
Boosted Regression Trees for ecological modeling

Jane Elith and John Leathwick

January 14, 2013

1 Introduction

This is a brief tutorial to accompany a set of functions that we have written
to facilitate fitting BRT (boosted regression tree) models in R . This tutorial is
a modified version of the tutorial accompaniying Elith, Leathwick and Hastie’s
article in Journal of Animal Ecology. It has been adjusted to match the imple-
mentation of these functions in the ’dismo’ package. The gbm* functions in the
dismo package extend functions in the ’gbm’ package by Greg Ridgeway. The
goal of our functions is to make the functions in the ’gbm’ package easier to
apply to ecological data, and to enhance interpretation.

The tutorial is aimed at helping you to learn the mechanics of how to use
the functions and to develop a BRT model in R . It does not explain what a
BRT model is - for that, see the references at the end of the tutorial, and the
documentation of the gbm package. For an example application with similar
data as in this tutorial, see Elith et al., 2008.

The gbm functions in ’dismo’ are as follows:
1. gbm.step - Fits a gbm model to one or more response variables, using

cross-validation to estimate the optimal number of trees. This requires use of
the utility functions roc, calibration and calc.deviance.

2. gbm.fixed, gbm.holdout - Alternative functions for fitting gbm models,
implementing options provided in the gbm package.

3. gbm.simplify - Code to perform backwards elimination of variables, to
drop those that give no evidence of improving predictive performance.

4. gbm.plot - Plots the partial dependence of the response on one or more
predictors.

5. gbm.plot.fits - Plots the fitted values from a gbm object returned by any of
the model fitting options. This can give a more reliable guide to the shape of the
fitted surface than can be obtained from the individual functions, particularly
when predictor variables are correlated and/or samples are unevenly distributed
in environmental space.

6. gbm.interactions - Tests whether interactions have been detected and
modelled, and reports the relative strength of these. Results can be visualised
with gbm.perspec

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357522998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Example data

Two sets of presence/absence data for Anguilla australis (Angaus) are avail-
able. One for model training (building) and one for model testing (evaluation).
In the example below we load the training data. Presence (1) and absence (0)
is recorded in column 2. The environmental variables are in columns 3 to 14.
This is the same data as used in Elith, Leathwick and Hastie (2008).

> library(dismo)

> data(Anguilla_train)

> head(Anguilla_train)

Site Angaus SegSumT SegTSeas SegLowFlow DSDist DSMaxSlope

1 1 0 16.0 -0.10 1.036 50.20 0.57

2 2 1 18.7 1.51 1.003 132.53 1.15

3 3 0 18.3 0.37 1.001 107.44 0.57

4 4 0 16.7 -3.80 1.000 166.82 1.72

5 5 1 17.2 0.33 1.005 3.95 1.15

6 6 0 15.1 1.83 1.015 11.17 1.72

USAvgT USRainDays USSlope USNative DSDam Method LocSed

1 0.09 2.470 9.8 0.81 0 electric 4.8

2 0.20 1.153 8.3 0.34 0 electric 2.0

3 0.49 0.847 0.4 0.00 0 spo 1.0

4 0.90 0.210 0.4 0.22 1 electric 4.0

5 -1.20 1.980 21.9 0.96 0 electric 4.7

6 -0.20 3.300 25.7 1.00 0 electric 4.5

3 Fitting a model

To fit a gbm model, you need to decide what settings to use the article
associated with this tutorial gives you information on what to use as rules of
thumb. These data have 1000 sites, comprising 202 presence records for the
short-finned eel (the command sum(model.data$Angaus)will give you the total
number of presences). As a first guess you could decide: 1. There are enough
data to model interactions of reasonable complexity 2. A lr of about 0.01 could
be a reasonable starting point.

To below example shows how to use our function that steps forward and
identifies the optimal number of trees (nt).

> angaus.tc5.lr01 <- gbm.step(data=Anguilla_train, gbm.x = 3:13, gbm.y = 2,

+ family = "bernoulli", tree.complexity = 5,

+ learning.rate = 0.01, bag.fraction = 0.5)

GBM STEP - version 2.9

Performing cross-validation optimisation of a boosted regression tree model

2

for Angaus with dataframe Anguilla_train and using a family of bernoulli

Using 1000 observations and 11 predictors

creating 10 initial models of 50 trees

folds are stratified by prevalence

total mean deviance = 1.0063

tolerance is fixed at 0.001

ntrees resid. dev.

50 0.8457

now adding trees...

