∑
v∈Vr

Xvi.

The simulated mean score function is obtained as follows by simulating item responsesX
(S)
1i , . . . , X

(S)
Ni

as described in section 6 and calculating

θ 7→ 1

N
(S)
r

∑
v∈Vr

X
(S)
vi .

where N
(S)
r = ]{v|

∑
i∈I X

(S)
vi = r}.
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8 The SAS macro

The Hospital Anxiety and Depression Scale (HADS) was designed as a brief instrument used
to assess symptoms of anxiety and depression [13] and contains 14 items often scored as two
seven-item sub scales: ’Depression’ (even numbered items) and ’Anxiety’ (odd numbered items).
The SAS macro is illustrated using data reported by Pallant and Tennant [14]. The first step is
to create a data set

data inames;
input item_name $ item_text $ max group @@;
cards;
AHADS1 anx1 3 1 AHADS3 anx3 3 2 AHADS5 anx5 3 3 AHADS7 anx7 3 4
AHADS9 anx9 3 5 AHADS11 anx11 3 6 AHADS13 anx13 3 7
;

run;

that describes the items: item name is the name of the items, item text are text strings attached
to the items, max is the maximum item score for each item, and group are integers defining groups
of items that have the same item parameters. Thus, all HADS items are scored 0, 1, 2, 3 and they
all have their own vector of item parameters. The macro is called using the statement

%rasch_cml(DATA=work.HADS, ITEM_NAMES=inames, OUT=HADSTEST);

where DATA= specifies the data set to be analyzed, ITEM NAMES= is the data set that describes
the items and OUT= specifies a prefix for all output data sets generated by the macro (the default
value is CML).

The SAS macro creates six data sets. The data set CML logl contains the maximum value of
the conditional log likelihood function. The data sets CML par and CML par ci contains item
parameter estimates, the difference between them is illustrated by the (edited) output

item beta1 beta2 beta3
AHADS1 -3.75 0.17 0.82
:
AHADS9 -0.93 1.51 2.43

from CML par and

Lower Upper
item Label cat estimate CL CL

AHADS1 eta11 1 3.75 3.15 4.35
AHADS1 eta12 2 3.58 2.95 4.21
AHADS1 eta13 3 2.76 2.12 3.39
:
AHADS9 eta71 1 0.93 0.64 1.22
AHADS9 eta72 2 -0.58 -1.01 -0.14
AHADS9 eta73 3 -3.00 -3.66 -2.35
:
AHADS1 beta11 1 -3.75 -4.35 -3.15
AHADS1 beta12 2 0.17 -0.14 0.48
AHADS1 beta13 3 0.82 0.45 1.19
:
AHADS9 beta71 1 -0.93 -1.22 -0.64
AHADS9 beta72 2 1.51 1.13 1.89
AHADS9 beta73 3 2.43 1.75 3.11

from CML par ci. Note that the threshold parameters (β’s) are the same.
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The data sets CML pp regr and CML regr are copies of the input data set with added variables
useful for latent regression [15]. The data set CML theta contains MLE and WLE estimates of
person locations and their standard errors.

Further options can be specified: ICC=YES yields a plot of the item characteristic curves for each
item. The ICC’s for HADS item 1 is shown in Figure 1. Specifying plotcat=YES creates plots

Figure 1: Item characteristic curves (ICC’s) for HADS item 1 plotted with option ICC=YES. The
curves intersect at the thresholds β11 = −3.75, β12 = 0.17, and β13 = 0.82

of observed and expected item category frequencies stratified by the total score. This yields mi

plots for item i as exemplified in Figure 2

Figure 2: Observed and expected item category frequencies stratified by the total score plotted
with option plotcat=YES.

Using the option plotmean=YES makes the macro plot item means against raw scores as solid
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black lines along with item means simulated under the model plotted as gray dashed lines. The
default number of simulations is 30, but this can be changed using the NSIMU= option. Figure 3
shows an example.

Figure 3: Item fit plot for HADS item 1 plotted with option plotmean=YES.

the plot shows the mean scores to be increasing with the total score, cf. requirement (ii), and
that the variations observed in the data are well within the range of what would be expected
under the model.

9 Discussion

Several proprietary software packages for fitting Rasch models exist, the most widely used being
RUMM [16], Conquest [17], and WINSTEPS [18]. With the increasing use of IRT and Rasch
models in new research areas where access to specialized proprietary software is limited it is
important to provide implementations in standard statistical software such as R and SAS. SAS
macros for Rasch models already exist. The macros %anaqol [19] and %irtfit [20] encompass
a wide range of IRT models. The SAS macro %anaqol computes Cronbachs coefficient alpha
[21], several useful graphical representations and estimates the parameters for any of five IRT
models (the dichotomous Rasch model [2, 3], the Birnbaum (2PL) model [22], OPLM, the partial
credit model [23], and the rating scale model [24]) using marginal maximum likelihood. The SAS
macro %irtfit produces a variety of indices for testing the fit of IRT models to dichotomous and
polytomous item response data, it does not perform estimation of item parameters, but require
that these have been estimated using other IRT model software programs. The R package eRm
[25] is a flexible tool for these analyses, as are the SAS macros %anaqol [19] and %irtfit [20].
The SAS macro %irtfit encompasses a wide range of IRT models, but does not estimate item
parameters. The SAS macro %anaqol is very useful, but some features are only available for
dichotomous items and the implemented plots of empirical and theoretical ICC’s do not show
confidence limits.

Because the macro uses the contingency table of item responses no responses must be missing,
if the estimation procedure fails to converge a warning or error message is printed. The plots
of observed and expected counts in each score group can be interpreted as empirical versions
of the item characteristic curves. However when many score groups are small, as is often the
case in applications these plots are not helpful. Therefore the macro produces a single item-
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level goodness-of-fit plot. Furthermore it extends previously implemented macros in that it the
output and features are the same for dichotomous and polytomous item response formats and
that it presents more graphics, specifically new goodness-of-fit plot where observed item means
are compared item means simulated under the model.
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