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Summary
Our goal is a strategy to minimize boarding/deboarding time.

• Wedevelop a theoreticalmodel to give a rough estimate of airplane boarding
time considering the main factors that may cause boarding delay.

• We formulate a simulation model based on cellular automata and apply it
to different sizes of aircraft. We conclude that outside-in is optimal among
current boarding strategies in both minimizing boarding time (23–27 min)
and simplicity to operate. Our simulation results agree well with theoretical
estimates.

• We design a luggage distribution control strategy that assigns row numbers
to passengers according to the amount of luggage that they carry onto the
plane. Our simulation results show that the strategy can save about 3 min.

• We build a �exible deboarding simulation model and fashion a new inside-
out deboarding strategy.

• A 95% con�dence interval for boarding time under our strategy has a half-
width of 1 min.

We also do sensitivity analyses of the occupancy of the plane and of pas-
sengers taking the wrong seats, which show that our model is robust.
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Introduction
Airline boarding anddeboardinghas been studied extensively in operations

research literature. U.S. domestic carriers lose $220 million per year in revenue
for take-off delays [Funk 2003].

We examine strategies for boarding and deboarding planes with varying
numbers of passengers, trying to minimize the boarding and deboarding time.

Literature Review
Marelli et al. [1998] designed a computer program called PEDS (Passen-

ger Enplaning/Deplaning Simulation) that used a probabilistic discrete-event
simulation to simulate boarding methods. PEDS predicted that it would take
22 min to board a Boeing 747-200. However, the paper did not lay out the
boarding procedure.

Van Landeghem [2000] stated that the fastest boarding strategy is individu-
ally boarding by seat and row number, and the second fastest is a back-to-front
“alternate half-row” boarding system, which was cited to take 15.8 min. He
also proposed strategies with small numbers of boarding groups that are both
faster and more robust against disturbances. A problem with the data is that
only �ve replicationswere done for each boarding procedure tested [Pan 2006].

Later, van den Briel et al. [2003] showed that a reverse-pyramid boarding
strategy could reduce airplane’s turn time by 3-5min compared to a traditional
back-to-front boarding approach. The boarding time depends on events called
“interferences.”

Unfortunately, all of these researchers used simulation based on small or
mid-size airplanes that do not extend to the much larger aircraft under devel-
opment today. Our approach and results can be applied in all sizes of airplanes.

Basic Assumptions
• First-class passengers board �rst. Hence, our simulation considers only
economy-class passengers.

• Passengers do not try to pass other passengers in the aisle. The aisles are
narrow, so passengers have to wait to move until there are no “obstacles” in
front of them.

• A“call-off” systemisused. Passengersboard inorderedgroups; gate agents
announce which group is to board.

• A passenger does not take the wrong seat and does not walk past the row
of the right seat. Such mistakes inevitably delay boarding.
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Reasons for Boarding Delay

Normal Delay
“Interference” is the main reason for boarding delay. Van den Briel et al.

[2003; 2005] divide boarding interferences into two types:

• Aisle interference: Since the aisle is narrow enough to allow only one pas-
senger to proceed forward, aisle interference occurswhen a passenger stows
luggage. To do this, the passenger must stand in the aisle for a moment,
thereby acting as an “obstacle” for passengers behind.

• Seat interference: This kindof interference occurwhenapassenger is stalled
by another one or two passengers sitting in the same half-row. Because of
the limited space between contiguous rows, this passenger must ask these
passenger already sitting in their seats to stand up and move into the aisle.

Abnormal Delay
Passengers take the wrong seats, or are late. These behaviors can hardly

be avoided. Because of their complexity and variety, we don’t take them into
consideration. Our main objective is to reduce seat and aisle interference.

Theoretical Estimate Model
We consider boarding time as made up of two parts:

• Free boarding time tfree, the total time if all passengers board without any
interference or delay.

• Interference time tinter, the total interference time including aisle interference
and seat interference.

So the total boarding time is

Ttota l = tfree + tinter, (1)

Free Boarding Time
We consider the passengers as a steady �ow that pours into the plane at a

rate of v�ow passengers per minute. So the free boarding time is

tfree =
n

v�ow
, (2)

where n is the number of passengers.