100 0.7719

150 0.7347

200 0.7137

250 0.7021

300 0.6932

350 0.6894

400 0.6846

450 0.6826

500 0.6817

550 0.6813

600 0.6812

650 0.6821

700 0.6827

750 0.6839

800 0.685

850 0.6842

900 0.6836

950 0.6842

1000 0.6855

1050 0.6878

1100 0.688

1150 0.6895

1200 0.691

fitting final gbm model with a fixed number of 600 trees for Angaus

mean total deviance = 1.006

mean residual deviance = 0.463

estimated cv deviance = 0.681 ; se = 0.021

training data correlation = 0.777

cv correlation = 0.58 ; se = 0.022

training data ROC score = 0.959

cv ROC score = 0.874 ; se = 0.008

3

elapsed time - 0.28 minutes

Above we used the function gbm.step, this function is an alternative to the
cross-validation provided in the gbm package. We have passed information to
the function about data and settings. We have defined:

the dataframe containing the data = Anguilla train;
the predictor variables - gbm.x = c(3:13) - which we do using a vector con-

sisting of the indices for the data columns containing the predictors (i.e., here
the predictors are columns 3 to 13 in Anguilla train);

the response variable - gbm.y = 2 - indicating the column number for the
species (response) data;

the nature of the error structure - For example, family = ’bernoulli’ (note
the quotes);

the tree complexity - we are trying a tree complexity of 5 for a start;
the learning rate - we are trying with 0.01;
the bag fraction - our default is 0.75; here we are using 0.5;
Everything else - i.e. all the other things that we could change if we wanted

to (see the help file, and the documentation of the gbm package) - are set at
their defaults if they are not named in the call. If you want to see what else you
could change, you can type gbm.step and all the code will write itself to screen,
or type args(gbm.step) and it will open in an editor window.

Running a model such as that described above writes progress reports to
the screen, makes a graph, and returns an object containing a number of com-

4

ponents. Firstly, the things you can see: The R console will show something
like this (not identical, because remember that these models are stochastic and
therefore slightly different each time you run them, unless you set the seed or
make them deterministic by using a bag fraction of 1)

This reports a brief model summary. All these values are also retained in
the model object, so they will be permanently kept (as long as you save the R
workspace before quitting).

This model was built with the default 10-fold cross-validation. The solid
black curve is the mean, and the dotted curves about 1 standard error, for the
changes in predictive deviance (ie as measured on the excluded folds of the cross-
validation). The red line shows the minimum of the mean, and the green line
the number of trees at which that occurs. The final model that is returned in
the model object is built on the full data set, using the number of trees identified
as optimal.

The returned object is a list (see R documentation if you don’t know what
that is), and the names of the components can be seen by typing:

To pull out one component of the list, use a number (angaus.tc5.lr01[[29]])
or name (angaus.tc5.lr01$cv.statistics) - but be careful, some are as big as the
dataset, e.g. there will be 1000 fitted values. Find this by typing

length(angaus.tc5.lr01$fitted)

The way we organise our functions is to return exactly what Ridgeway’s
function in the gbm package returned, plus extra things that are relevant to our
code. You will see by looking at the final parts of the gbm.step code that we
have added components 25 onwards, that is, from gbm.call on. See the gbm
documentation for what his parts comprise. Ours are:

gbm.call - A list containing the details of the original call to gbm.step
fitted - The fitted values from the final tree, on the response scale
fitted.vars - The variance of the fitted values, on the response scale
residuals - The residuals for the fitted values, on the response scale
contributions - The relative importance of the variables, produced from the

gbm summary function
self.statistics - The relevant set of evaluation statistics, calculated on the

fitted values - i.e. this is only interesting in so far as it demonstrates ”evaluation”
(i.e. fit) on the training data. It should NOT be reported as the model predictive
performance.

cv.statistics These are the most appropriate evaluation statistics. We cal-
culate each statistic within each fold (at the identified optimal number of trees
that is calculated on the mean change in predictive deviance over all folds), then
present here the mean and standard error of those fold-based statistics.

weights - the weights used in fitting the model (by default, ”1” for each
observation - i.e. equal weights).

trees.fitted - A record of the number of trees fitted at each step in the stage-
wise fitting; only relevant for later calculations

training.loss.values - The stagewise changes in deviance on the training data
cv.values - the mean of the CV estimates of predictive deviance, calculated

at each step in the stagewise process - this and the next are used in the plot

5

shown above
cv.loss.ses - standard errors in CV estimates of predictive deviance at each

step in the stagewise process
cv.loss.matrix - the matrix of values from which cv.values were calculated -

as many rows as folds in the CV
cv.roc.matrix - as above, but the values in it are area under the curve esti-

mated on the excluded data, instead of deviance in the cv.loss.matrix.
You can look at variable importance with the summary function

