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Abstract— We study inefficiencies in parallel networks with
horizontal queues due to the selfish behavior of players, by
comparing social optima to Nash equilibria. The article expands
studies on routing games which traditionally model congestion
with latency functions that increase with the flow on a particular
link. This type of latency function cannot capture congestion
effects on horizontal queues. Latencies on horizontal queues
increase as a function of density, and flow can decrease with
increasing latencies. This class of latency functions arises
in transportation networks. For static analysis of horizontal
queues on parallel-link networks, we show that there may
exist multiple Nash equilibria with different total costs, which
contrasts with results for increasing latency functions. We
present a novel algorithm, quadratic in the number of links,
for computing the Nash equilibrium that minimizes total cost
(best Nash equilibrium). The relative inefficiencies of best
Nash equilibria are evaluated through analysis of the price
of stability, and analytical results are presented for two-link
networks. Price of stability is shown to be sensitive to changes in
demand when links are near capacity, and congestion mitigation
strategies are discussed, motivated by our results.

I. INTRODUCTION

A. Routing games and Nash equilibria

Routing games (or congestion games) form an important
class of non-atomic games that is used to model the inter-
action of players who are sharing resources on a network,
in which the cost on each edge depends on the fraction of
players using that edge. Extensive work has been dedicated
to studying Nash equilibria (or user optimal assignments)
of congestion games [9], [12], in which all players are
assumed to choose the routes that minimize their respective
individual costs. Under some assumptions on the latency
functions, Nash equilibria can be computed as a solution
of a convex optimization problem [5]. Nash equilibria of
congestion games are known to be inefficient compared to
system optimal assignments, in which a coordinator, or a
central authority, assigns flow as to minimize a cost function
over all players [2], [16].

B. A new class of latency functions

The latency functions that have been studied so far in
routing games literature satisfy the following assumptions: if
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`n(xn) is the latency on a link n, where xn is the flow, then
`n is assumed to be non-decreasing, and xn 7→ xn`n(xn) is
assumed to be convex [11]. While this class of latency func-
tions provides a good model of congestion for a considerable
range of networks, such as communication networks, it does
not accurately model congestion with horizontal queues,
such as congestion on transportation networks [4], [15], [7].
Intuitively, a given flow x on a road can correspond to either
a large concentration of cars moving slowly (high density
on a congested road), in which case the latency is large, or
few cars moving quickly (low density), in which case the
latency is small. We introduce a new model of latency that
captures this phenomenon by adding a binary state variable
mn on each link n that specifies if the link is in free-flow or
in congestion. We show that such latency functions can be
derived from a macroscopic model of traffic flow developed
by Lighthill and Whitham [7].

A large body of literature has applied game-theoretic
concepts to horizontal queues, such as dynamic traffic assign-
ment for user equilibria [8] and system optimal assignments
[16]. Due to the complexity of modeling horizontal queues,
approaches to solving the user equilibrium on general net-
works usually involve non-linear optimization techniques that
limit the size of networks that can be considered. By restrict-
ing our analysis to parallel networks, we exploit the structure
of the network to improve upon previous approaches to
computing Nash equilibria.

C. Contributions of the article
We introduce a new class of latency functions, the HQSF

latency class, that is expressive enough to model congestion
on networks with horizontal queues, and study, for this class,
the Nash equilibria of the routing game on a parallel network.
This leads to novel results for characterizing and computing
Nash equilibria:
• We show that there is no essential uniqueness of Nash

equilibria (not all Nash equilibria have equal total costs),
unlike point-queueing models usually considered in
routing games [12].1

• We characterize the structure of the flow of the best
Nash equilibrium (the Nash equilibrium that minimizes
the total network latency) and show that this equilibrium
can be computed in O

(
N2
)

time where N is the size
of the network.

• We give the analytical expression of the price of stability
on a two-link parallel network. This gives insight into

1Under different modeling assumptions, similar non-uniqueness results
exist for capacitated networks.[13]
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the qualitative behavior of congestion in Nash equilibria
on networks with horizontal queues. We show in par-
ticular that when the lowest-latency link in a network
is slightly above capacity, diverting a small amount of
flow to a slower link can significantly decrease the total
network latency.

These results provide a framework for efficient computation
of Nash equilibria on parallel networks, which, in turn,
give a high-level explanation of congestion patterns on such
networks. While the assumption of a parallel network may
seem restrictive, there are many examples of highway net-
works that can be accurately modeled by a parallel network
connecting two highly populated areas (such as the San
Francisco bay area).

