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The effects of wall contraction or expansion on the characteristics of the peristaltic flow have
been considered in this paper. For that, we present a theoretical model of laminar incompressible
viscous peristaltic flow in a deformable channel. The problem is modeled in terms of unsteady two-
dimensional Navier Stokes equations and the solution is obtained using the perturbation method. The
physical parameters appearing due to deformation and the peristaltic motion are the wall expansion
ratio (o) and the wave number (8), respectively. Analytic perturbation results are obtained for small
wave number and small wall expansion ratio. Basically the study is undertaken to examine the peri-
staltic motion along with the deformation of the channel. This will enhance our understanding of
deformation/squeezing and peristalsis phenomena independently and jointly. Deformation effects are
shown on the otherwise peristaltic fluid flow. The results of peristaltic flow [Shapiro et al., J. Fluid
Mech. Digit. Archive 37, 799 (1969)] can be recovered for the limiting case of o equal to zero.
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1. Introduction

Scientists, engineers, and mathematicians have
shown great interest in peristaltic flows and many
articles have been written [1-25] to explain the
phenomenon. From biological and engineering stand
points, the peristaltic fluid transport has a great signif-
icance. The phenomenon is responsible for physiolog-
ical fluid transport in many biological systems such as
muscle contractions that occur throughout the digestive
system, the fluid secreted by kidneys into the bladder
through tubular organs, and bitter digestive fluids from
the liver into the duodenum.

Since the first investigation of Shapiro and Latham
[1], many attempts have been made both experimen-
tally and theoretically, Shapiro [2] obtained the ex-
act solution for the problem of peristaltic pump-
ing in a two-dimensional flexible tube under the
conditions that (a) the appropriate Reynolds num-
ber is so small that flow may be considered inertia
free and (b) the peristaltic wave is of large wave-
length compared with the diameter of the tube. Si-
nusoidal [3] and arbitrary shapes [4] of these waves
have been studied and some evaluating techniques
are formed [S] to test and establish hydrodynamic
systems. The numerical solution of two-dimensional
peristaltic flows is given by [6] while a brief ac-
count of most experimental and theoretical inquiry re-

ported until 1984 is presented by Srivastava and Sri-
vastava [7].

Goto and Uchida [21], Dauenhauer and Maj-
dalani [22,23], Majdalani et. al. [24], and Naoko et
al. [25] wrote quite a few articles on the viscous flow
in deformable tube/channel with permeable walls. Ma-
jdalani [22] introduced the similarity variables to re-
duce the governing equations to a nonlinear ordinary
differential equation by taking the wall expansion ratio
() constant, and the solution is obtained both numer-
ically and analytically.

To the best of author’s knowledge, peristaltic flow
in a deformable channel has not been discussed so far.
Peristaltic flows in a deformable channel/tube induced
by a travelling wave on its wall are known to have im-
portant relevance for fluid transport in many biological
systems. In nature, the small deformations are likely
to appear along with peristaltic motion to transport the
physiological flows in human body. This model con-
veniently describes the human ureter, gastrointestinal
tract, and mechanical roller pumps. The present study
will not only shed light on the peristalsis but will take
into account squeezing as well, thus giving credence
to renewed interest in peristaltic squeezing [25]. The
squeezing phenomenon is conjectured as the process to
remove the uneven nuclei and cytoplasm debris from
the back end of apyrene sperm, and similarly cyto-
plasm debris are discarded and preserve the nuclei in
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the case of eupyrene sperm. It is thus hoped that the
study may give some mathematical insight to this im-
portant biological problem. The results obtained for the
peristaltic flow in a deformable channel reduces to that
of peristaltic flow by taking the wall expansion ratio
equal to zero which provides a useful check.

2. Formulation of the Problem

Let us investigate the flow of an incompressible vis-
cous fluid in a two-dimensional channel of width 2a. A
rectangular coordinate system is selected in such a way
that ¥ and y lie along and normal to the center line,
respectively. The longitudinal and transverse velocity
components are denoted by # and V. An infinite train
of sinusoidal waves of speed c travel in the ¥-direction.
The wall geometry is described as follows (see Fig. 1):

ﬁ(i,t'):a(t')—i—bsini—”(i—ct), 0

where b is the wave amplitude, A is its wavelength, and
7 is the time.
The continuity and momentum equations are
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in which p is the pressure, p is the density, and V is the
kinematic viscosity.