> names(angaus.tc5.lr01)

[1] "initF" "fit"

[3] "train.error" "valid.error"

[5] "oobag.improve" "trees"

[7] "c.splits" "bag.fraction"

[9] "distribution" "interaction.depth"

[11] "n.minobsinnode" "n.trees"

[13] "nTrain" "response.name"

[15] "shrinkage" "train.fraction"

[17] "var.levels" "var.monotone"

[19] "var.names" "var.type"

[21] "verbose" "data"

[23] "Terms" "cv.folds"

[25] "gbm.call" "fitted"

[27] "fitted.vars" "residuals"

[29] "contributions" "self.statistics"

[31] "cv.statistics" "weights"

[33] "trees.fitted" "training.loss.values"

[35] "cv.values" "cv.loss.ses"

[37] "cv.loss.matrix" "cv.roc.matrix"

> summary(angaus.tc5.lr01)

var rel.inf

1 SegSumT 23.68567536

2 DSDist 12.40800003

3 USNative 11.48098929

4 Method 10.74245636

5 DSMaxSlope 8.49702227

6 USSlope 7.83477149

7 USRainDays 7.81812069

8 USAvgT 6.96694589

9 SegTSeas 6.39908327

10 SegLowFlow 4.13692361

11 DSDam 0.03001173

6

4 Choosing the settings

The above was a first guess at settings, using rules of thumb discussed in
Elith et al. (2008). It made a model with only 650 trees, so our next step would
be to reduce the lr. For example, try lr = 0.005, to aim for over 1000 trees:

> angaus.tc5.lr005 <- gbm.step(data=Anguilla_train, gbm.x = 3:13, gbm.y = 2,

+ family = "bernoulli", tree.complexity = 5,

+ learning.rate = 0.005, bag.fraction = 0.5)

GBM STEP - version 2.9

Performing cross-validation optimisation of a boosted regression tree model

for Angaus with dataframe Anguilla_train and using a family of bernoulli

Using 1000 observations and 11 predictors

creating 10 initial models of 50 trees

folds are stratified by prevalence

total mean deviance = 1.0063

tolerance is fixed at 0.001

ntrees resid. dev.

50 0.9104

7

now adding trees...

100 0.8476

150 0.8053

200 0.7751

250 0.7543

300 0.7395

350 0.7264

400 0.7179

450 0.712

500 0.7063

550 0.7028

600 0.6993

650 0.6954

700 0.6929

750 0.691

800 0.6889

850 0.6888

900 0.6881

950 0.6877

1000 0.6871

1050 0.6859

1100 0.6853

1150 0.6853

1200 0.6851

1250 0.6846

1300 0.685

1350 0.6846

1400 0.6845

1450 0.6846

1500 0.6848

1550 0.6842

1600 0.6834

1650 0.6841

1700 0.6852

1750 0.6853

1800 0.6855

1850 0.6861

fitting final gbm model with a fixed number of 1600 trees for Angaus

mean total deviance = 1.006

mean residual deviance = 0.414

estimated cv deviance = 0.683 ; se = 0.026

training data correlation = 0.813

cv correlation = 0.58 ; se = 0.022

8

training data ROC score = 0.97

cv ROC score = 0.873 ; se = 0.012

elapsed time - 0.44 minutes

To more broadly explore whether other settings perform better, and assum-
ing that these are the only data available, you could either split the data into
a training and testing set or use the cross-validation results. You could sys-
tematically alter tc, lr and the bag fraction and compare the results. See the
later section on prediction to find out how to predict to independent data and
calculate relevant statistics.

5 Alternative ways to fit models

The step function above is slower than just fitting one model and finding
a minimum. If this is a problem, you could use our gbm.holdout code - this
combines from the gbm package in ways we find useful. We tend to prefer
gbm.step, especially when modelling many species, because it automatically
finds the optimal number of trees. Alternatively, the gbm.fixed code allows you
to fit a model of a set number of trees; this can be used, as in Elith et al. (2008),
to predict to new data (see later section).

