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application to DNA ploidy measurements
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The aim of the present study is to propose alternative auto-
matic methods to time consuming interactive sorting of ele-
ments for DNA ploidy measurements. One archival brain tu-
mour and two archival breast carcinoma were studied, cor-
responding to 7120 elements (3764 nuclei, 3356 debris and
aggregates). Three automatic classification methods were
tested to eliminate debris and aggregates from DNA ploidy
measurements (mathematical morphology (MM), multipara-
metric analysis (MA) and neural network (NN)). Perfor-
mances were evaluated by reference to interactive sorting.
The results obtained for the three methods concerning the
percentage of debris and aggregates automatically removed
reach 63, 75 and 85% for MM, MA and NN methods, re-
spectively, with false positive rates of 6, 21 and 25%. In-
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formation about DNA ploidy abnormalities were globally
preserved after automatic elimination of debris and aggre-
gates by MM and MA methods as opposed to NN method,
showing that automatic classification methods can offer al-
ternatives to tedious interactive elimination of debris and
aggregates, for DNA ploidy measurements of archival tu-
mours.
Keywords: Automatic classification, DNA ploidy, image cy-
tometry, mathematical morphology, multiparametric analy-
sis, neural network

1. Introduction

One of the main problems encountered in image
cytometry DNA ploidy measurement (ICM-DNA) of
archival tumours is the purity of samples to be anal-
ysed. The preparation of dewaxed samples requires en-
zymatic dissociation of tissue, followed by the sedi-
mentation of nuclei on slides. Although this technique
is well standardised and reproducible [17], it generates
much debris and aggregates (half of the total events on
average). It has been previously shown that these de-
bris and aggregates introduce a considerable bias on
DNA ploidy measurements and consequently, must be
removed [11]. Interactive image analysis can bypass
the problem of debris and aggregates by selecting nu-
clei of interest, but Burger et al. [12] have underlined
the bias then introduced. Moreover, this approach is
very time consuming and unable to give statistically
significant results in an acceptable delay for clinical
oncology. To collect enough information, ICM-DNA
must be automatised, especially for debris and aggre-
gate elimination.

Automatic classification methods can be divided
into two categories depending on whether they rely on
individual methods or global methods.

Individual classification methods are based on mea-
surement of parameters on objects to be sorted, de-
rived [9] or not [21,26], from mathematical morphol-
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ogy. Classification is done object per object, indi-
vidually, from binary and/or grey level images, ac-
cording to the value of parameters which characterise
each element, using supervised methods (logistic re-
gression [23], neural networks [13], multiparametric
analysis [20]) or unsupervised methods (cluster analy-
sis [16]).

Global methods do not use any individual measure-
ment of parameters, but are based on the study of
the whole image. These methods can be separated in
two categories. The first one does not require any im-
age transformation. The grey level image thresholding
which allows the global sorting of bright objects ver-
susdark ones is a good illustration. The second cate-
gory is based on global morphological transformations
of the whole image, characterised by the size and shape
of the structuring element used. The thickness depen-
dent sorting of objects, using erosion/reconstruction,
is the simplest example which can be given. With this
kind of transformation, objects remaining in the image
belong to the category of the thickest elements, while
objects which disappear belong to the category of the
thinnest objects. The result of the classification is then
included in the transformed image since the morpho-
logical transformation includes the sorting criterion.
These global transformations can be performed on bi-
nary or grey level images and the computation time is
independent of the number of objects per image.

The aim of the present study is to detail and compare
the performance of two individual and one global auto-
matic method applied to the elimination of debris and
aggregates for DNA ploidy measurements. Interactive
sorting (IS) reproducibility is also assessed.

2. Materials and methods

2.1. Biological material

The study was done on three archival tumours, one
brain tumour, (a DNA aneuploid astrocytoma grade 2
according to Berner et al. [3]) and two carcinoma of
the breast (no. 1 and no. 2, respectively DNA aneuploid
and DNA diploid). The samples were prepared accord-
ing to Van-Driel Kulker et al. [25] and DNA stained ac-
cording to Feulgen and Rossenbeck [18], as described
previously [17].

