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ABSTRACT 

We propose two improvements to the microstructural modeling in Rietveld refinement. The first 
is the model that yields the complete texture-weighted strain and stress tensors as a function of 
crystallite orientations, as well as the average values of macroscopic strain and stress tensors for 
all Laue classes. Implementation in the Rietveld refinement program can be made through the set 
of refinable parameters that allow the calculation of strain and stress values. Another topic 
discussed is the problem of determination of coherently diffracting domain size and domain-size 
distributions. We present an approach where the exact size-broadened profile is obtained by 
averaging the interference function with a lognormal size distribution of spherical crystallites. 
We show that obtained size-broadened profile can be successfully modeled by a combination of 
Gaussian and Lorentzian functions, which permits for an analytical convolution with strain and 
instrumental profiles in Rietveld programs. This model can successfully fit “super-Lorentzian” 
line profiles that originate from a large dispersion of crystallite sizes. 

INTRODUCTION 

Nowadays, Rietveld refinement is a very mature set of procedures to refine complete structural 
information about crystalline materials. Since recently, there is an effort to include the 
determination of a variety of microstructural information. Notably, the inclusion of texture-
determination methods through the generalized spherical harmonics, anisotropic line-broadening 
modeling for arbitrary crystal symmetry, and residual strain/stress determination were very 
important extensions of the traditional Rietveld method into new areas. Especially the problem of 
residual strain/stress determination has recently been the focus of new developments. Instead of 
traditional Voigt and Reuss approximations, recent efforts were directed toward representation of 
strain and stress tensors in terms of generalized spherical harmonics [1,2], that is, similar to the 
treatment of texture. Here, we present a modified approach that is based on a development of the 
texture-weighted strain tensor in a series of generalized spherical harmonics, which is in accord 
with the fact that a diffraction experiment yields the texture-weighted strain measure and is also 
used to calculate average strain and stress tensors. The approach is also extended for arbitrary 
crystalline symmetry and adopted specifically for implementation in Rietveld refinement 
programs. A more extensive description of the model can be found elsewhere [3]. 

Another topic of a great interest in Rietveld refinement is the determination of coherently 
diffracting domain size and domain-size distributions. Currently, the broadening effect of small 
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domain (crystallite) size is modeled phenomenologically by a pseudo-Voigt function [4]. Such 
models yield an average dimension of the domain size along the diffraction vector, which is only 
related to the real crystallite size. In principle, the size profile can be obtained by starting from a 
physical model for the crystallite shape and dimension distribution. Recently, Langford et al. [5] 
have considered spherical crystallites distributed according to the normal and lognormal size 
distributions. The model is satisfactory for a monodisperse or narrow distribution of crystallite 
sizes. We show that for a large dispersion of crystallite sizes, the peak breadth decreases relative 
to that given by the average dimension, the tails becomes longer and the pseudo-Voigt profile 
fails to work. Using the approximation of spherical crystallites with the lognormal distribution, 
we derive an analytical expression for the size profile, which is also valid for large dispersion of 
crystallite sizes, where the pseudo-Voigt function fails.  
 
MODELING OF RESIDUAL STRAIN AND STRESS IN RIETVELD REFINEMENT 
 
The diffraction method directly measures the interplanar spacing d along the direction of the 
diffraction vector, which must be parallel to a reciprocal lattice vector H for an (hkl) diffracting 
plane. The measured strain is then defined as an average change in the interplanar spacing from a 
reference value d0: 

)(//1/ 00 yhε=∆−=∆=−>< HHdddd ,     (1) 
where the averaging is done by the rotation for ω around H/Hh =  , which is parallel to y , the 
direction of the diffraction vector in the sample. If iε  are the strain tensor elements in the 
crystallite coordinate system (in the condensed Voigt notation), (1) can be written as follows [6]: 
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The averaging is weighted by the crystallite orientation distribution function f ),,( 201 ϕϕ Φ . Here, 
),,( 201 ϕϕ Φ  are the Euler's angles transforming the sample orthogonal coordinate system 