9

6 Simplifying the model

For a discussion of simplification see Appendix 2 of the online supplement
to Elith et al (2008). Simplification builds many models, so it can be slow. For
example, the code below took a few minutes to run on a modern laptop. In it we
assess the value in simplifying the model built with a lr of 0.005, but only test
dropping up to 5 variables (the ”n.drop” argument; the default is an automatic
rule so it continues until the average change in predictive deviance exceeds its
original standard error as calculated in gbm.step).

> angaus.simp <- gbm.simplify(angaus.tc5.lr005, n.drops = 5)

gbm.simplify - version 2.9

simplifying gbm.step model for Angaus with 11 predictors and 1000 observations

original deviance = 0.684(0.0299)

a fixed number of 5 drops will be tested

creating initial models...

dropping predictor: 1 2 3 4 5

now processing final dropping of variables with full data

1 - DSDam

2 - SegLowFlow

3 - SegTSeas

4 - USAvgT

5 - DSMaxSlope

10

For our run, this estimated that the optimal number of variables to drop was
1; yours could be slightly different:

You can use the number indicated by the red vertical line, or look at the
results in the angaus.simp object Now make a model with 1 predictor dropped,
by indicating to the gbm.step call the relevant number of predictor(s) from the
predictor list in the angaus.simp object - see highlights, below, in which we
indicate we want to drop 1 variable by calling the second vector of predictor
columns in the pred list, using a [[1]]:

> angaus.tc5.lr005.simp <- gbm.step(Anguilla_train,

+ gbm.x=angaus.simp$pred.list[[1]], gbm.y=2,

+ tree.complexity=5, learning.rate=0.005)

GBM STEP - version 2.9

Performing cross-validation optimisation of a boosted regression tree model

for Angaus with dataframe Anguilla_train and using a family of bernoulli

Using 1000 observations and 10 predictors

creating 10 initial models of 50 trees

folds are stratified by prevalence

total mean deviance = 1.0063

tolerance is fixed at 0.001

11

ntrees resid. dev.

50 0.9097

now adding trees...

100 0.8504

150 0.8085

200 0.7796

250 0.7568

300 0.7397

350 0.7279

400 0.7182

450 0.7107

500 0.705

550 0.7007

600 0.6967

650 0.6941

700 0.6923

750 0.69

800 0.6884

850 0.6873

900 0.6865

950 0.6861

1000 0.6856

1050 0.6857

1100 0.6853

1150 0.685

1200 0.6849

1250 0.6849

1300 0.6851

1350 0.6852

1400 0.6852

1450 0.6856

1500 0.6863

1550 0.6867

1600 0.6872

1650 0.6869

1700 0.6866

fitting final gbm model with a fixed number of 1200 trees for Angaus

mean total deviance = 1.006

mean residual deviance = 0.458

estimated cv deviance = 0.685 ; se = 0.022

training data correlation = 0.786

cv correlation = 0.575 ; se = 0.02

12

training data ROC score = 0.962

cv ROC score = 0.867 ; se = 0.013

elapsed time - 0.37 minutes

This has now made a new model (angaus.tc5.lr005.simp) with the same list
components as described earlier. We could continue to use it, but given that we
don’t particularly want a more simple model (our view is that, in a dataset of
this size, included variables that contribute little are acceptable), we won’t use
it further.

7 Plotting the functions and fitted values from
the model

The fitted functions from a BRT model created from any of our functions
can be plotted using gbm.plot. If you want to plot all variables on one sheet
first set up a graphics device with the right set-up - here we will make one with
3 rows and 4 columns:

> gbm.plot(angaus.tc5.lr005, n.plots=11, write.title = FALSE)

13

Additional arguments to this function allow for making a smoothed repre-
sentation of the plot, allowing different vertical scales for each variable, omitting
(and formatting) the rugs, and plotting a single variable.

Depending on the distribution of observations within the environmental
space, fitted functions can give a misleading indication about the distribution
of the fitted values in relation to each predictor. The function gbm.plot.fits has
been provided to plot the fitted values in relation to each of the predictors used
in the model.

> gbm.plot.fits(angaus.tc5.lr005)

14

This has options that allow for the plotting of all fitted values or of fitted
values only for positive observations, or the plotting of fitted values in factor
type graphs that are much quicker to print. Values above each graph indicate
the weighted mean of fitted values in relation to each non-factor predictor.

8 Interrogate and plot the interactions

This code assesses the extent to which pairwise interactions exist in the
data. find.int <- gbm.interactions(angaus.tc5.lr005). The returned object, here
named test.int, is a list. The first 2 components summarise the results, first
as a ranked list of the 5 most important pairwise interactions, and the second
tabulating all pairwise interactions. The variable index numbers in $rank.list
can be used for plotting.