2.2. Image cytometry

The image cytometer consists of a BH2 Olympus
microscope (OSI, France), a moving stage (Galai, Is-
rael), a matrox PIP 1024 frame grabber (Matrox, Elec-
tronix systems, Ltd., Canada) and a Sony CCD camera
(Sony, France). Segmentation of objects was achieved
according to the Deriche algorithm [15]. Integrated op-
tical density computations were done at a resolution of
512×512 pixels in 8 bits (1 pixel= 0.11µm2). The
study was performed on the same set of stored images:
50 images for the brain tumour and 196 images for
each breast carcinoma.

2.3. Automatic classification methods

2.3.1. Multiparametric analysis (MA) method
Automatic identification of nuclei, debris and aggre-

gates was performed by the computation of 38 param-
eters for each segmented element [21] (11 parameters
of size and shape, 18 statistic parameters calculated
on original and edge-enhanced images and 9 texture
parameters). Sorting was performed by reference to a
knowledge base, specific of each tumour localisation,
and obtained by interactive sorting (4291 normal nu-
clei and 1535 abnormal nuclei for breast carcinoma,
168 normal nuclei and 208 abnormal nuclei for brain
tumours). Nuclei belonging to normal morphological
categories were obtained from normal tissue of the cor-
responding localisation. Nuclei of abnormal morphol-
ogy were obtained from tumours. Regardless of the lo-
calisation (brain or breast), the morphology of debris
and aggregates was not memorized.

Automatic sorting refers to the representation of
each group of objects by an ellipsoid in its own 38 pa-
rameter reference space. Each ellipsoid is rescaled to
obtain the same unity value mean squared distance. To
sort an unknown object, the Euclidean distance (Ed)
from the object to the center of each rescaled ellipsoid
is calculated. If Ed is superior or equal to two then
the object is labelled as debris, or else the object is
assigned to the closest group (shorthest Ed) [19]. La-
belling is checked with respect to each parameter vs
the calculated limits of the category (only the upper
limits of the abnormal categories are not taken into ac-
count); if the check fails, the object is assigned to the
next closest category or labelled as debris in case of
second failure. Segmented events were classified in six
categories of normal and abnormal nuclei, and one cat-
egory of debris for the brain tumour. Segmented events
were classified into 10 categories of normal and abnor-
mal nuclei, and one category of debris for breast tu-
mours [19].
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2.3.2. Neural network (NN) method
Neural network classification was performed using

the same 38 parameters and the same specific knowl-
edge bases used for MA. The system used several NN
of multilayer perceptrons type and was developed in
the laboratory in C language. Each NN is devoted to
the separation of one category from the other. Then for
n categories,n × (n − 1)/2 parallel NN are required.
Each NN has for input the 38 parameters and gives its
output to a decision module, which produces the cate-
gory of the element being used, refering to the outputs
of the other NN. Using several parallel NN instead of
a unique NN presents the advantage to automatically
adapt the complexity of each NN to the difficulty of
separating two categories. The number of categories
used was strictly the same as for MA.

2.3.3. Mathematical morphology (MM) method
The method was developed to specifically eliminate

small debris and aggregates [10]. This method is per-
formed globally on images using mathematical mor-
phology operators, without individual estimation of pa-
rameters. It is based on the use of size and intensity cri-
teria for the elimination of small debris by successive
top-hat transformations [22]. Concavity criterion based
on the computation of watershed transformation [4]
and a dodecagonal distance function leads to the elim-
ination of aggregates. The method was adjusted by ref-
erence to learning of the morphology of a wide spec-
trum of small debris (307) and aggregates (38).

