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Abstract

In the present paper the theory for different relativistic methods is presented. Despite a lot of progress has been made for the inclusion of

relativistic effects in electronic structure calculations, good methods are still resource-demanding. A rapid development of the four-

component method is, however, taking place. Also, “pseudo-relativistic” approaches are becoming more popular in the treatment of large

systems. The importance of the interplay between the relativistic core and valence effects is also revisited.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last decade, a lot of progress has been made in

the development of efficient and accurate algorithms for the

inclusion of relativistic effects in electronic structure

calculations [1]. In essence, the approaches can be divided

into those that are ‘truly’ relativistic, in the sense that the

operate with quantities which are or almost are invariant to a

Lorentz transformation, and those that attempt to incorpor-

ate the main effects of relativity on physical observables into

a more or less non-relativistic formalism. While the former

approach is clearly the more accurate one it is also more

computationally demanding. Lately, methods based on the

four-component Dirac equation have enabled the study of

heavy systems with impressive accuracy for even medium

size molecules [2,3]. This method is still relatively resource-

demanding and for larger systems more effective approxi-

mate methods have been developed. A rapid development of

the four-component method is, however, taking place and
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a competition with more simplified methods may be seen in

a not too remote future [4].

There is, however, still a demand for methods that lend

themselves to large systems, an increasing amount of

evidence shows encouraging numerical results from these

‘pseudo-relativistic’ approaches and they are increasingly

popular and can be incorporated into non-relativistic

schemes, drawing on the vast realm of computational

experience and development of codes and algorithms.

Since relativistic behaviour is associated with fast-

moving, i.e. core electrons, it is natural to look for effective

core potential which incorporate those effects. Such RECP

methods have been available for quite a long time [5,6] and

have been applied with success to a spectrum of problems.

Quite often, however, the chemistry of interest is

associated with phenomena in the valence region, and the

interplay between the relativistic core and valence effects is

not always well accounted for with a core potentials. All-

electron models therefore are a high priority, perhaps even

more so than in non-relativistic work, especially when spin–

orbit are taken into account.

For cases where the total relativistic effects are small, they

can be treated as a perturbation on a non-relativistic system,

and in an essentially non-relativistic formalistic framework.

These pseudo-relativistic methods have been applied with

some success. However, they fail miserably (as expected) for

a number of cases where relativity brings about major

changes in the wave function, which need to be accounted for
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at the zeroth order level. In the present paper, the theory for

different relativistic methods will be presented.
2. The four-component theory

All theories are based on the Dirac equation or the Dirac–

Coulomb equation. We will therefore start by presenting the

basic theory. The Dirac equation for the free electron has

the following expression
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As the Dirac operator thus contains 4!4 matrices it is

only meaningful to assume that the wave function is a four-

vector, or a four-component spinor:
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The Dirac equation for the hydrogen atom takes the

following form including the external potential
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In matrix form

ðmc2 KZ=rÞI spc

spc ðKmc2 KZ=rÞI

" #
JðCÞ

JðKÞ

" #
Z E

JðCÞ

JðKÞ

" #

(8)

where

JðCÞ Z
J1

J2

" #
; JðKÞ Z

J3

J4

" #
(9)

The equation for the many-electron system takes the

following form

HJ Z EJ (10)
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It should be noted that the two-electron term in this

‘Dirac–Coulomb’ equation is based on a classical (i.e. non-

relativistic) picture of the interaction; and it is therefore not

Lorentz invariant.

Solving the four component equations always give two

sets of solutions. One set, the so called large component

solutions, corresponding to electronic states has energies

near Ezmc2 and the following relations J(K)zcK1J(C)

between J(K) and J(C). The other solutions are called the

small component solutions and correspond to he positron

solutions. They have energies near EwKmc2 and the

following relations J(C)zcK1J(K) between J(K) and

J(C).

