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tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic

e-mail: rachunko@inf.upol.cz, tomecek@inf.upol.cz,

Jakub Stryja
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Abstract

We investigate the singular differential equation (p(t)u′(t))′ = p(t)f(u(t))
on the half-line [0,∞), where f satisfies the local Lipschitz condition on R
and has at least two simple zeros. The function p is continuous on [0,∞),
has a positive continuous derivative on (0,∞) and p(0) = 0. We bring
additional conditions for f and p under which the equation has oscillatory
solutions with decreasing amplitudes.
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1 Introduction

We study the equation

(p(t)u′(t))′ = p(t)f(u(t)) (1)

∗Supported by the Council of Czech Government MSM 6198959214.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357522601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


on the half–line [0,∞), where

f ∈ Liploc(R), p ∈ C1(0,∞) ∩ C[0,∞), (2)

p(0) = 0, p′(t) > 0, t > 0, lim
t→∞

p′(t)
p(t)

= 0. (3)

Equation (1) is singular at t = 0 because p(0) = 0. If f in (1) fulfils moreover
assumptions

there exists L > 0 such that f(x) = 0 for x ≥ L, (4)

xf(x) < 0 for x ∈ (−∞, 0) ∪ (0, L), (5)

there exists B̄ < 0 such that
∫ L

B̄

f(z) dz = 0, (6)

then (1) generalizes equations which appear in hydrodynamics or in the nonlin-
ear field theory, [4] – [7], [9].

Definition 1 A function u ∈ C1[0,∞) which has continuous the second deriva-
tive on (0,∞) and satisfies equation (1) for all t ∈ (0,∞) is called a solution of
(1).

Consider B < 0 and the initial conditions

u(0) = B, u′(0) = 0. (7)

The initial value problem (1), (7) has been investigated e. g. in [1] – [3], [8], [10]
– [12]. In particular in [10] it was proved that for each negative B there exists
a unique solution of problem (1), (7) under the assumptions (2) – (6). Consider
such solution u and denote

usup = sup{u(t) : t ∈ [0,∞)}.

Definition 2 If usup < L (usup = L or usup > L), then u is called a damped
solution (a homoclinic solution or an escape solution) of problem (1), (7).

In [10] and [12] these three types of solutions of problem (1), (7) have been
studied and the existence of each type has been proved for sublinear or linear
asymptotic behaviour of f near −∞. In [11], f has been supposed to have a
zero L0 < 0. Here we generalize and extend the results of [10] – [12] concerning
damped solutions. We prove their existence under weaker assumptions than in
the above papers. Moreover, we bring conditions under which, each damped
solution is oscillatory, that is, it has an unbounded set of isolated zeros.

We replace assumptions (4) – (6) by the following ones:
There exist L0 < 0, L > 0, CL > 0 such that

xf(x) < 0 for x ∈ (L0, 0) ∪ (0, L), (8)

0 ≤ f(x) ≤ CL for x ≥ L (9)

(L0 = −∞ is possible).
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2 Damped solutions

Theorem 3 (Existence and uniqueness) Assume that (2), (3), (8), (9) hold and
let B ∈ (L0, 0). Then problem (1), (7) has a unique solution u and moreover
the solution u satisfies

u(t) ≥ B for t ∈ [0,∞). (10)

Proof. Step 1. Put

fB(x) =
{
f(x) for x ≥ B,
f(B) for x < B.

(11)

We will study the auxiliary differential equation

(p(t)u′(t))′ = p(t)fB(u(t)). (12)

By virtue of (2) we find the Lipschitz constant K > 0 for f on [B − 1, |B|+ 1]
and due to (2), (9) and (11), we find MB > 0 such that

|fB(x)| ≤MB for x ∈ R. (13)

Put ϕ(t) =
∫ t

0
p(s) ds/p(t) for t > 0. Having in mind (3), we see that p is

increasing and so

0 < ϕ(t) ≤ t for t > 0, lim
t→0+

ϕ(t) = 0. (14)

Consequently we can choose η > 0 such that∫ η

0

ϕ(t) dt ≤ min
{

1
2K

,
1
MB

}
. (15)

Consider the Banach space C[0, η] (with the maximum norm) and define an
operator F : C[0, η]→ C[0, η] by

(Fu)(t) = B +
∫ t

0

1
p(s)

∫ s

0

p(τ)fB(u(τ)) dτ ds.