D. Organization

We start by defining the model and introducing a new
class of latency functions in Section II, and show as an
example how such latency functions can be derived from
known macroscopic models of traffic flow. In Section III,
we study Nash equilibria of routing games for this new class
of latency, and show that the essential uniqueness property
does not hold. We then bound the number of Nash equilibria
and give a tractable algorithm for computing the set of Nash
equilibria. In Section IV we characterize in particular the
best Nash equilibrium and give an explicit algorithm for
its computation. In Section V, we study the inefficiency of
best Nash equilibria using price of stability as measure of
inefficiency.

II. THE MODEL

A. Routing games on on parallel edge network

We consider a non-atomic [14] routing game on a parallel
network similar to the one studied in [11], shown in Figure 1.
The network has a single source and a single sink. Con-
necting the source and sink are N parallel edges (or links)
indexed by n ∈ {1, . . . , N}. The network is subject to a
constant positive flow demand r at the source. We will denote
by (N, r) an instance of the routing game on a network
with N parallel links subject to demand r. A feasible flow
assignment for the instance (N, r) is a vector x ∈ RN+ such
that

∑N
n=1 xn = r where xn is the flow on link n.

Fig. 1: Parallel network with N links, under demand r.

We then introduce a cost function, or latency function `n,
on each link n. The cost on a link n can be thought of
as the latency experienced by a job assigned to machine n
in the case of job scheduling [11], or the travel time of a
vehicle using road n in the case of traffic networks. In a
routing game, every non-atomic player, represented by an
infinitesimal amount of flow, chooses a route in order to
minimize her/his individual latency [9], [12].

B. Modeling congestion with latency functions

To model the effects of queueing on a given link n, the
latency `n on the link is typically assumed to be a non-
decreasing function of the amount of flow xn on link n [2],
[3], [12]. While this class of latency accurately models con-
gestion on a broad range of networks, such as communication
networks, it fails to correctly model congestion for networks
with horizontal queues. For example, consider a link (or
road) n in a traffic network. A given flow xn may correspond
to two different scenarios: few vehicles on the road are
moving quickly (the road is in free-flow), in which case the
latency on the road is low, or a large number of vehicles on
the road are moving slowly (the road is congested), in which
case the latency on the road is high. This phenomenon is not
captured if the latency is only a function of flow. One way to
address this limitation is to introduce a binary state variable
mn ∈ {0, 1} that specifies whether the link is in free-flow
(mn = 0) or in congestion (mn = 1). The latency is then
modeled to depend on flow xn and congestion state mn.

We next show that such latency functions can be derived
from macroscopic models of flow on horizontal queuing
networks.

C. Deriving latency functions for networks with horizontal
queues

The relationship between the flow on a link and the
density is usually expressed by a function called the flux
function in the physical sciences and conservation law theory
and fundamental diagram in traffic flow theory [4], [10].
Figure 2a shows an example of a triangular flux function
that arises in traffic networks.

While such flow models have been popular for many
decades in specific domains (such as traffic and fluid me-
chanics), less attention has been given to these models in
the literature studying routing games, which focuses on
modeling latency as a non-decreasing function of flow. In
order to characterize Nash equilibria on horizontal queues,
we develop a novel approach by introducing a new model of
latency.

Consider a link n with length Ln, and assume the flow
xn on the link is given by a continuous function of density:

xρn : [0, ρmax
n ]→ R+

ρn 7→ xn = xρn(ρn)

The function xρn maps density ρn to flow, is defined on
the domain [0, ρmax

n ], and corresponds to the fundamental
diagram of traffic. The latency is given by a function

`ρn : [0, ρmax
n ]→ R+

ρn 7→ `ρn(ρn)

We observe that latency is related to flow and density through
the relation:

`ρn (ρn) =
Lnρn
xρn (ρn)

, (1)
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Fig. 2: Examples of flux functions and corresponding latency
functions that satisfy the assumptions in Section II-C.

We make three assumptions on the flow and latency functions
xρn and `ρn for horizontal queues, which are illustrated in
Figure 2a.

1) There exists a critical density ρcrit
n > 0, such that

the latency is constant and minimal on the interval[
0, ρcrit

n

]
. This is equivalent to the flow function xρn

being linear on that interval.
2) limρn→ρmax

n
xρn = 0 (the flow vanishes when the den-

sity approaches maximum density), and xρn is maximal
at ρcrit

n . The value of the flow at critical density is
denoted xmax

n = xρn(ρcrit
n ) and referred to as maximum

flow or capacity of the link.
3) The latency function `ρn, is continuous, non-decreasing.