> find.int <- gbm.interactions(angaus.tc5.lr005)

gbm.interactions - version 2.9

Cross tabulating interactions for gbm model with 11 predictors

1 2 3 4 5 6 7 8 9 10

> find.int$interactions

SegSumT SegTSeas SegLowFlow DSDist DSMaxSlope USAvgT

SegSumT 0 3.45 0.20 9.46 0.71 6.70

15

SegTSeas 0 0.00 0.44 4.82 0.84 0.19

SegLowFlow 0 0.00 0.00 0.23 0.23 0.12

DSDist 0 0.00 0.00 0.00 0.03 0.04

DSMaxSlope 0 0.00 0.00 0.00 0.00 0.29

USAvgT 0 0.00 0.00 0.00 0.00 0.00

USRainDays 0 0.00 0.00 0.00 0.00 0.00

USSlope 0 0.00 0.00 0.00 0.00 0.00

USNative 0 0.00 0.00 0.00 0.00 0.00

DSDam 0 0.00 0.00 0.00 0.00 0.00

Method 0 0.00 0.00 0.00 0.00 0.00

USRainDays USSlope USNative DSDam Method

SegSumT 27.42 6.16 4.93 0.02 10.58

SegTSeas 0.46 0.21 0.17 0.00 0.87

SegLowFlow 0.18 0.83 0.49 0.00 0.19

DSDist 2.36 1.02 0.38 0.00 1.89

DSMaxSlope 0.33 0.47 3.78 0.00 0.40

USAvgT 0.40 0.05 2.38 0.00 0.64

USRainDays 0.00 0.25 1.67 0.01 3.86

USSlope 0.00 0.00 0.66 0.00 0.97

USNative 0.00 0.00 0.00 0.00 0.88

DSDam 0.00 0.00 0.00 0.00 0.00

Method 0.00 0.00 0.00 0.00 0.00

> find.int$rank.list

var1.index var1.names var2.index var2.names int.size

1 7 USRainDays 1 SegSumT 27.42

2 11 Method 1 SegSumT 10.58

3 4 DSDist 1 SegSumT 9.46

4 6 USAvgT 1 SegSumT 6.70

5 8 USSlope 1 SegSumT 6.16

6 9 USNative 1 SegSumT 4.93

You can plot pairwise interactions like this:

> gbm.perspec(angaus.tc5.lr005, 7, 1, y.range=c(15,20), z.range=c(0,0.6))

maximum value = 0.47

16

Additional options allow specifications of label names, rotations of the 3D
graph and so on.

9 Predicting to new data

If you want to predict to a set of sites (rather than to a whole map), the
general procedure is to set up a data.frame with rows for sites and columns for
the variables that are in your model. R is case sensitive; the names need to
exactly match those in the model. Other columns such as site IDs etc can also
exist in the data.frame (and are ignored).

Our dataset for predicting to sites is in a file called Anguilla test. The
”Method” column needs to be converted to a factor, with levels matching those
in the modelling data. To make predictions to sites from the BRT model use
predict (or predict.gbm) from the gbm package The predictions are in a vector
called preds. These are evaluation sites, and have observations in column 1
(named Angaus obs). They are independent of the model building set and
were used for an evaluation with independent data. Note that the calc.deviance
function has different formulae for different distributions of data; the default is
binomial, so we didn’t specify it in the call

> data(Anguilla_test)

> preds <- predict.gbm(angaus.tc5.lr005, Anguilla_test,

17

+ n.trees=angaus.tc5.lr005$gbm.call$best.trees, type="response")

> calc.deviance(obs=Anguilla_test$Angaus_obs, pred=preds, calc.mean=TRUE)

[1] 0.7426608

> d <- cbind(Anguilla_test$Angaus_obs, preds)

> pres <- d[d[,1]==1, 2]

> abs <- d[d[,1]==0, 2]

> e <- evaluate(p=pres, a=abs)

> e

class : ModelEvaluation

n presences : 107

n absences : 393

AUC : 0.8602411

cor : 0.5245238

max TPR+TNR at : 0.103381

One useful feature of prediction in gbm is you can predict to a varying
number of trees. See the highlighted code below to how to predict to a vector
of trees. The full set of code here shows how to make one of the graphed lines
from Fig. 2 in our paper, using a model of 5000 trees developed with gbm.fixed