2.4. Comparison of performance of automatic
methods by reference to an unique interactive
sorting and for the three tumours

Because strict and precise elimination of debris and
aggregates is required before DNA ploidy measure-
ments [11], the aim of this comparison was only to test
the ability of each method to characterise debris and
aggregates vs undamaged nuclei on the same set of ob-
jects extracted from the same set of stored images. For
each tumour, sorting of debris and aggregates was done
interactively (two categories: undamaged nuclei versus
debris and aggregates), in order to get a reference sort-
ing. A total of 7120 elements was studied for the three
tumours (3764 nuclei, 3356 debris and aggregates).

Performances of automatic methods were assessed
using the computation of sensitivity (S) and false posi-
tive rates (FP). S is defined as the percentage of debris
and aggregates correctly classified by automatic meth-
ods by reference to interactive sorting (IS). FP rate is

defined as the percentage of undamaged nuclei mis-
classified as debris and aggregates. We defined a qual-
ity factor of sorting (Qt) expressed as follows:

Qt = S× (100− FP)/100.

Its varies from 0 to 100 (optimal sorting).
It should be noted that automatic methods were ad-

justed, in order to obtain the highest value of Qt.
Performances of automatic methods were also eval-

uated regarding the restitution of DNA ploidy abnor-
malities, after automatic elimination of debris and ag-
gregates. For this purpose, DNA ploidy histograms
were calculated after IS and each automatic sort-
ing. Five indices describing DNA ploidy abnormalities
were evaluated for each histogram. Four were chosen
according to the recommendations of the consensus on
image DNA cytometry [7]: 5c exceeding rate (5cER),
2c deviation index (2cDI) (per Böcking et al. [5]),
DNA malignancy grade (DNA MG) (per Böcking and
Auffermann [6]) and distribution entropy (DE) (per
Stenkvist and Strande [24]). ICM-DNA data obtained
were also post-processed by MCycleAVR© (Phoenix
Flow Systems, San Diego, USA) for S phase fraction
estimation. As advised by Berger et al. [1,2], the S
phase model used was the zero order one [14].

In order to obtain a comprehensive comparison, val-
ues were normalised for each DNA index with respect
to reference values (set to 100) obtained after IS (when
reference values were equal to zero, values obtained
for automatic methods were not calculated).

For each automatic method and each tumour, the
percentage of error for the calculation of each DNA
index, was computed using the following formula:

error=

∣∣∣∣100×
(
n

p

)
− 100

∣∣∣∣,
wheren is the value of the DNA index obtained after
automatic sorting (before normalization) andp the ref-
erence value of the DNA index obtained after IS (be-
fore normalization). The error calculated for each in-
dex was then calculated for each automatic method and
for the three tumours. The mean error of the calcula-
tion of the whole index was also evaluated for the three
tumours and for each automatic method.

2.5. Comparison of performance of six interactive
sortings and of the three automatic methods for
astrocytoma grade 2

In order to evaluate, as a comparison, the repro-
ducibility of interactive elimination of debris and ag-
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Fig. 1. Sensitivities (A), false positive rates (B) and quality factor of sorting (C) for the three cases and for the three automatic methods. Mean
values for the three cases are represented as black dots for each method.

gregates for DNA ploidy abnormality estimation, six
IS of the same set of images of astrocytoma grade 2
were obtained by the same operator. Three IS (nos 1–3)
were done considering only two categories: undam-
aged nuclei versus debris and aggregates. Three other
IS (nos 4–6) were done considering seven categories:
six categories of normal and abnormal nuclei ver-
sus one category of debris and aggregates [10]. DNA
ploidy histograms were calculated and the 5 DNA in-
dices were calculated only for nuclei (one category for
IS nos 1–3, six pooled categories for IS nos 4–6).

DNA indices were calculated after elimination of
debris and aggregates by the three automatic methods
and compared to those obtained by the six interactive
sortings.