Note that the wall is expanding or contracting in the
normal direction. This means that the distance between
the two walls is a function of time (a(f)), and there is
no motion of the wall in the longitudinal direction.

If (@,7) and (&, 7) are the respective velocity com-
ponents in the laboratory (X,y) and wave (X,y) frames

a

Fig. 1. Coordinate system and the channel under considera-
tion.

then we define

f=x—cf, §=9, f=f d=i—c, V=7. (5)
Invoking above transforms in (1)—(4) and then em-

ploying the following dimensionless variables
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we obtain
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in which the subscript denote the partial derivative, ¢ =

% is the amplitude ratio, 6 = 27;”0 is the wave number,

and Re = “3—6 is the Reynolds number. Where a is the
channel half spacing when ¢t = 0.

It should be pointed out that in deriving (7) and (8)
we have used u = %—‘5 v = —5%—‘5 and the continuity
equation is automatically satisfied.

Eliminating the pressure p between (7) and (8)

yields the following compatibility equation:

2
a
V2, — 2870, — ~ V2% + ay VY,

+ Re§[— %, VW, + ¥, VW) (10)
— (B VW VW,
2 97
V2=8"=5+-5 11
where the wall expansion ratio ¢ is given by
aa
vt (12)

and « is positive for expansion. If the small parame-
ter o remains constant and let the stream function ¥
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varies with o instead of ¢ [23] then (7), (8), and (10)
become

— a1y ¥y + Re 8[ ¥ — W
3 (13)

= _E + [62!}1)’)“ + IPY)’Y]’

— o + ayWy + Re §[— ¥ Wi + VW]

1 ap (14)
= 5oy (6> Weux + iy,
o[ P + Byl + ay V%,
+ ReS[- % V2% + W V¥
= [62 Vz%x + Vzlf’yy}.

The dimensionless boundary conditions are [4]

(15)

’¥
a—yz:O at y=0 and
v
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dy ay

W =0,
(16)

In above boundary conditions

Q=F+1, 17
where Q is the dimensionless time mean flow in the
laboratory frame and is given by

how
F:/O 5 4y ="¥() ~ ¥ (0) (18)

3. Solution of the Problem

Here the problem consisting of (15) and the bound-
ary conditions (16) will be solved by the perturbation
technique. For that we expand

¥ =+ 8% +0(8%), (19)

p=po+8pi+0(8%),
F =Fy+8F +0(8%).

(20)
(21)
Substituting above expressions into (13) to (16) we get

the following differential systems.

3.1. Zeroth-Order System
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3.2. First-Order System
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3.3. Second-Order System
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oY
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For slowly expanding or contracting walls, the wall di-
lation ratio ¢ is small in many biological applications.
Hence, we write

W = %o + o + O(a?), (34)
Po = poo+ apor +O(a?), (35)
Fy = Foo+ 0Fy; + 0(a?). (36)

Invoking above equations into zeroth-order system
consisting of (22)—(25) and equating the coefficient
of a® and o we get
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Adopting the procedure as used for ¥ we obtain for ¥
the following problem:
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y=0; 57 =0, Y =0.
Similarly, for ¥ we obtain
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dIpai My Wy n ¥y, Re W1 9%
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Solving system (37)—(40) and using (34) we get
Yoo = iy — By’ (56)
Hor = By + Bay’ + Bsy’, (57)
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We note from (37) and (39) that pgy and pg; are in-
dependent upon y. The pressure rise per wavelength at
the zeroth-order is defined as

2™ dpo

o
Using above definition and evaluating the involved in-
tegral we write
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From (19) and (56) —(65) one has
P = Pry— Boy’ +a(Bsy+Pay’ + Bsy’) + O(ar?), (66)

uo = B —3B2y* + a(Bs+3Pay*+5Bsy*) + 0(a?), (67)

d
T2 = —6p:+6aps, (68)
2
Apy— -3 n(2+¢)1§00+ o 3]
(1-9%2)2  (1—¢2)2 69)
2
3o 577(2+¢)5Fm 2751*"001 +or| 4 0(ad).
S (1-¢n)  (1-9¢?)2

It is interesting to note that the above expressions are
identical to the results obtained by Shapiro et. al. [4]
when o = 0 (for undeformed channel).