),,( 321 yyy  into the crystallite orthogonal coordinate system ),,( 321 xxx , as defined by Bunge [7]. 
The integration in (2) is evaluated only over values of Euler’s angles ),,( 201 ϕϕ ′Φ′′  that fulfill the 
condition yh || . They depend on values of polar and azimuthal angles of h  in ),,( 321 xxx , 
denoted as ( )β,Φ , of y  in ),,( 321 yyy , denoted as ( )γ,Ψ , and on the rotation angle ω . In (2) the 
following abbreviation was used: ( ) ( )213132
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( ) )cos,sinsin,sin(cos,, 321 ΦΦΦ= ββAAA  are the direction cosines of h  in ),,( 321 xxx . 
The quantities of interest in residual strain/stress investigations are the average strain and 

stress tensors in the sample coordinate system, ie  and is , )6,1( =i , which are defined as follows: 
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Similar to the measurable quantity )(yhε , these two tensors can be also expressed through the 
products ),,(),,(),,( 201201201 ϕϕϕϕεϕϕε ΦΦ=Φ′ fii , if we link the strain and stress tensor 
components in the crystallite and sample coordinate systems: 
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The third relationship presents Hooke’s law with iσ  the stress tensor in the crystallite coordinate 
system, ijC  are the monocrystal elastic stiffness moduli and the elements of the matrix P  are 
sums of products of two Euler's matrix elements. These matrices were given explicitly in [6]. 
 
Following the procedure used by Bunge [7] for texture, we develop the texture-weighted strain 
tensor elements ),,( 201 ϕϕε Φ′i into the generalized spherical harmonics: 
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Then (2) becomes: 
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The coefficients mn
il

mn
il

mn
il

mn
il δγβα ,,,  obtained from mn

ilc  by linear transformations can be directly 
refined in the Rietveld program to yield ),,( 201 ϕϕε Φ′i  and the average strain and stress tensors. 
The number of refined coefficients required to achieve the desired precision will depend on the 
crystal and sample symmetries, as well on the magnitude and gradient of strain and texture. For 
the calculation of both average elastic strain and stress tensors, ie  and is , only the coefficients 

mn
il

mn
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mn
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mn
il δγβα ,,,  with 0=l  and 2=l  are needed because of orthogonality of the generalized 

spherical harmonics. 
 
For triclinic symmetry and a given value of l , the total number of the coefficients 

mn
il

mn
il

mn
il

mn
il δγβα ,,,  in (11) and (12) is 2)12(6 +l , where l  takes only even values because of the 

Friedel’s law. For higher crystal and sample symmetries, the number of coefficients is reduced. 
To find the selection rules we applied the invariance condition to the measured strain )(yhε , 
for both sample and crystal symmetries. The complete selection rules for all Laue classes were 
given in [3].  
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CRYSTALLITE SIZE DISTRIBUTION AND THE DIFFRACTION-LINE PROFILE. 
 
For the isotropic case, Langford et al. [5] have considered the influence of normal and lognormal 
size distributions of spherical crystallites on diffraction line profiles. The profile then depends on 
two parameters, the average crystallite radius R and the standard deviation (dispersion) of the 
size distribution Rσ . In [5], both parameters were refined by least-squares fitting the numerically 
calculated profile to the experimental pattern. They did not consider cases with a large 
dispersion, where the Voigt approximation for the size-broadened profile fails. Here, we 
demonstrate that the so-called “super-Lorentzian” line profiles may originate from size 
distributions with large dispersions; they can be successfully fitted with a monomodal lognormal 
distribution of spherical crystallites. 
 
