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Résumé. 2014 Le modèle d’Ising en champ aléatoire (RFIM) est étudié du point de vue de la complexité
algorithmique. On montre que le problème d’optimisation de la recherche d’un état de base du
modèle ferromagnétique est polynomial (P) en toutes dimensions. Un nouvel algorithme de rigidité
pour l’étude de la morphologie des états de base est aussi donné. Par opposition, le problème associé
au modèle antiferromagnétique est démontré être NP-complet. L’absence d’une dépendance explicite
de la complexité du RFIM avec la dimensionnalité contraste avec les résultats connus pour le modèle
de frustration des verres de spins. Nos résultats montrent en particulier l’absence d’une correspon-
dance simple entre les propriétés : NP-complet et existence d’une transition de phase a Tc fini dans
les modèles de mécanique statistique avec des interactions en compétition.

Abstract. 2014 The random field Ising model (RFIM) is investigated from the complexity point of view.
We prove that finding a ground state of the ferromagnetic RFIM is a polynomial (P) optimization
problem in any dimension d. A new rigidity algorithm for the search of the ground state morphology
is also given. In contrast, the problem associated to the antiferromagnetic RFIM is shown to be an
NP-complete optimization problem. The absence of any sensivity to d contrasts sharply with the
known results previously obtained for the frustration model of spin glasses. Our results show, in
particular, the absence of a simple one to one correspondence between finite Tc phase transition and
NP-completeness properties in statistical mechanics models with competing interactions.

Tome 46 N^ 5 1 er MARS 1985

LE JOURNAL DE PHYSIQUE - LETTRES
J. Physique Lett. 46 (1985) L-173 - L-180 ler MARS 1985,

Classification

Physics Abstracts
05.50

1. - Recent studies [1-3] of spin-glass models suggest the possibility of some connections between
the computational complexity of the problem of finding a ground state and the existence of a
finite 7~ phase transition in a given model (e.g. ± J Ising models). More precisely, it has been
proved [3, 4] that the spin-glass problem defined as an optimization problem (i.e. find the ground
states) is NP-complete in dimensions larger than 2. Though it is polynomial [1, 2] in 2D, it becomes
NP-complete for two coupled planes [3] (i.e. at d = 2 + e). Accordingly, it is tempting to link
NP-completeness [5] with the occurrence of a sharp phase transition at finite temperature Tc
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in the thermodynamic (large size) limit. Indeed, according to current wisdom [6, 7], it is generally
believed that there is a sharp spin-glass transition for d = 3 and above, and none in d = 2 which
would agree with the preceding suggestion. It does seem first that NP-completeness is generally
associated with some sort of ergodicity breaking, leading to non trivial configuration space
landscapes (valley structure, large number of metastable states, ...). The purpose of this Letter
is to show that such a direct connection between finite 7’c and NP-completeness is incomplete
and a more refined classification of these NP-complete problems is in order. More precisely,
we shall show that the random field Ising models (RFIM) provide a simple example where
algorithmic complexity and finite Tc phase transition can be compared and understood in simple
terms.

In section 2, we show that the optimization problem associated with the ferromagnetic RFIM
is a polynomial (P) problem in any dimension and can be solved using a polynomial-time flow
algorithm. As a byproduct of this result, a new rigidity algorithm, outlined in section 3, is given
for the search of ground state morphology. In section 4, the optimization problem associated
with the antiferromagnetic RFIM is shown to be, in general, an NP-complete problem in sharp
contrast with the ferromagnetic case. The extension of our results to the q-state Potts model is
outlined and proposed to shed a new light on the connection between NP-completeness and
finite Tc transition in random systems with competing interactions. In our conclusion we indicate
some new directions for the search of such a connection.

2. Ferromagnetic RFIM.

Let us consider the random field Ising model, defined by the following Hamiltonian

where { (Ji } denote Ising spins (oB = ± 1) located at the vertices of a given lattice and { J ij }
are the interaction constants. The first sum runs over all bonds (ij) of the considered lattice
whereas the second runs over all nodes (i). The random magnetic fields { ht } are taken according
to a given probability distribution p({ hi }). For a given set of random fields, the search for a
ground state of the model can be formulated as the following optimization problem.
Problem PI : minimize the objective function

subject to (Ji E { - 1, 1 } for all i.
In what follows, we shall show that PI can be converted into a Min-cut problem and then can

be solved using a polynomial-time flow algorithm. In order to show this transformation some
notations and basic concepts from graph theory are of some help (for more complete discussion,
we direct the reader to classical textbooks [8]).
A graph G = (V, E) consists of a set of vertices V and a subset E c V x V of pairs of vertices

called arcs and denoted e = (i, j), i E V, j E V. An undirected arc is called an edge and is denoted
i, j }. The edge { i, j } is equivalent to the two arcs (i, j) and U, i).
For a given subset of vertices A c V, w + (A) (resp. c~’(A)} denotes the set of arcs originating