Solving (41)—(47) we have
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Similarly, solutions of (48)—(55) are given by
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Following the definition given in (19), then expressions
of stream function, longitudinal velocity, longitudinal
pressure gradient, and pressure rise per wavelength are

¥ = Biy—Boy’ + a(Bsy+ Pay’ + Bsy’) + 5 (Bey
+ 7y’ + By’ + Boy” + a(ny + 1y’ + 15 + wy
+155°)) + 8 (W + 1y’ + 1y + 1y + Ny’
' + oy + xy + xy + xay’ + x5y
+ay' + xsy"?)).

(86)
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u=P1 =3By + (B3 + 3Bay”* + 5Bs5y")
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Defining Fy = Foo + 0Fy1, F2 = Fio+ 0F 1, F3 = Foo +
aFy, F® = F| + 8F, + 62F;, then Fyy = F| — aFy;,
Fio=F — aF, Fxo=F—aFy, F; = F? — §F, —

8%F3, aFy) = Fi — Foo, 0F1) = Fy — Fig, aFy) = F3 —
P, 6F, =F% —F — 82F;, 82, = FY — F| — 6 B,
and substituting these expressions into (89) and then
retaining only the terms up to O(a) and O(8?%) we have
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The above expression reduces to the result presented in
the study [4] when a — 0.

4. Results and Discussion

In Figures 2 and 3 we have shown the results
for dimensionless pressure rise versus the modified
Reynolds number Re* = Re § calculated from (90) for
the zero pumping case (Q = 0). The other parameters
are: ¢ = 0.4, 6 = 1.2566 and ¢ = 0.6, 6 = 0.6283,
respectively. We also used different values of the wall
expansion ratio ¢. These cases were chosen to match
the results of Takabatake and Ayukawa [6] for non-
deformable walls. Note that the volume flow rate (Q)
isrelatedto F by Q= F + 1.

Figures 4 and 5 present the graph of Ap; ver-
sus Q for ¢ = 0.6, § = 0.06283, Re* = 10 and
¢ = 0.4, § = 1.2566, Re* = 10, respectivly. Seven
different values are chosen for o which represent
three physical situations. Negative values of ¢« show
the case of contracting walls while the positive val-
ues represent the expanding walls and o = O corre-
spond to a non-deformable channel. For this range
of the physical parameters, the pressure rise is ef-
fected by the wall contraction and expansion. There
is a little difference between the contracting and non-
contracting walls for small values of the deformation
parameter.



D. N. Khan Marawat and S. Asghar - Peristaltic Flow in a Deformable Channel 31

65
60
55 |
50 1
Apy.
45 |
40

351

300 , , , , ,
0 10 20 30 40 50 60
Re &
Fig. 2. Pressure rise per wavelength plotted against Re* =
Re 8, where ¢ = 0.4, § = 1.2566, Q = 0, and the values of o
are: —0.5, —0.3, —0.1, 0, 0.1, 0.3, 0.5.
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6.5 , , , , , :
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Fig. 3. Pressure rise per wavelength plotted against Re* =
Red, where ¢ = 0.6, 6 = 0.06283, Q = 0, and the values
of o are: —0.5, —0.3, —0.1, 0, 0.1, 0.3, 0.5.

5. Closing Remarks

In this study we have shown the effect of wall de-
formation on the peristaltic flow of a viscous fluid in
a planar deformable channel. Although wall deforma-
tion effects on channel flows are first studied by Maj-
dalani et. al. [24] the peristaltic mechanism in a planar
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Fig. 4. Pressure rise per wavelength plotted against Q, where
¢ =0.4, 5§ =1.2566, Re = 10, and the values of ¢ are: —0.5,
—0.3,-0.1,0,0.1, 0.3, 0.5.
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Fig. 5. Pressure rise per wavelength plotted against Q, where
¢ = 0.6, § = 0.06283, Re = 10, and the values of o are:
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