> angaus.5000 <- gbm.fixed(data=Anguilla_train, gbm.x=3:13, gbm.y=2,

+ learning.rate=0.005, tree.complexity=5, n.trees=5000)

[1] fitting gbm model with a fixed number of 5000 trees for Angaus

[1] total deviance = 1006.33

[1] residual deviance = 204.74

> tree.list <- seq(100, 5000, by=100)

> pred <- predict.gbm(angaus.5000, Anguilla_test, n.trees=tree.list, "response")

Note that the code above makes a matrix, with each column being the pre-
dictions from the model angaus.5000 to the number of trees specified by that
element of tree.list - for example, the predictions in column 5 are for tree.list[5]
= 500 trees. Now to calculate the deviance of all these results, and plot them:

> angaus.pred.deviance <- rep(0,50)

> for (i in 1:50) {

+ angaus.pred.deviance[i] <- calc.deviance(Anguilla_test$Angaus_obs,

+ pred[,i], calc.mean=TRUE)

+ }

> plot(tree.list, angaus.pred.deviance, ylim=c(0.7,1), xlim=c(-100,5000),

+ type='l', xlab="number of trees", ylab="predictive deviance",

+ cex.lab=1.5)

18

10 Spatial prediction

Here we show how to predict to a whole map (technically to a RasterLayer
object) using the predict version in the package ’raster’. The predictor variables
are available as a RasterBrick (multi-layered raster) in Anguilla grids.

> data(Anguilla_grids)

> plot(Anguilla_grids)

19

There is (obviously) no grid for fishing method. We create a data.frame with
a constant value (of class ’factor’) and pass that on to the predict function.

> Method=factor('electric', levels = levels(Anguilla_train$Method))

> add=data.frame(Method)

> p = predict(Anguilla_grids, angaus.tc5.lr005, const=add,

+ n.trees=angaus.tc5.lr005$gbm.call$best.trees, type="response")

> p = mask(p, raster(Anguilla_grids, 1))

> plot(p, main='Angaus - BRT prediction')

20

11 Further reading

The following includes a mix of both statistical papers and ecological appli-
cations:
Elith, J., Leathwick, J.R., and Hastie, T. (2008). Boosted regression trees - a

new technique for modelling ecological data. Journal of Animal Ecology
Friedman, J.H. (2001) Greedy function approximation: a gradient boosting ma-

chine. The Annals of Statistics, 29, 1189-1232.
Friedman, J.H. (2002) Stochastic gradient boosting. Computational Statistics

and Data Analysis, 38, 367-378.
Friedman, J.H., Hastie, T., and Tibshirani, R. (2000) Additive logistic regres-

sion: a statistical view of boosting. The Annals of Statistics, 28, 337-407.
Friedman, J.H. and Meulman, J.J. (2003) Multiple additive regression trees with

application in epidemiology. Statistics in Medicine, 22, 1365-1381.
Hastie, T., R. Tibshirani, and J. H. Friedman. 2001. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New
York.

Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T., and Taylor, P. (2006a)
Variation in demersal fish species richness in the oceans surrounding New
Zealand: an analysis using boosted regression trees. Marine Ecology
Progress Series, 321, 267-281.

21

Moisen, G.G., Freeman, E.A., Blackard, J.A., Frescino, T.S., Zimmermann,
N.E., and Edwards, T.C.. (2006) Predicting tree species presence and
basal area in Utah: a comparison of stochastic gradient boosting, gen-
eralized additive models, and tree-based methods. Ecological Modelling,
199, 176-187.

Ridgeway, G. (1999) The state of boosting. Computing Science and Statistics,
31, 172-181.

Ridgeway, G. (2006) Generalized boosted regression models. Documentation on
the R package ”gbm”, version 1.5-7. http://www.i-pensieri.com/gregr/gbm.shtml.

Schapire, R. (2003). The boosting approach to machine learning - an overview.
In MSRI Workshop on Nonlinear Estimation and Classification, 2002.
(eds D.D. Denison, M.H. Hansen, C. Holmes, B. Mallick and B. Yu),
Springer, NY.

Wintle, B. A., J. Elith, and J. Potts. 2005. Fauna habitat modelling and
mapping in an urbanising environment; A case study in the Lower Hunter
Central Coast region of NSW. Austral Ecology 30:729-748.

22

	Introduction
	Example data
	Fitting a model
	Choosing the settings
	Alternative ways to fit models
	Simplifying the model
	Plotting the functions and fitted values from the model
	Interrogate and plot the interactions
	Predicting to new data
	Spatial prediction
	Further reading