(resp. terminating) in A and terminating (resp. originating) in V - A.
A cutset is a set of arcs of the form w+(A), A c V. An (a, b)-cutset separating two given ver-

tices a and b of G is a set of arcs of the form w + (A), where a E A and b rt A. Such (a, b)-cutset
can then be « viewed » as a partition of V into A and V - A, with a E A and b E V - A.

Suppose that each arc e of G has assigned to it a non negative number C~ called capacity of e,
the capacity of a given cutset is defined by
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To the problem PI, we shall associate the following graph structure G = (V, E). To each node
of the considered lattice is associated a vertex of G. To each bond of the lattice is associated an

edge e and a capacity Ce = Je given by the ferromagnetic coupling constant. Two ghost vertices,
denoted s and t, respectively, are added to the set of vertices. The first new vertex s is connected
to all vertices where the local magnetic field hi is negative, by new edges each having a capacity
Ci hi I = - hi. Similarly, t is connected to each vertex where /~ ~ 0 by new edges of capacity
I hi hi (see Fig. 1). It is clear that any configuration of spins r can be viewed as a partition
into two disjoint subsets : D, the subset of spins down and ’11 the subset of spins up. Let us denote
S = D u { s } and (T = C)1 u { t }. This construction defines a natural (s, t)-cutset y, associated
with (T u S, and it is not difficult to show the following result.

Fig. 1. - (a) A set of 4 Ising spins with the corresponding ferromagnetic interactions Je and the local
magnetic fields hi (hi &#x3E; 0). (b) The corresponding graph is obtained by adding two ghost vertices s and t,
and the associated edge capacities.

Proposition [9] : Let E(T ) be the energy associated with the configuration rand y the cor-
responding (s, t)-cutset. Then

where E* Jij + ~ ! ~ I, a constant quantity independent of r.
(ij) i

According to this result, problem PI reduces to the search for an (s, t)-Min-cutset (i.e. of
minimum capacity) separating the vertices s and t. This correspondence is one to one : to each
Min-cutset is associated one ground state of the RFIM and vice-versa. Furthermore, the exhibited
mapping between these two problems holds for any lattice, i.e. independently of the dimensionality
d of the considered lattice, and does not involve the particular distribution z }) of random
fields.
A classical result in combinatorial optimization [10] shows that the minimum capacity of a

(s, t)-cutset is equal to the maximum value of a flow in the considered structure (Max-flow Min-
cut theorem), where an extra arc (t, s) of capacity C,., = oo has been added. However, the Max-
flow problem is known to be a polynomial (P) problem [11], i.e. there is an algorithm giving a
Max-flow and then a Min-cut in a polynomial-bounded number of steps, for any real number
capacities.

In general, for an RFIM on a lattice consisting of Ld vertices, the number of steps increases as
L3d. Considered as a linear programming problem, the Max-flow is the dual to the Min-cut
problem. Such a program has been implemented at d = 2 and 3 (L  128 at d = 2, L  20 at
d = 3) for the investigation of the ground state structure. Further details and numerical results
will be given elsewhere [12].
The above result calls for two comments. First, the problem of finding a ground state for the

ferromagnetic RFIM is polynomial, whatever the dimensionality d of the lattice. Therefore, the
algorithmic complexity of the associated optimization problem is not related to the existence
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of a finite Tc phase transition [13] : Tc = 0 at d = 2 and Tc =1= 0 at d = 3. Second, this situation
contrasts with the :t J frustration model of spin glasses, where the algorithmic complexity of
the associated optimization problem is very sensitive to d [ 1-4]. For the sake of clarity, some of the
relevant results are summarized in table I.

Table I. - Algorithmic complexity (P : polynomial, NPC : NP-complete) of the optimization
problems associated to different spin models. Here d = 2 + e refers to two coupled planes.