In computational chemistry, we are interested in the

electronic states, which unfortunately exist as excited states

in the continuum for the positron states and have to be

projected out from the total space. The minimax theorem

for excited states requires, however, that the lower lying

states have to be well described to avoid a collapse of the

excited stats. That means among other things that with a

complete basis set of the positron states the electronic

states will converge as usual from above with increasing

basis for these states, whereas with a complete set for the

electronic states they will converge from below to the

correct values with increasing basis set for the positron

states. This has been discussed by many authors [7–9].

Complete basis sets are, however, an unrealistic require-

ment, and it was early recognized that a balance between

the small and the large component would give reasonably

good results [10].

The requirement on the small component basis given a

large component basis may be deduced from the Dirac

equation to the following relations:
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In a usual way we may apply the LCAO approach,

expanding the molecular spinor in a set of atomic spinors
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At this point it is clear that one may proceed as in the

non-relativistic approach. Choosing an independent particle

model with an antisymmetric wave function represented by

a Slater determinant one obtain the Dirac Fock equations.

Based on this one-electron basis CI, CCSD(T) and DFT

procedure may be developed. The logistics and the fact that

complex algebra is applied make in addition to a larger basis

this method more demanding than the non-relativistic

procedure. There exist, however, efficient programs that

carry out such calculations, and they may be obtained for

free [4].
3. Decoupling of the electronic and positron solutions

The first major steps towards a computationally useful

pseudo-relativistic variational approach were taken by

Sucher [11], who developed the approach usually known

as the ‘no-pair’ (NP) method. The method attempts to

eliminate positronic states through a unitary transformation,

the form of which is derived from the Dirac equation for an

electron without external field. The name is related to the

quantum electrodynamic approach used in the original

derivation and justification of the approach. (It is a bit

surprising that this works at all, since the effects of interest

here are precise those caused by the presence of a very

strong external field!)

As the coupling between electronic and positronic states

is eliminated the latter can be removed from further

consideration. The equations involved are thus reduced in

complexity, from the original four-component problem to

one including only two components. (In the non-relativistic

limit these two components correspond to the a- and b-spin

of a single, free electron—in relativistic theory these states

are no longer pure and well separated.)

The Hamiltonian for the free electron is the only

Hamiltonian that may be decoupled exactly. However,

using the free electron transformation, the so called NP

transformation, for molecular systems we obtain a sub-

stantial reduction of the off diagonal matrix elements in the

operator, and by neglecting these small contribution we

obtain electronic states decoupled from the positron states
obtaining the following operator:
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where Vext(i) is the usual, non-relativistic one-electron

potential,

VextðiÞZ
X

m

Zm

jriKrmj
(25)

The original four-component Dirac–Coulomb Hamil-

tonian has thus been reduced to the two-component

Hamiltonian HC. One of the virtues of this method is that

HC can be further divided into a spin-free and a spin-

dependent part. Using the Dirac relation

ðsuÞðsvÞZuvCisðu$vÞ (26)

to separate spin and space coordinates, the complete

operator is finally obtained ignoring the spin–spin part:
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The necessity of the spin-free complicated two-electron term

has been a discussion in the literature [12,13]. No clear

conclusion has been drawn, but this operator is usually reduced

to the well known and simple two-electron contribution

V sf
effði;jÞZ

1

rij

While the resulting calculations are relatively straight-

forward, the results are unfortunately poor. In a refinement of

the approach, Douglas and Kroll [14] suggested additional

transformations. Normally, the DK refinement is carried only

through second order, and only for the one-electron part of the

Hamiltonian (for details see for example Ref. [1]).

The resulting, extra term becomes:

HDK
eff ðiÞZ

K1

2
ffEi;W

sf
1 ðiÞg;W sf

1 ðiÞg (33)

where W1 is an integral operator with the kernel

W1ðpi;p
0
iÞZAi½QiKQ0

i�A
0
i
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0
iÞ

EiKE0
i
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and Vextðpi;p
0
iÞ is the Fourier transform of the external potential.