3. Results

3.1. Comparison of the performances of the three
automatic methods by reference to a unique
interactive sorting and for the three tumours

Sensitivities (S), false positive (FP) rates and opti-
mal quality factor Qt are given in Fig. 1 for the three

methods. Whatever the tumour studied, the sensitivi-
ties obtained with NN method are stable and are the
highest (mean= 85%) as compared to MM method
(mean = 63%) and MA method (mean= 75%)
(Fig. 1A). Concerning FP rates, MM gives stable and
low values (mean= 6%) whereas values obtained with
NN and MA methods vary to a large extent (Fig. 1B).
The mean values of Qt obtained for the three can-
cer cases are quite similar for the three methods. For
an equivalent value of Qt, one must notice that sen-
sitivities and FP rates obtained with MM method are
the lowest, whereas sensitivities and FP rates obtained
with NN method are the highest.

Performances of automatic methods, evaluated with
respect to the restitution of DNA ploidy abnormali-
ties, are presented in Fig. 2. Only one DNA indice
(DE) was always correctly evaluated by the three meth-
ods and for the three tumours (Fig. 2D). The fact that
DE remains unchanged suggests that the misclassifi-
cation of debris and aggregates by the three automatic
methods has no effect on the distribution of the in-
formation content. That is to say, that the overestima-
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Fig. 2. 2cDI (A), 5cER (B), MG (C), DE (D), SPF (E) normalised values obtained after the elimination of debris and aggregates by each of three
automatic methods.

tion of object number (misclassified debris) or the un-
derestimation (misclassified nuclei) occurs in an ho-
mogeneous pattern. This observation shows that us-
ing one of the proposed automatic methods gener-
ates a systematic error on the information content car-
ried by sorted data, which, consequently occurs on
the parameters computed from this information. The
values obtained for the other DNA indices are more
variable, especially SPF values (Fig. 2E). Apart from
DE, the MA and NN methods lead to more vari-
able evaluation of DNA ploidy indices than the MM
method. The mean error obtained with MM for each
DNA indice and for the three tumours is more of-
ten low (less than or about 20%) as opposed to the
MA and NN methods (Fig. 3A–3E). The mean er-
ror for the five DNA indices and the three tumours
is about 27% for the MA method and 65% for the
NN method as compared to 21% for the MM method
(Fig. 3F).

Fig. 3. Mean errors for three automatic methods on each DNA indice
evaluation for the three tumours: 2cDI (A), 5cER (B), MG (C), DE
(D), SPF (E). Mean error occurring on the five indices taken as a
whole for the three tumours is also represented (F).
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Fig. 4. DNA indices values (A: 2cDI, B: 5cER, C: MG, D: DE, E: SPF) obtained after the elimination of debris and aggregates by the six
interactive sortings (on the left) and by the 3 automatic methods (on the right) for astrocytoma grade 2. Horizontal lines delimit lowest and highest
values for each DNA indice obtained after the interactive elimination of debris and and aggregates. Vertical lines separate interactive sortings
from automatic sortings.

3.2. Comparison of the performances of six
interactive sortings and of the performances
three automatic methods in terms of restitution of
DNA ploidy abnormalities for astrocytoma grade
two

Comparison of the performances of six IS is illus-
trated in Fig. 4 (on the left) for astrocytoma grade two.
DNA ploidy indices show considerable variation, es-
pecially for IS nos 4 and 6. It should be noticed that
the restitution of DNA ploidy abnormalities is more
variable than seven categories for IS nos 4–6 (six cate-
gories of nuclei and one of debris and aggregates) than
when using two categories for IS nos 1–3 (one cate-
gory of nuclei and one of debris and aggregates). Com-
parison of performances of the three automatic meth-
ods is illustrated in Fig. 4 (on the right) for astrocytoma
grade two. DNA ploidy indices also exhibit consider-
able variation. Nevertheless, differences have been ob-
served between performances of automatic methods.
DNA indices obtained after automatic elimination of

debris and aggregates by MM (Fig. 4) lead globally
to values included between the lowest and highest val-
ues obtained with interactive sorting (Fig. 4). MA and
NN automatic methods lead globally to more variable
DNA index values.