Using (13) and (15), we have

‖Fu‖C[0,η] ≤ |B|+MB

∫ η

0

ϕ(s) ds ≤ |B|+ 1,

that is F maps the ball B(0, |B| + 1) = {u ∈ C[0, η] : ‖u‖C[0,η] ≤ |B| + 1} to
itself. Due to (11) and the choice of K, we have for u1, u2 ∈ B(0, |B|+ 1)

‖Fu1 −Fu2‖C[0,η] ≤
∫ η

0

1
p(s)

∫ s

0

p(τ)|fB(u1(τ))− fB(u2(τ))|dτ ds

≤ K‖u1 − u2‖C[0,η]

∫ η

0

ϕ(s) ds ≤ 1
2
‖u1 − u2‖C[0,η].
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Hence F is a contraction on B(0, |B| + 1) and the Banach fixed point theorem
yields a unique fixed point u ∈ B(0, |B|+ 1) of F .
Step 2. The fixed point u of Step 1 fulfils

u(0) = B and u′(t) =
1
p(t)

∫ t

0

p(s)fB(u(s)) ds, t ∈ (0, η]. (16)

Hence u satisfies equation (12) on (0, η]. Finally, (13) and (14) yield

lim
t→0+

|u′(t)| ≤MB lim
t→0+

ϕ(t) = 0.

Consequently u fulfils (7). Choose an arbitrary b > η. Then, by (14) and (16),

|u′(t)| ≤MBb, |u(t)| ≤ |B|+MBb
2, t ∈ [0, b].

Having in mind that fB ∈ Liploc(R), u can be (uniquely) extended as a function
satisfying equation (12) onto [0, b]. Since b is arbitrary, u can be extended onto
[0,∞) as a solution of equation (12). We have proved that problem (12), (7)
has a unique solution.
Step 3. According to Step 2 we have

u′′(t) +
p′(t)
p(t)

u′(t) = fB(u(t)) for t ∈ (0,∞). (17)

Multiplying (17) by u′ and integrating between 0 and t, we get

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s) ds =
∫ t

0

fB(u(s))u′(s) ds, t ∈ (0,∞). (18)

Put
FB(x) = −

∫ x

0

fB(z) dz, x ∈ R.

So, (18) has the form

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s) ds+ FB(u(t)) = FB(B), t ∈ (0,∞). (19)

Let u(t1) ∈ (L0, B) for some t1 > 0. Then (19) yields FB(u(t1)) ≤ FB(B) which
is not possible because FB is decreasing on (L0, 0) by (8) and (11). Therefore
u(t) ≥ B for t ∈ [0,∞). Consequently, due to (11), u is a solution of equation
(1).
Step 4. Assume that there exists another solution ũ of problem (1), (7). Then
we can prove similarly as in Step 3 that ũ(t) ≥ B for t ∈ [0,∞). This implies
that ũ is also a solution of problem (12), (7) and by Step 2, ũ ≡ u. We have
proved that problem (1), (7) has a unique solution. �
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Lemma 4 Let C ∈ {0, L} and let u be a solution of equation (1). Assume that
there exists a > 0 such that

u(a) = C, u′(a) = 0. (20)

Then u(t) = C for all t ∈ [0,∞).

Proof. We see that the constant function ũ ≡ C is a solution of equation (1).
Let u be a solution of equation (1) satisfying (20) and let u(t) 6= ũ(t) for some
t ∈ [0,∞). Then the regular initial problem (1), (20) has two different solutions
u and ũ, which contradicts (2). �

Remark 5 Let us put

F (x) = −
∫ x

0

f(z) dz for x ∈ R. (21)

Due to (2) and (8) we see that F is continuous on R, decreasing and positive
on (L0, 0), increasing and positive on (0, L). Therefore we can define B̄ < 0 by

B̄ = inf{B0 ∈ (L0, 0) : F (B) < F (L) for all B ∈ (B0, 0)}, (22)

(B̄ = −∞ is possible).

Theorem 6 (Existence of damped solutions) Assume that (2), (3), (8), (9)
hold. Let B̄ be given by (22) and assume that u is a solution of problem (1),
(7) with B ∈ (B̄, 0). Then u is a damped solution.