Some literature distinguishes between the no-pair

approach and the Douglas–Kroll method (DK), here, we

will consider NP as a ‘first-order DK’ treatment and these

methods will all be referred to as the DK approach.

The computational implementation of the DK methods

by Hess et al. [15–18] has gained a lot of attention and has

been applied with success to a large number of chemical

problems. In cases where spin is not a major issue (closed-

shell systems, not extremely heavy elements), one can often

neglect the latter and work in a spin-free formalism.

The structure of this spin-free, one-component Hamil-

tonian is thus the same as in non-relativistic theory, and this

structural ‘isomorphism’ can be used to take advantage of

the vast experience and code development for non-

relativistic calculations. One-component, ‘pseudo-relativis-

tic’ calculations may be done on an almost a routine basis.

The inclusion of spin–orbit interaction is far more

complicated [19]. We will return to these complications

below. The DK methods should be contrasted to e.g. the

Breit–Pauli approach, which is essentially a perturbation

expansion where the zeroth order Hamiltonian is furnished

by non-relativistic case and the effect of relativity is treated

as a perturbation. This operator is obtained with among

other methods by the Foldy–Wouthuysen transformation

[20]. For a one-electron system, the Breit–Pauli Hamil-

tonian is given by

HBP Z mc2 CHnr CHmv CHDar CHSO C/ (35)

where the terms are the well known non-relativistic,

the mass velocity, the Darwin and the one electron spin

orbit term. The HmvCHDar terms are often used as

perturbation contribution for spin free calculations, whereas
the spin–orbit interaction term

HSOði; jÞ ZK
1

r3
ij

ðrij$piÞðsi C2sjÞ

 !
(36)

may be used as a perturbation for spin–orbit if this

contribution is small.

BP has many similarities with DK theory, and the BP

Hamiltonian can indeed be obtained from DK through series

expansion and truncation. However, in actual applications

they behave quite differently. The DK method has been

found to provide a variationally stable effective Hamil-

tonian, and can thus be used in variational calculations. This

is an important advantage over BP Hamiltonians, which can

only be used in perturbation calculations. The basic reason

for this is the expansion of the kinetic energy in the BP

operator. This gives a non converging series with alternating

terms.
4. Integrals in Douglas–Kroll theory

While the kinematic factors have a stabilizing effect on

the behaviour of the various operators in DK theory, they at

the same time make the numerical procedure more

complicated. Using the LCAO approximation in ab initio

electronic structure theory, one must evaluate large numbers

of one- and two-electron integrals of the basis functions

over various operators, but they can all be obtained

analytically. This is not the case in the DK formalism.

The kinematic factors make the operators complicated

numerically.

The only known way to calculate integrals over the DK

spin–orbit operator is to use the method of resolution of

identity. This method is only correct if the expansion is taken

in an infinite basis. It is, however, shown that using a relatively

large primitive basis to expand the identity operator works

well for all systems studied so far. With standard integral

programs one should then calculate all the necessary integrals

in a large primitive basis and then carry out a four-index

transformation into the correct integrals and then a contraction

to a usable basis. This method is easily handled for the one-

electron part, but for the two-electron part this is a prohibitive

approach for all but relatively small systems.

In addition to this complications, the spin-same orbit

contribution and the spin other contribution have a different

form

HSOði; jÞ Z ðBiAjLijsiBiAj C2BjAiLijsjBiAjÞ (37)

In order to simplify the two-electron DK spin–orbit term

we may now define a new operator as the mean of the two

terms above

HSOði; jÞ Z ðGiGjðLijðsi C2sjÞÞGiGjÞ (38)