374 The UMAP Journal 28.3 (2007)

Interference Time
Seat Interference

Weassume that the times to get from the seat to the aisle and get back are the
same, both denoted by tS . Suppose that three passengers on the same side of a
row are assigned to the same boarding group, passengers sitting in positions A
(window), B (middle), and C (aisle). There are six equally likely kinds of seat
interferences, corresponding to the boarding orders ABC, ACB, BAC, BCA,
CAB, CBA. We calculate the interference time for each case. Take ACB as an
example: The window-seat passenger boards �rst, followed by the aisle seat
passenger; then themiddle-seat passenger needs the aisle-seat passenger to get
up andmove to the aisle, themiddle-seat passengermoves from the aisle to the
seat, and the aisle-seat passenger and sits back down again. So the interference
time is 3tS . The results are shown in Table 1.

Table 1.

Seat interference time by boarding order.

Boarding order ABC ACB BAC BCA CAB CBA
Seat interference time 0 3tS 3tS 5tS 6tS 8tS

The average seat interference time for 3 passengers in the same half-row is

t̄S =
25
6

tS .

With n passengers boarding, the total seat interference time is

tS:inter = t̄S · n

3
=
25
6

tS
n

3
. (3)

Aisle Interference
Let P1, . . . , Pn be the passengers in order in the queue, with corresponding

row numbers r1, . . . , rn. We say Pi blocks Pj if ri < rj . We use the number
of blocking times as the number of aisle interference times, that is, when we
calculate total interference times, we don’t consider the situation that two or
more blockings happen together. For example, for passengers P1, . . . , P5 in
rows 1, 4, 5, 2 and 3, P1 blocks P2, P2 blocks P3, and P4 blocks P5. But actually,
after P1 is seated, P2 and P4 can stow luggage simultaneously, and only P3 and
P5 need to wait (two intervals of interference) to stow luggage. To simplify the
calculations, we think of this as a total of three intervals of interference.

As a result, to calculate the aisle interference times, we need calculate only
the number of instances of ri < ri+1. Since the order of passengers is random,
the number i of aisle interference times is a random variable. We assume that
every permutation is equally likely, so the average aisle interference time is

I =
1
n!

∑
i(r1, . . . , rn),
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where we sum over all permutations. The permutations can be divided into
n!/2 pairs, each of which is the reverse of the other; together, each pair will
have (n − 1) instances of ri < ri+1. Hence

I =
n − 1
2

.

With tL for the average time to stow luggage, the total aisle interference time is

tA:inter =
n − 1
2

· tL. (4)

From (1)–(4), we get the total boarding time as

T =
n

v�ow
+
25
6

ts
n

3
+

n − 1
2

tL.

Data Collection

Aircraft of Different Sizes
We base our computer simulations on three types of airplane of different

sizes: Airbus A320 (small—124 seats), Airbus A300 (midsize—266 seats), Air-
bus A380 (large—555 seats).

Experimental Data
Wecould not collect the needed by experimenting or by interviewing airline

executives. Fortunately, this work has already been done by van den Briel et
al. [2003] as cited by Pan [2006]. They found the following average times:

• Get-on time (time between gate agent and gate—assuming one gate agent):
9.0 s.

• To advance one row: 0.95 s.

• Stowage: 7.1 s.

• Seat interference time: 9.7 s.

Cellular Automata Simulation Algorithm
In the cellular automata model of boarding analysis, each cell is designated

as a passenger, a barrier, a road or a seat. The model restricts individual move-
ments on the plane and computes total boarding time. Time, position, and
passenger behavior are each discrete quantities. The passenger compartment
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is speci�ed as a grid of rectangular cells, while time is incremented using a con-
venient time step. Duringone simulation time step (STS), a passenger canmove
only one cell/row, and all cells representing passengers are processed once and
in random order. The simulate iterates time steps and update passengers’ state
and position until all passengers sit down.

Call-off Function
Before passengers board the plane, they are usually divided by a gate agent

into groups, often by consecutive rows, for boarding ef�ciency. We develop
our call-off function with three steps:

1. Divide different seats into groups according to a speci�c strategy. For exam-
ple, in implementing outside-in, we put seats in one column into a group.

2. Generate a random order number in each group.

3. Queue the groups consecutively.

Enplane Simulation Function
Simulation of the Next Passenger Boarding

The get-on time has an exponential distributionwithmean that we estimate
to be 10 STS.

Individual Behavior Judgments
What do passengers do in each time step?

• Stand still when there is an obstacle.

• Move forward by one cell toward the seat when there is free space in front.

• Stow luggage. This behavior needs a counter to record its STS because it
requires more than one step.

• Seat interference when the passenger already seated must stand up and let
other passengers move in. It also needs a counter.

Simulation Results and Analysis
We simulate common boarding strategies, including random, back-to-front,

rotating-zone, outside-in, and reverse-pyramid [Finney 2006]. Back-to-front
and rotating-zone allow us to choose the number of rows per group; we try 4,
6, and 8 to see how variation affects the strategies. Similarly, reverse-pyramid
can also vary in layers, and we choose 2, 3, and 4 layers to analyze.
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Simulation Results
We simulate each boarding strategy 100 times; the results are in Table 3.