3. Ground state rigidity.

In general, many spin configurations are associated to the ground state energy. In order to study
the degeneracy of the ground state we introduce the notion of rigid spins and rigid bonds. A spin
is rigid if its value ( + 1 or - 1) is the same in all ground states. It is clear that if the edge of capa-
city Ci, associated to the local field hi, belongs to all the (s, t)-Min-cutset, then the corresponding
spin 61 is in the opposite direction of its local field hi in all ground states (i.e. hi (Ji  0). Inversely,
if the associated edge does not belong to any (s, t)-Min-cutset, then h~ 6i &#x3E; 0 in all ground states.
Similarly, a lattice edge e (bond) of capacity Ce = Je is rigid if it is either satisfied or unsatisfied
in all ground states (i.e. e is associated to two solidary spins). It is clear that if e does not belong
to any (s, t)-Min-cutset, then e is satisfied in all ground states. Inversely, if e belongs to all the
(s, t)-Min-cutset then e is unsatisfied.

In a given sample : G = (V, E), { Jij } and { hi } let us denote by T c E the set of edges that
belong to all the (s, t)-Min-cutsets, A c E that of edges not belonging to any (s, t)-Min-cutset
and C = E - A u T. Using these notations a bond is rigid and always satisfied if the associated
edge e E A. This bond is rigid and never satisfied if e E T. Finally, this bond is non-rigid if e E C.
Similarly, a spin 6i is always in the same (resp. inverse) direction of the local field hi if the associated
edges e E C (resp. e E T). Therefore, the search for the morphology of the ground states reduces
to finding the sets A, T and C. This can be carried out efficiently with a post-optimality procedure
[14]. In the following we outline such a procedure. For this we use the following notation.
Problem P : Given a graph G = (V, E) and a capacity function C : E -+ R~, find an (s, t)-

Min-cutset separating s (source) and t (sink). v* will be the value of the capacity of such a cutset.
Let a E E and B be a positive real number.
Problem P(a, s): For the same graph G = (V, E) and the capacity function C’ defined by

find an (s, t)-Min-cutset separating s and t. v* (a, E) will be the value of the capacity of such a cutset.
Finally, for a given cutset K, let us denote :
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Using the previous notation, one can show, as in reference [2] :
Proposition : Given a cutset K, an edge a and 8 &#x3E; 0, we have

This leads to the following theorem :
Theorem : Let d = min { e(K) - v* }, then- 

{KIC(K) * v*}

This theorem yields an efficient algorithm for the search of rigidity [12], the corresponding
algorithm is actually polynomial as expected. Let us notice that the number L1 which appears in
the above theorem has a simple physical meaning : it is nothing else other than the energy gap
between the first excited state and the ground state energy. Note also that we can limit ourselves
to the cases where { Jij } and { hi } are rational, i.e. Jij and hi are integers and then take 8 = 1

in practice.

4. Antiferromagnetic RFIM.

Let us now consider the following Potts model [15] :

where Qi is a Potts spin variable, located at vertex i of a given lattice, which can attain q different
values ( 6~ = 1, 2, ..., q). Here Ji~ &#x3E; 0 and Hi &#x3E;, 0 have the same meaning as defined previously.
The random field variables ei favour the state (Ji = 8,, and have the same probability l/q to be
along each one of the q available states. It is clear that for q = 2, equation (2) reproduces the
RFIM discussed in the previous sections.
As for the RFI model, we use the concept of cutset in the investigation of the optimization

problems associated with equation (2). Given a graph G = (V, E) and an integer q &#x3E; 2, a q-

cutset is a partition of V into q subsets S1, S2, ..., SjU S, = V, S, n S~ = 0 for ~ ~ ~ ). A q-i )
cutset separating q given vertices S l’ S2, ..., sq is a q-cutset such that : si E Si (I ~ ~ q).
To the model defined by (2) we associate as above a graph structure, by adding q ghost vertices

Sl’ S2, ..., I Sq. Each sl (1  i  q) is connected to the vertices having a local field i, using new edges
of capacity Hi. The capacity of the lattice edges (bonds) are We = Je, as before. Following the
same line of ideas, one can show that there is one to one correspondence between the spin con-
figurations, of energy E and the q-cutsets separating sl, S2, ..., Sq of capacity 0

where
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In the limiting case q = 2 we recover the RFI model, and we have shown that the corresponding
optimization problem (i.e. min E) is polynomial. For q &#x3E; 2, the situation is more complicated
and the search for max E can be carried out using the following results. Detailed proof will be
given elsewhere [ 16].

Proposition 1 : The problem of finding a maximum q-cutset has the same algorithmic com-
plexity as the problem of finding a maximum q-cutset separating q given vertices.