Expanding the resolution of identity operator in the

primitive basis a matrix element over this two-electron DK
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spin–orbit operator in the contracted basis will take the

following form

ðfið1Þfjð1Þjfkð2Þflð2ÞÞ

Z
X
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X
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X
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It is reasonable to assume that the important part of the

two-electron spin–orbit operator is a one centre term. The

necessary expansion of the resolution of the identity should

then also come from one centre. Taking this assumptions

into consideration the G-matrix will be block diagonalized

over basis functions with same l-quantum numbers on the

same centre. We may then do the four inner summations

resulting in a new set of contraction coefficients,

Di
q Z

X
p

Ci
pGq

p

Z
X

m

X
n

X
s

X
l

Di
mDj

nDk
sDl

lðfmð1Þfnð1Þjfsð2Þflð2ÞÞ

(40)

These new contraction coefficients may easily be

constructed before the calculation of the two-electron

spin–orbit matrix and a ordinary integral program may be

used without any further restriction. An other simplification

is the introduction of the mean-field operator [21].

Hso
ij Z hijHsoð1ÞjjiC

1

2

X
K

nkfhikjH
SOð1;2Þjjki

K hikjHSOð1;2ÞjkjiK hkijHSOð1;2Þjjkig

This has been done, and was implemented in the AMFI

[22] code known as RASSI in the MOLCAS program

system [23].

The spin–orbit contribution is usually included through

perturbation or configuration interaction. A direct CI-

procedure using a one-electron basis from a non-relativistic

calculation was developed in our group and is briefly

discussed here. The reference calculation producing the

one-electron basis is always important for the quality of the

CI-calculation. In non-relativistic calculations, the one-

electron basis may be optimized for the state that is to be

investigated, whereas that is usually not the case in spin–

orbit calculations as a j-state is generally a mixture of two

different L–S states. This weakness in the method may be

remedied on the CI level including excitations that allow a

rotation of the one-electron orbitals. This problem has not

been given sufficient attention.

When CI calculations are carried out including the spin–

orbit term we try to describe both the correlation energy

and the spin–orbit energy. This may be done in two

ways. Correlated calculations may be done on the separated

L–S states followed by a short CI-expansion including
the spin–orbit operator and using the CI L–S states as

expansion functions. This approach assumes a negligible

coupling between correlation energy and the spin–orbit

energy. The other possibility is a full CI including the spin–

orbit term of the operator. The full CI treatment is a very

resource demanding approach and may only be applied to

relatively small systems. For most problems the non

coupling approach is sufficient and the matrix to be

diagonalized will have the following form with the size

depending on the problem at hand:

ðHelCHsoÞJ

ZEJ

EelðJ1Þ hJ1jHsojJ2i hJ1jHsojJ3i

hJ2jHsojJ1i EelðJ2Þ hJ2jHsojJ3i

hJ3jHsojJ1i hJ3jHsojJ2i EelðJ3Þ

2
664

3
775����/diagonalize

(41)

But even with this limited approach the calculation of the

spin orbit matrix elements may be substantial if large CI

expansions are used. We have therefore suggested that the

spin–orbit calculations may be carried out with a rather

limited correlation, viz. small CAS calculations and the

correlation effect may then be included through the

inclusion of a so called effective Hamiltonian [24] which

will only effect the diagonal elements

Heff
SO ZHSO C

X
i

DEijJiihJij

DEi ZðEcorr
i KEcorr

GS ÞKðEini
i KEini

GSÞ

(42)

This is for most systems a satisfactory way of treating

spin–orbit and correlation. But some cases require a full

treatment where spin–orbit and correlation are treated on an

equal footing. In those cases, it may be better to apply the

full four-component method.

There are rapidly accumulating results from relativistic

calculations, both four-component and the more approximate

two component and the scalar methods. There is no results

included here, only references to the literature [25–29].

Relatively large systems of chemical interest may be treated

with one or all of these methods and the methodological

development have made the lower part of the periodic Table

accessible to theoretical studies. Especially the lanthanides

and the actinides may now be studied theoretically [30–33].

These elements are of great interest both for catalyses and for

the nuclear waste problems.
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