Table 3.

Simulation results for strategies.

Strategy Rows Average Seat Aisle
(or layers) interference interference

Random 24 72 52
Rows 32 72 55
Back-to-front #1 4 25 72 51
Back-to-front #2 6 25 72 52
Back-to-Front #3 8 25 73 53
Rotating #1 4 25 72 53
Rotating #2 6 25 73 54
Rotating #3 8 25 72 54
Outside-in 23 0 42
Reverse-pyramid #1 2 23 0 43
Reverse-pyramid #2 3 23 0 42
Reverse-pyramid #3 4 23 0 42

Analysis of the Simulation Results
• The more rows in a group, the shorter the boarding time. This is really
unexpected! Usually, we think that if we divide the passengers into more
groups before boarding in accordance with a boarding strategy, the passen-
gers will be better organized and board the plane more ef�ciently. But to
our surprise, our simulations run in the opposite direction. Take back-to-
front as an example. When a group contains 8 rows, the boarding time is
24.6min; butwhen there are 4 rows per group, the boarding time increases to
25.0min. With the two extremes (i.e., one rowper group vs. all the passenger
as a group), the contrast is even more obvious: 32 min vs. 24 min.

How could this happen? Through analysis of the simulation processes, we
�nd that twoormore interferences canhappenat the samemoment (Figure1)
without in�uencing the boarding process adversely. With more rows in a
group, multi-interferences increase but boarding time decreases.

• Dividing passenger groups according to their columns such as outside-in
way and reverse-pyramid way avoids seat interference and reduces aisle
interference. This is easy to understand. If we divide the groups by rows,
passengers in the same row get on the plane together, and try to stow their
luggage at the same time. However, dividing the group by columns staggers
the time when passengers stow luggage into the same overhead bin, which
lead to a reduced number of aisle interference.
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Optimal Strategy
Based on the above analysis, we draw the conclusion that dividing pas-

senger groups by columns is more ef�cient than by rows. The two optimal
strategies are outside-in (23.0 min) and reverse-pyramid (22.7 min). Although
R-P takes a little less time, outside-in is easier to operate both for gate agents and
also passengers. Considering this, we choose outside-in as our boarding strategy.

Cross-Validation between Theoretical and Simulation Models
Wecompare the results from the simulationwith the results of our analytical

mode, where we had total boarding time as

T =
n

v�ow
+
25
6

ts
n

3
+

n − 1
2

tL.

Using parameter value estimates from van den Briel et al. [2003], we have

t̄S =
25
6

tS = 9.7 s, tL = 7.1 s.

We also estimate
1

v�ow
= 4.5 s−1.

For the A320, we have n = 126, for which we calculate the total boarding
time to be 23.2 min, a value that agrees closely with our simulation time.

Mid-size Planes
We extend our simulationmodel and boarding strategies tomidsize aircraft

such as the A300; outside-in takes 24.6 min, reverse-pyramid takes 24.4 min.
The A300 has two aisles in economy class, with most (although not all)

rows in a 2–4–2 seat con�guration. Correspondingly, we adjust our simulation
algorithm. Since there are two aisles but only one boarding gate, we divide the
passengers into two lines and assume that they don’t get into the wrong aisle.

The two strategies are again comparable in average boarding time; again,
considering simplicity, we recommend outside-in.

Large Planes
We extend our simulation model and boarding strategies to large aircraft

such as the Airbus A380, with two decks and 555 seats in three classes.
Usually, the A380 opens two gates in front of the plane to let passengers

board, one of which leads directly to the upper deck (where all business seats
are located and a small portion of the economy seats) and the other goes to the
main deck (where most economy seats are located).
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Since seats in the upper deck aremore spread out, it takes less time to board
than themaindeck. Sowe consider only the boardingprocess on themaindeck,
which is similar to that of a midsize plane, with two aisles and most rows with
a 3–4–3 seat con�guration. Both outside-in and reverse-pyramid take 26.8 min.
We still recommend outside-in.

Luggage Distribution Control (LDC)

A Creative New Boarding Strategy
We offer a brand-new idea to reduce boarding time. During ticket-check

time, the passengers are assigned numbers according to how many pieces of
luggage they will take onto the plane. Although we do not completely con-
trol the order in which passengers board, we can control the distribution of
passengers with different amounts of luggage.