4. Discussion

Careful elimination of numerous debris and aggre-
gates (which can represent an average of half the events
using this type of sample preparation [11]) is one
of the prerequisites for a reliable estimation of DNA
ploidy abnormalities [11]. In order to provide patholo-
gists with alternative tools to tedious interactive elim-
ination of debris and aggregates, three different auto-
matic classification methods were tested here. Results
obtained show that although the three methods tested
can globally exhibit the same quality factor for sorting
(Qt), sensitivity and false positive rates are quite dif-
ferent, and these differences have consequences for the
quality of the restitution of DNA ploidy abnormalities.
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Good quality of DNA ploidy abnormality evaluation is
the final aim of sorting and must guide the choice and
refinement of automatic sorting methods. At best, and
for the three tumours studied, the MM method gives a
global estimation of the five DNA indices with a mean
error of 23%. This underlines the inadequacy of Qt to
evaluate the reliability of a sorting method. The false
positive rate seems to be the better indicator for the es-
timation of sorting quality. For this application, a good
classification method must favour power against false
positive detection, rather than sensitivity.

The concomittant study of the performances of six
interactive sortings (IS) has shown a surprising degree
of unreproducibility which seems to be function of the
complexity of sorting (number of classes considered).
This raises the question of the use of an interactive
sorting method as a reference for comparing automatic
methods [8].

Compared to DNA index values obtained after inter-
active elimination of debris and aggregates, automatic
methods globally give neighbouring values. The MM
based method gives the best results and, to a lesser ex-
tent, the multiparametric analysis based method (MA).
It seems then that global and non parametric classifi-
cation methods such as the MM method can be suc-
cessfully compete with the more popular parametric
methods (MA and NN). Nevertheless, performances of
MA and NN could probably be improved by searching
and eliminating redundant or useless parameters from
among the 38 parameters used here (work in progress
in our laboratory). In conclusion, automatic classifica-
tion methods can offer on alternative to tedious inter-
active elimination of debris and aggregates for DNA
ploidy measurements of archival tumours. In particu-
lar, global mathematical morphology based methods
seems to be promising.

Acknowledgements

C. Boudry is a fellowship of “Ministère de l’Ensei-
gnement Supérieur et de la Recherche”. This work was
done under the auspices of “Pôle Traitement et Analyse
d’Images de Basse-Normandie”.

References

[1] E. Bergers, R. Montironi, P.J. van Diest, E. Prete and
J.P.A. Baak, Inter-laboratory reproducibility of semi-automated
cell cycle analysis of flow cytometric DNA-histrograms ob-
tained from fresh material of 1295 breast cancer cases,Hum.
Pathol.27 (1996), 553–560.

[2] E. Bergers, P.J. van Diest and J.P.A. Baak, Reproducibility of
semi-automated cell cycle analysis of flow cytometric DNA-
histograms of fresh breast cancer material,Analyt. Cell. Pathol.
8 (1995), 1–13.

[3] A. Berner, H. Danielsen, N. Juul, M. Juul, E. Pettersen and
A. Reith, Caveats in estimation of DNA-ploidy in paraffin em-
bedded specimens of primary prostate cancer and lymph node
metastases by flow cytometry and image cytometry,Analyt.
Cell. Pathol.5 (1993), 339–352.

[4] S. Beucher and C. Lantuejoul, Use of watersheds in contour
detection real-time edge and motion detection/estimation, in:
Proc. Int. Whorshop on Image Process, Rennes, 1979.

[5] A. Böcking, C.P. Adler, H.H. Common, M. Hilgarth,
B. Granzen and W. Auffermann, Algorithm for a DNA-
cytophotometric diagnosis and grading of malignancy,Analyt.
Quant. Cytol.6 (1984), 1–8.

[6] A. Böcking and W. Auffermann, Algorithm for DNA cytopho-
tometric diagnosis and grading of malignancy,Analyt. Quant.
Cytol. 8 (1986), 363.

[7] A. Böcking, F. Giroud and A. Reith, Consensus Report of the
European Society for Analytical Cellular Pathology: Task force
on standardization of diagnostic DNA image cytometry,Anal.
Quant. Cytol. Histol.17 (1995), 1–7.

[8] C. Boudry, Classification cellulaire par morphologie cellulaire.
Thèse de Doctorat of the University of Caen, 1997.