Proof. Since B ∈ (B̄, 0), we can find ε > 0 such that

F (B) ≤ F (L− ε). (23)

Assume on the contrary that u is not damped, that is

sup{u(t) : t ∈ [0,∞)} ≥ L. (24)

Then, according to Lemma 4, there exists θ ∈ (0,∞) such that

u(θ) = 0, u′(θ) > 0, u(t) ∈ [B, 0) for t ∈ [0, θ).

By (1), (3) and (8) we have (pu′)′ > 0 on (0, θ]. So, pu′ is increasing and positive
on (0, θ] and hence u′ > 0 on (0, θ]. Assumption (24) implies that there exists
b ∈ (θ,∞) such that

u(b) = L− ε, u(t) ∈ [B,L− ε) for t ∈ [0, b).

Since u fulfils (1), we have

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)) for t ∈ (0,∞). (25)

Multiplying (25) by u′ and integrating between 0 and b we get

0 <
u′2(b)

2
+
∫ b

0

p′(s)
p(s)

u′2(s) ds = F (B)− F (L− ε). (26)

This contradicts (23). �
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3 Oscillatory solutions

In this section we assume that in addition to our basic assumptions (2), (3), (8)
and (9), the following conditions are fulfilled:

lim
x→0−

f(x)
x

< 0, lim
x→0+

f(x)
x

< 0, (27)

p ∈ C2(0,∞), lim sup
t→∞

∣∣∣∣p′′(t)p′(t)

∣∣∣∣ <∞. (28)

Then the next lemmas can be proved.

Lemma 7 Let u be a solution of problem (1), (7) with B ∈ (L0, 0). Then there
exists θ > 0 such that

u(θ) = 0, u′(t) > 0 for t ∈ (0, θ]. (29)

Proof. Step 1. Assume that such θ does not exist. Then

u(t) < 0 for t ∈ [0,∞). (30)

Hence (1), (7) and (8) yield (pu′)′ > 0 and u′ > 0 on (0,∞). Therefore u is
increasing on (0,∞) and

lim
t→∞

u(t) = ` ∈ (B, 0]. (31)

Multiplying (25) by u′ and integrating between 0 and t, we get due to (21)

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s) ds = F (B)− F (u(t)), t ∈ (0,∞). (32)

Letting t→∞, we get

lim
t→∞

u′2(t)
2

= − lim
t→∞

∫ t

0

p′(s)
p(s)

u′2(s) ds+ F (B)− F (`).

Since the function
∫ t

0
p′(s)/p(s)u′2(s) ds is positive and increasing, it follows

that there exists limt→∞ u′(t) ≥ 0. If limt→∞ u′(t) > 0, then limt→∞ u(t) =∞
contrary to (31). Consequently

lim
t→∞

u′(t) = 0. (33)

Letting t→∞ in (25), we get by (3), (8) and (31),

lim
t→∞

u′′(t) = f(`) ≥ 0.

Due to (33), we conclude that f(`) = 0 and hence ` = 0. We have proved that
if θ > 0 fulfilling (29) does not exist, then

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (34)
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Step 2. We define a function

v(t) =
√
p(t)u(t), t ∈ [0,∞). (35)

By (3) and (28), we have v ∈ C2(0,∞),

v′(t) =
p′(t)u(t)
2
√
p(t)

+
√
p(t)u′(t),

v′′(t) = v(t)
[

1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

]
, t ∈ (0,∞) (36)

and

lim
t→∞

p′′(t)
p(t)

= lim
t→∞

p′′(t)
p′(t)

p′(t)
p(t)

= 0.

Due to this fact, (3), (27) and (34) there exist ω > 0 and R > 0 such that

1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

< −ω for t ≥ R. (37)

Due to (30), (35), (36) and (37), we get

v′′(t) > −ωv(t) > 0 for t ≥ R. (38)

Thus, v′ is increasing on [R,∞) and has the limit

lim
t→∞

v′(t) = V. (39)

If V > 0, then limt→∞ v(t) = ∞, which contradicts (30) and (35). If V ≤ 0,
then v′ < 0 on [R,∞) and

v(t) ≤ v(R) < 0 for t ∈ [R,∞).

In view of (38) we can see that

0 < −ωv(R) ≤ −ωv(t) < v′′(t) for t ∈ [R,∞).