We consider the diffraction line profile for a single crystallite normalized to unit area in the 
reciprocal space, )(sP , in the ensemble of randomly oriented crystallites of identical shape and 
volume V. When the crystallites are not of identical size, the observed line profile is averaged 
over this size distribution: 

VsVPsP /)()( =          (13) 
Here, ds /1/sin2 −= λθ , where θ2  is the scattering angle, λ  is the wavelength and d  is the 
interplanar distance. For the particular case of spherical crystallites of radius R  and radius 
distribution function )(Rf , we have: 
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and (13) becomes: 
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where nµ  is the th−n  distribution moment. Taking 0=s  in (15) one obtains the integral 
breadth of the diffraction peak in reciprocal space and furthermore, the volume-weighted 
apparent crystallite dimension (domain size) DV: 
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For the lognormal distribution 
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where the parameter c  is defined as 22 / Rc Rσ= , n -th moment and volume-weighted domain 
size can be evaluated as follows: 
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After substitutions, we obtain for (15): 
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Eq. (21b) cannot be evaluated analytically. However, the fact that the size profile expressed in 
the reduced variable Rsx π2=  depends only on the parameter c  suggests that an approximation 
of )(xΦ  as combination of simple analytical functions (such as Gauss and Lorentz) can be 
found. This would greatly simplify introduction in the Rietveld-refinement programs. Therefore, 
the function )(xΦ  has been calculated numerically at equal steps in x  in the range 2101 −>Φ≥  
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by a Gauss-Hermite quadrature with 16 nodes for 53 values of c  in the interval [0,6]. These 
exact profiles were least-squares fitted by linear combinations of Gauss and Lorentz functions. 
The following combination was found to be a good approximation for any c  in the interval [0,6]: 
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Here, ai and ηi (i = 1,2,3) denote integral breadths and mixing parameters (0 ≤ ηi ≤ 1), 
respectively. The 3a  was constrained during the fit to conserve the integral breadth of the exact 
profile: 
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The parameters 2211 ,,, aa ηη  were fitted by empirical analytical functions: 
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As can be seen from (23), the pseudo-Voigt function is a satisfactory approximation for the size 
profile only for 4.0<c . For higher values of c , a second Lorentz function must be added. Its 
weight increases with increasing c  and the weight of the Gauss component decreases. For 1~c , 
the profile is well approximated by a sum of two Lorentz functions. A third Lorentz function 
must be added for 1>c . For 6>c , even three Lorentz functions are not sufficient for a 
satisfactory fit, but it is highly unlikely to find samples with such a large dispersion of crystallite 
sizes. 
 
This model was tested on a commercially available CeO2 powder (Nanophase*). The line profiles 
were “super-Lorentzians”, that is, the profiles had longer tails that a Lorentzian limit of a Voigt 
(pseudo-Voigt) function, and therefore cannot be treated by most Rietveld-refinement programs 
(see Fig. 1a, where the fit with a Lorentzian function is shown). Fig. 1b shows the fit assuming a 
monomodal lognormal size distribution of spherical crystallites, following (22)-(23), convoluted 
with an instrumental function and a Gaussian to account for strain (estimated at 0.02 %), gives a 
very good fit to the observed “super-Lorentzian” line profiles. Table 1 gives refined values of the 
size parameters cR ,  and corresponding volume-weighted domain size DV, as obtained by the 
refinement of two diffraction patterns with 11 CeO2 diffraction lines. The large value of c 
indicates a large dispersion of crystallite sizes, where a Voigt (pseudo-Voigt) approximation for 
a size-broadened line profile fails (compare with (22) and (23)). Although the fit with a single 
profile is very good, the “super-Lorentzian” line profiles can be alternatively explained by a 

                                                           
* Commercial brand names are given for identification purposes only. NIST does not endorse or recommend this 
particular product. 
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multimodal size distribution. Therefore, additional information, preferably by an unrelated 
method such as TEM, is necessary to give an unequivocal determination of the size distribution, 
although this is not easy to achieve by any experimental method in case of a broad distribution 
with large percentage of small crystallites, such as this sample. 
 
 
Table 1. The refined parameters of the lognormal size distribution, cR , , and the corresponding 
volume-weighted domain size DV. 
 

R  (nm) c  VD  (nm) 
1.68(2) 2.820(2) 141(1) 

 
 
 

 
Figure 1. Fit of “super-Lorentzian” line profiles of a commercial CeO2 powder: (a) Size 
broadened profile approximated with a Lorentz function; (b) Size-broadened profile 
approximated with a lognormal size distribution of spherical crystallites, according to (22)-(23). 
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