Proof : Based mainly on two transformations :

a) Max q-cutset into Max q-cutset separating q given vertices : add q new vertices
{ s~ } (1 ~ i , q), use edges of zero capacities to connect them to the graph vertices and then
find a Max q-cutset separating the new vertices { si }.

b) Max q-cutset separating q given vertices into a Max q-cutset : for this we add q(q - 1)/2
new edges each of capacity 1 + L we between the vertices Si (1 ~ i  q).

eeE

Note that Proposition I holds even in the relevant case where the set V - { sl , s2, ..., s,
is partitioned into Vi with Vi = {~eVH~,~}~E} 1  i  q and for any capacities [ 16].

Proposition 2 : The problem of finding a Max 2-cutset separating two given vertices S1 and S2
is an NP-complete problem.

Proof : Using Proposition 1, we reduce the so-called MAX-CUT problem ([ND 16], p. 210,
R which is known to be NP-complete, to our problem.

Proposition 3 : The problem of the Max q-cutset (q &#x3E; 2) separating q given vertices is NP-
complete.

Proof : Using again Proposition 1, we have to find the complexity of the problem of a Max
q-cutset. The answer is given by the following transformation of the so-called « K-colourability
of a graph ~&#x3E; problem ([GT 4], p. 191 of Ref. [5]) : to each edge is assigned a capacitu + 16 If 0
denotes the value of a Max cutset, then 0 E if and only if the considered graph is colourable
with q colours.
The results of this section are summarized in table II. Two combinatorial optimization problems

are associated with the model defined by equation (2). For q &#x3E; 2 we have shown that finding the
maximum of E is equivalent to the search for a Max q-cutset and therefore is an NP-complete
problem. For q = 2 the problem of finding the minimum of E reduces to the search for a 2-cutset
separating two given vertices and then a polynomial problem. The case q &#x3E; 2 which corresponds
to finding a ground state of the q-state Potts model remains unsolved.
Note that all the previous results are general and independent of the lattice dimensionality d.

The result of Proposition 2 has a transparent physical signification. In fact, it is easy to see that
for q = 2 the maximum of E is nothing else than the ground state energy of the antiferromagnetic
RFI model (Eq. (1) with negative Ji/s). This implies simply that the optimization problem (i.e.
find a ground state) associated with the antiferromagnetic RFIM is an NP-complete problem,
and hence probably intractable [5] in the sense that no algorithm requiring a time bounded by a

Table II. - Algorithmic complexity of the problem offinding a Min- or Max-cutset separating
q given vertices.
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polynomial of the volume can exactly solve it. This result is somewhat surprising but probably
related to the fact that the magnetic field is not conjugate to the magnetization in this case, already
in the absence of disorder. This suggests that the ground states morphology is probably more
rich in the antiferromagnetic case than the ferromagnetic one. It is important to notice that in
some special cases the antiferromagnetic RFIM can lead to a polynomial problem. This is actually
the case of lattices which can be viewed as bipartite graphs, i.e. can be decomposed into two
independent sublattices. In such a case (for instance the square lattice), a simple gauge trans-
formation reduces the actual problem to that of the ferromagnetic case, even in the presence of
random fields. This particular example does not contradict our general statement holding for
general graph structure.

5. Conclusion.

We conclude with two remarks.

a) It is not difficult to find trivial examples of spin models with random interactions, where
the associated optimization problem is trivial. This is the case of random ferromagnetic inter-
actions (J~ ~ 0) : equation (1) with hi = 0 for all i. On the other hand, the presence of the frus-
tration in a planar antiferromagnetic Ising model under a uniform magnetic field (special case
of Proposition 2, see also Ref. [3]) leads to NP-completeness. Therefore, frustration and competing
interactions appear as the first ingredients for drawing the connection between statistical mecha-
nics models and the combinatorial optimization problems. The concepts of dimensionality and
symmetry (i.e. number of components of the spin variables) as well as the nature of interactions
are certainly of basic importance for the search of a possible connection between the two fields.
We believe that the valley structure (large or small number of valleys, dominant valleys, ...)
is the key of the solution. In this respect, it would be very interesting to investigate the nature
of the phase transition of the RFIM, for instance at d &#x3E; 3 : is it a spin-glass like transition (infinity
of thermodynamic equilibrium states, fluctuation from sample to sample, ...) or rather of a more
trivial character ?

b) The recent progress in solving the Travelling Salesman problem [ 17,18] tells us the impor-
tance of using statistical mechanics methods (e.g. Monte Carlo simulation) in the investigation
of NP-complete problems. We believe that, more generally, the probabilistic analysis of com-
binatorial optimization problems, as outlined in reference [19] will provide a natural framework
for a cross fertilization of statistical mechanics and combinatorial problems and this will call
for further extensions.
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