We get limt→∞ v′(t) =∞ which contradicts V ≤ 0. The obtained contradictions
imply that (30) cannot occur and hence θ > 0 satisfying (29) must exist. �

Corollary 8 Let u be a solution of problem (1), (7) with B ∈ (L0, 0). Further
assume that there exist b1 > 0 and B1 ∈ (B, 0) such that

u(b1) = B1, u′(b1) = 0. (40)

Then there exists θ1 > b1 such that

u(θ1) = 0, u′(t) > 0 for t ∈ (b1, θ1]. (41)
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Proof. We can argue as in the proof of Lemma 7 working with b1 and B1

instead of 0 and B. �

Lemma 9 Let u be a solution of problem (1), (7) with B ∈ (L0, 0). Further
assume that there exist a1 > 0 and A1 ∈ (0, L) such that

u(a1) = A1, u′(a1) = 0. (42)

Then there exists δ1 > a1 such that

u(δ1) = 0, u′(t) < 0 for t ∈ (a1, δ1]. (43)

Proof. We argue similarly as in the proof of Lemma 7.
Step 1. Assume that such δ1 > a1 does not exist. Then

u(t) > 0 for t ∈ [a1,∞). (44)

By (1), (7) and (8) we deduce u′ < 0 on (a1,∞) and

lim
t→∞

u(t) = `1 ∈ [0, A1). (45)

Multiplying (25) by u′, integrating between a1 and t and using (21), we obtain

u′2(t)
2

+
∫ t

a1

p′(s)
p(s)

u′2(s) ds = F (A1)− F (u(t)), t ∈ (a1,∞),

and derive as in the proof of Lemma 7 that (34) holds.
Step 2. We define v by (35) and get (36) for t ∈ (a1,∞). As in the proof of
Lemma 7 we find ω > 0 and R > 0 satisfying (37). Due to (44), (35), (36) and
(37) we get

v′′(t) < −ωv(t) < 0 for t ≥ R. (46)

So, v′ is decreasing on [R,∞) and limt→∞ v′(t) = V . If V < 0, then limt→∞ v(t) =
−∞ which contradicts (44) and (35). If V ≥ 0, then v′ > 0 on [R,∞) and

v(t) ≥ v(R) > 0 for t ∈ [R,∞).

In view of (46) we can see that

v′′(t) < −ωv(t) ≤ −ωv(R) < 0 for t ∈ [R,∞).

We get limt→∞ v′(t) = −∞ contrary to V ≥ 0. The obtained contradictions
imply that (44) cannot occur and that δ1 > a1 satisfying (43) must exist. �

Theorem 10 Assume that (2), (3), (8), (9), (27), (28) hold. Let u be a solution
of problem (1), (7) with B ∈ (L0, 0). If u is a damped solution, then u is
oscillatory and its amplitudes are decreasing.

8



Proof. Let u be a damped solution. By (10) and Definition 2, we can find
L1 ∈ (0, L) such that

B ≤ u(t) ≤ L1 for t ∈ [0,∞). (47)

Step 1. Lemma 7 yields θ > 0 satisfying (29). Hence there exists a maximal
interval (θ, a1) such that u′ > 0 on (θ, a1). Let a1 =∞. Then, by (47), we get
u ∈ (0, L), u′ > 0 on (θ,∞) and

lim
t→∞

u(t) = `0 ∈ (0, L). (48)

By (1), (3) and (8), we have (pu′)′ < 0 on (θ,∞). So pu′ and u′ are decreasing
on (θ,∞) and, due to (48),

lim
t→∞

u′(t) = 0. (49)

Letting t→∞ in (25) and using (3), (8) and (48), we get

lim
t→∞

u′′(t) = f(`0) < 0,

which contradicts (49). Therefore a1 < ∞ and there exists A1 ∈ (0, L) such
that (42) holds. Lemma 9 yields δ1 > a1 satisfying (43). Therefore u has just
one positive local maximum A1 = u(a1) between its first zero θ and second zero
δ1.
Step 2. By (43) there exists a maximal interval (δ1, b1), where u′ < 0. Let
b1 =∞. Then, by (47), we have u ∈ [B, 0), u′ < 0 on (δ1,∞), and

lim
t→∞

u(t) = `1 ∈ [B, 0). (50)