[9] C. Boudry, P. Herlin, M. Coster, J.L. Chermant, B. Sola and
M. Henry-Amar, Using mathematical morphology to eliminate
debris and aggregates before DNA ploidy measurement of solid
tumors,Acta Stereol.14 (1995), 121–128.

[10] C. Boudry, M. Coster, P. Herlin, B. Sola and J.L. Chermant,
Global and non parametric classification methods using mathe-
matical morphology: application to DNA ploidy measurement
of archival tumors,Micros. Microanal. Microstruct.7 (1996),
477–485.

[11] C. Boudry, P. Herlin, M. Coster, B. Sola and J.L. Chermant,
Influence of debris and aggregates on image cytometry DNA
measurement of archival tumors,Anal. Quant. Cytol. Histol.19
(1997), 153–157.

[12] G. Burger, M. Aubele, U. Jutting and G. Auer, Interactive cy-
tometry: Chance or evil of bias,Path. Res. Pract.188 (1992),
391–395.

[13] E. Davalo and P. Naim,Des Réseaux de Neurones, Eyrolles,
1990.

[14] P.N. Dean and J.H. Jett, Mathematical analysis of DNA dis-
tribution derived from flow microfluorometry,J. Cell. Biol.60
(1974), 523–527.

[15] R. Deriche, Using Canny’s criteria to derive a recursively im-
plemented optimal edge detector, 1987, pp. 167–187.

[16] E. Diday, J. Lemaire, J. Pouget and F. Testu,Eléments
d’Analyse et de Données, Dunod, Paris, 1982.

[17] F. Duigou, I. Galle, P. Herlin and A.M. Mandard, Improvement
in slide preparation from archival material for automated DNA
measurement by image analysis,Anal. Quant. Cytol. Histol.19
(1997), 167–173.

[18] R. Feulgen and H. Rossenbeck, Mikroskopich chemischer
nacheis einer nucleinsaure von typus der thymonuckleinsaure
und die darauf beruhende elektive farbunf von zellkernen in
mikroskopichen praparaten,Z. Physiol. Chem.135 (1924),
203–224.



210 C. Boudry et al. / DNA ploidy measurements

[19] P. Herlin, E. Masson, F. Duigou, B. Plancoulaine, J.P. Signolle,
A.M. Mandard, F. Angot, D. Deman, P. Belhomme, J.B. Joret,
T. Datry, O. Rougereau and D. Bloyet, Fully automated quanti-
tative analysis of DNA in solid tumors,Bull. Cancer84(1997),
685–692.

[20] L. Lebart, A. Morineau, J.P. Fenelon,Traitement des Données
Statistiques. Méthodes et Programmes,Dunod, 1982.

[21] E. Masson, P. Herlin, I. Galle, F. Duigou, P. Belhomme,
D. Bloyet and A.M. Mandard, Automatic classification of cel-
lular elements of solids tumors: application to DNA quantita-
tion, Acta Stereol.13 (1994), 75–81.

[22] F. Meyer, Contrast features extraction. Quantitative analysis
of microstructures in Material science,Biology and Medicine,
Dr Riederer Verlag (1977), 374–380.

[23] M. Pagano and K. Gauvreau,Principles of Biostatistics,
Duxbury Press, 1993.

[24] B. Stenkvist and G. Strande, Entropy as an algorithm for the
statistical description of DNA cytometric data obtained by im-
age analysis microscopy,Analyt. Cell. Pathol.2 (1990), 159–
165.

[25] A.M.J. Van Driel-Kulker, W.E. Mesker, M.J.M. Van der Burg
and J.S. Ploem, Preparation of cells from paraffin-embedded
tissue for cytometry and cytomorphologic evaluation,Analyt.
Cell. Pathol.9 (1987), 225–231.

[26] L. Wheeless and R. Robinson, Classification of red blood cells
as normal, sickle, or other abnormal, using a single image anal-
ysis feature,Cytometry17 (1994), 159–166.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