A passenger in the last row of the plane blocks nobody when stowing lug-
gage; a passenger in the front row blocks all other passengers behind. Let P (r)
denote the probability that a passenger in row r blocks other passengers be-
hind; P (r) is a decreasing function of r. The expected aisle interference time
that this passenger causes is

tA:I = P (r)tL,

where tl is the time to stow the luggage.. As for seat interference, it has no
direct connection with the row number. We simply de�ne the average seat
interference time as tS:I . So the total expected interference time is

Ttotal:I =
n∑

r=1

(tA:I + tS:I) =
n∑

r=1

P (r)tL + TS:I ,

where TS:I =
∑n

r=1 tS:I is a constant.
A passenger with more luggage increases the total. To reduce the effect on

interference time, we want to put this passenger as far back as possible.

Simulation Results of LDC
Through simulation,we compareoutside-in and reverse-pyramid strategies

with our LDC strategy. With our LDC strategy, boarding times for all sizes of
aircraft can be reduced by 2–3 min. That is because we send passengers with
much luggage to thebackof theplane,which reduces thenumberof interference
times.
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How to Implement LDC?
Before passengers board, they exchange their ticket for a boarding card

with their seat number. Our strategy is to assign seat numbers according to
the amount of carry-on luggage. For the distribution of number of pieces of
luggage, we use 60% have one piece, 30% have two pieces, and 10% have three.

We divide the seats from back to front in these proportions. We assign to
passengers a seat in the group according to number of pieces of luggage; if
seats in that group are exhausted, we still follow our basic principle: the more
luggage a passenger takes, the farther back the seat.

Orderly Deboarding

Deboarding Strategies
Most airlines conduct deboarding without any organization. As a result,

passengers in the front rows can easily get off �rst, stalling those behind, much
like an inverse back-to-front procedure. This process is still faster than board-
ing. However, if we could adopt a strategy like outside-in, that is, let aisle
passengers all get their luggage and get off the plane, then the middle passen-
gers, and �nallywindowpassengers, we could fully use the aisle spacewithout
interference, leading to higher ef�ciency.

We put forward the deboarding strategies reversed from boarding strate-
gies: random, front-to-back, inside-out, and V (the strategy derived from the
reverse-pyramid boarding strategy).

Deboarding Simulation Model
Wedevelopa simulationmodel to comparedeboarding strategies. Differing

from the boarding process, deboarding has its own characteristics, as follows:

• All passengers start in different positions (“their own seat”) and go to the
same destination (“outside”).

• There is no seat interference, since in most cases passengers in the same row
will leave from aisle seat to window seat.

• In the boarding simulation model, passengers enter the plane one by one,
forming a queue. During deboarding, the passengers are a crowd and ev-
eryone tries to get out of the plane �rst.

Rush to One Goal: Object Position
During deboarding, passengers occupy the aisle. We cannot move the pas-

sengers according to a certain order, as in the boarding process, but have to
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consider the con�ict that one position is wanted by several passengers. There-
fore, we de�ne the concept of object position, the position that a passengerwants
to get into in the next time step. Our simulation program allows passengers to
move forward by one cell in one time step; it can �nd out passengers’ object po-
sitions before moving them, determine which passengers want to move to the
same object position, determine which passengers cannot move because of ob-
stacles, and then con�rmwhich passengers canmove forward andwhichmust
stay still. If an object position is wanted by several passengers, we randomly
choose one to move and the others have to wait.

Applicability
Our deboarding strategies are to divide passengers into several groups, and

then let the groups deboard in order. We de�ne a PAD (Passengers Allowed to
Deboard) set, a set of passengers allowed to deboard together.

Simulation Results and Analysis for Small Planes
We simulate each proposed deboarding strategy 100 times. Inside-out took

9.9 min, V 10.25, random 12.6, and front-to-back 14.0.
Compared with random and front-to-back, inside-out is better because it

makes full use of the whole aisle, while the other two strategies only partly
use the aisle. The main reason that we think the V-strategy is no better is that
it needs to have more groups and it doesn’t make full use of the aisle at the
beginning and end of deboarding.

Is there any better strategy? Can inside-out be improved? During deboard-
ing, passengers in the plane can still get their luggage as long as the aisle near
their seats is empty. But during boarding, passengers who haven’t boarded
can do nothing but wait. Considering this, we �nd that there is no need to
let the next group of passengers wait to deboard until the previous group is
completely off the plane. Wemodify ourmodel by changing it towhen propor-
tion α of the previous group still remains on board, we allow the next group to
start to deboard—our advanced inside-out strategy. We �nd that α = 15% to 20%
yields best results, a deboarding time of about 9.4 min instead of 9.9. There is
no need to get an exact optimal value of α, since it will be almost impossible
for the �ight crew to implement an optimal strategy exactly.