By (1), (3) and (8), we get (pu′)′ > 0 on (δ1,∞) and so pu′ is increasing on
(δ1,∞). Since u′ < 0, we deduce that u′ is increasing on (δ1,∞) and, by (50),
we get (49). Letting t→∞ in (1) and using (3), (8) and (50), we get

lim
t→∞

u′′(t) = f(`1) > 0,

which contradicts (49). Therefore b1 < ∞ and there exists B1 ∈ [B, 0) such
that (40) holds. Corollary 8 yields θ1 > b1 satisfying (41). Therefore u has just
one negative minimum B1 = u(b1) between its second zero δ1 and third zero θ1.
Step 3. We can continue as in Step 1 and Step 2 and get the sequences
{An}∞n=1 ⊂ (0, L) and {Bn}∞n=1 ⊂ [B, 0) of local maxima and local minima of
u attained at an and bn, respectively. Now, put x1(t) = u(t), x2(t) = u′(t) and
write equation (1) as a system

x′1(t) = x2(t), x′2(t) = −p
′(t)
p(t)

x2(t) + f(x1(t)). (51)

Consider F of (21) and define a Lyapunov function V by

V (x1, x2) = F (x1) +
x2

2

2
for (x1, x2) ∈ D, (52)
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where D = (L0, L)×R. By Remark 5, we see that V (0, 0) = 0 and V (x1, x2) > 0
on D \ {(0, 0)}. By (32) and (52), we have

V (u(t), u′(t)) =
u′2(t)

2
+ F (u(t)) = F (B)−

∫ t

0

p′(s)
p(s)

u′2(s) ds

and

V̇ (t) =
dV (u(t), u′(t))

dt
= −p

′(t)
p(t)

u′2(t) ≤ 0 for t ∈ (0,∞).

Therefore
V̇ (t) < 0 for t ∈ (0,∞), t 6= an, bn, n ∈ N. (53)

By (47), (u(t), u′(t)) ∈ D for t ∈ [0,∞). We see that V (u(t), u′(t)) is positive
and decreasing (for the damped solution u) and hence

lim
t→∞

V (u(t), u′(t)) = cB ≥ 0. (54)

So, sequences {F (An)}∞n=1 and {F (Bn)}∞n=1 are decreasing,

F (An) = V (u(an), u′(an)), F (Bn) = V (u(bn), u′(bn))

for n ∈ N and
lim
n→∞

F (An) = lim
n→∞

F (Bn) = cB .

Further, due to Remark 5, the sequence {An}∞n=1 is decreasing and the sequence
{Bn}∞n=1 is increasing. Consequently

lim
n→∞

An ∈ [0, L), lim
n→∞

Bn ∈ (B, 0].

�

Remark 11 There are two cases for the number cB from the proof of Theorem
10: cB = 0 and cB > 0. Denote

lim
n→∞

An = A∞, lim
n→∞

Bn = B∞.

If cB = 0, then F (A∞) = F (B∞) = 0 and hence A∞ = B∞ = 0, that is
limt→∞ u(t) = 0.
Let cB > 0. Consider an arbitrary sequence {tn}∞n=1 such that limn→∞ tn =∞.
By (54) we have limn→∞ V (u(tn), u′(tn)) = cB . By (47) and (32), the sequence
{(u(tn), u′(tn)}∞n=1 is bounded and so there exists a subsequence

{(u(tmn
), u′(tmn

)}∞n=1

such that limn→∞(u(tmn
), u′(tmn

)) = (xB1 , x
B
2 ), where (xB1 , x

B
2 ) is a point of the

level curve

F (x1) +
x2

2

2
= cB .
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Note that

cB = 0 if and only if
∫ ∞

0

p′(s)
p(s)

u′2(s) ds = F (B),

and

cB > 0 if and only if
∫ ∞

0

p′(s)
p(s)

u′2(s) ds < F (B).

Theorem 12 (Existence of oscillatory solutions) Assume that (2), (3), (8), (9),
(27) and (28) hold. Let B̄ be given by (22) and let u be a solution of problem
(1), (7) with B ∈ (B̄, 0). Then u is an oscillatory solution with decreasing
amplitudes.

Proof. The assertion follows from Theorems 6 and 10. �

Remark 13 The assumption (9) in Theorem 12 can be omitted, because it
has no influence on the existence of oscillatory solutions. It follows from the
fact, that (9) imposes conditions on the function values of the function f for
arguments greater than L, however, the function values of oscillatory solutions
are lower than this constant L. This condition (used only in the Theorem 3)
guaranteed the existence of solution of each problem (1), (7) for each B < 0 on
the whole half–line, which simplified the investigation of the problem.
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