Deboarding with Luggage Distribution Control
If the airline is using our LDC boarding strategy, we already know the

distribution of luggage. In this case, our simulation program does not need to
judge if a passenger has to get luggage and how long it takes. We simulate the
inside-out strategy with different values of α under the luggage distribution
given by our LDC boarding strategy. Again, α = 15% to 20% gives best results.
The deboarding time too is reduced by 2–3 min; our LDC strategy can reduce



382 The UMAP Journal 28.3 (2007)

notonlyboarding timebut alsodeboarding time, becauseweput thepassengers
who need less time to get their luggage in the front of the plane. (The optimal
value of α is not sensitive to the distribution of luggage.)

Results for Midsize and Large Planes
When we apply the advanced inside-out strategy in midsize and large

planes:

• The optimal value of α increases to 20–30%. The reason for this is possibly
the increased number of rows in the deck.

Testing of Simulation Models
Are our simulation results reliable? We apply probability theory.
We ran each simulation model 100 times. The times are independent trials

from the same distribution. According to the Central Limit Theorem, the sam-
ple mean has approximately a normal distribution. As a result, we can make
an interval estimate [Rozanov 1969]:

T = X ± s√
n

tα/2,n−1,

where s is the sample standard deviation and n = 100. We choose 95% con�-
dence. We �nd for each boarding strategy an interval of ±1 min, meaning that
our simulation results are reliably consistent.

Sensitivity Analyses
In reality, the boarding and deboarding times are in�uenced by various

random events. Will these factors in�uence our simulation results?

• Occupancy level below 100%, that is, there will be empty seats. To show
how occupancy affects our simulation result, we resimulate the strategies
under occupancies from 20% to 90%. Result: If occupancy is more than 90%,
there are no distinguishable changes in results with variation in time step
size. If it is below 90%, the boarding time will be quite short and therefore
affect boarding strategies very little.

• Passengers (especially those �ying for the �rst time) may get into the wrong
aisle in a midsize or large plane, which has more than one aisle. So we test
strategies under a wrong-aisle possibility of 5%. Result: The boarding time
increases by an average of 3 min. That is a long time! Proper guidance from
the cabin crew is essential on midsize and large planes.
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• Our boarding strategies can be implemented on all kinds of aircraft, because
the outside-in strategy divides passengers by columns, so small variability
in seat numbers won’t affect our boarding strategy much.

Further Discussion

Passing
Our simulation models assume that passengers do not try to pass other

passengers in the aisle. But in reality, research indicates that on average, one
person in 10 does this.

Boarding Stairs
We assume a boarding bridge, but in reality a boarding stairs may be used

(e.g., on the Airbus A380). The difference is that the airport must send a bus
to take the passengers from the waiting room to the boarding stairs. Airports
want to make full use of the bus and take as many passengers as possible. As a
result, boarding in groups according to our strategy is hard to implement. But
if the number of passengers in the bus equals the number in each group, we
can still adopt our boarding strategy. When they are not equal, we adopt the
following boarding strategy: Let R be the number of rows in the deck, with
R = pm + q, where m is the half-capacity of the bus, p and q are integers, and
q < m. We implement outside-in for pm rows in front; the other passengers are
in one group and get on the plane randomly.

Disobedient Deboarders
Some passengers do not follow directions. We introduce an obedience fac-

tor β, the proportion of obedient passengers, picked at random. Disobedient
passengers get off the plane if they get the chance, regardless of whether it is
their turn. When obedient passengers are less than 40%, any strategy is useless.

Strengths and Weaknesses

Strengths
• Wedevelopa simple theoreticalmodel that gives a roughestimate of airplane
boarding time, considering the main factors that may cause boarding delay.

• We design a new boarding strategy that assigns seats according to amount
of luggage, which could save about 3 min in boarding.
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• With 95% con�dence, our simulation results �uctuate by only 1 min.

Weaknesses
• We don’t consider the weight balance of a plane. Usually, the passenger and
luggage distribution on the plane should be as uniform as possible.

• There are differences in seat con�guration between our model and some
actual planes.
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van dan Briel, Menkes H.L., J. René Villalobos, and Gary L. Hogg. 2003. The
aircraft boarding problem. Proceedings of the 12th Industrial Engineering Re-
search Conference (IERC), article number 2153. http://www.public.asu.
edu/~dbvan1/papers/IERC2003MvandenBriel.pdf .

, TimLindemann, andAnthonyV.Mulé. 2005. AmericaWestAirlines
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