We define the free-flow region as ρn ∈
[
0, ρcrit

n

]
and con-

gested region as ρn > ρcrit
n . These assumptions define a

class of supported fundamental diagrams. Assumption 2 just
states that ∀ρn ≥ 0, xρn (ρn) ∈ [0, xmax

n ]. From Equation (1),
Assumption 3 can be expressed equivalently in terms of the
flow function xρn as dxρn(ρn)

dρn
≤ xρn(ρn)

ρn
. This gives reasonable

restrictions on the shape of fundamental diagrams in the
congestion region, and flexible enough to include concave
fundamental diagrams, and even some non-concave or non-
decreasing functions xρn (as long as the conditions above
are satisfied). Examples of allowable fundamental diagrams
are given in Figure 2a, and corresponding examples of
latency functions are given in Figure 2b. Note that from
these assumptions, we can write the latency function for the
horizontal queueing model as:

`ρn (ρn) =

{
Lnρ

crit
n

xmax
n

ρn ∈
[
0, ρcrit

n

]
Lnρn
xn(ρn) otherwise

Example 1: Triangular fundamental diagrams
One particular class of fundamental diagrams xρ that

satisfy the above assumptions are triangular fundamental
diagrams [4], which are linear with positive slope vf in
the free-flow region, affine with negative slope vc in the
congestion region, and have maximum flow xmax = ρcritvf .
Assumptions 1 and 2 are satisfied by definition, and Assump-
tion 3 is satisfied since dx(ρ)

dρ = vf = x(ρ)
ρ ∀ρ ∈ [0, ρcrit]

and dx(ρ)
dρ = vc ≤ 0 ≤ x(ρ)

ρ ∀ρ ≥ ρcrit. The dotted line
in Figure 2a shows a triangular fundamental diagram. The
latency function is then given by:

`ρ4 (ρ) =

{
L
vf

0 ≤ ρ ≤ xmax

vf
Lρ

vc(ρ−ρmax)
xmax

vf
< ρ ≤ ρmax

where ρmax = xmax
(

1
vf
− 1

vc

)
.

D. A class of latency functions for horizontal queues
While expressing latency as a function of density is

intuitive and succinct for horizontal queues, expressing it
as a function of flow proves to be more convenient in the
study of congestion games. This is largely due to the fact that
total flow must be conserved in traffic assignment problems,
and not density. For this reason, we introduce an equivalent
formulation of latency using flow and congestion state. Let
the congestion state mn of link n be defined as:

mn :=

{
0 if n is in free-flow
1 if n is congested

We can now define a general class of latency functions `n
as a function of both flow and congestion state:

Dn → R+

(xn,mn) 7→ `n (xn,mn) ,

defined on Dn = `n : [0, xmax
n ] × {0} ∪ (0, xmax

n ) × {1}.
Note that the latency in congestion `n(·, 1) is defined on the
open interval (0, xmax

n ). In particular, if xn = 0 then mn =
0 (an empty link is in free-flow) and if xn = xmax

n then
mn = 0 (if a link is at maximum capacity, it is considered,
by convention, to be in free-flow. It is in fact on the boundary
of the free-flow and congestion regions, and we choose this
convention to simplify the discussion). We also assume that
`n satisfies the following properties, which are equivalent to
the assumptions in Section II-C:
• The latency in free-flow is constant. Equivalently,
∀xn ∈ [0, xmax

n ], `n (xn, 0) = an, where an is the
constant free-flow latency.

• limxn→xmax
n

`n (xn, 1) = `n (xmax
n , 0) = an

• xn 7→ `n (xn, 1) is decreasing from (0, xmax
n ) onto

(an,+∞).
One interesting result is that the latency under congestion
`(x, 1) is a decreasing function offlow. Intuitively, as the link
becomes more congested, agents slow down, so their latency
increases, and the amount of flow on the link decreases.
Some examples of latency functions in this class are illus-
trated in Figure 2c. Again, the latency function corresponding
to a triangular fundamental diagram can be readily expressed
in this form:

`4 (x, 0) =
L

vf

`4 (x, 1) = L

(
ρmax

x
+

1

vc

)

E. Total System Cost
If a non-atomic player chooses link n, the latency ex-

perienced by the player is `n(xn,mn). Therefore, the total
cost experienced by all players on link n is Cn (xn,mn) =
`n (xn,mn)xn = Lnρn. Then, the total system cost is
the sum of the costs of the individual links C (x,m) =∑N
n=1 Cn (xn,mn), where x = (x1, . . . , xN ) is the vector

of flows, and m = (m1, . . . ,mN ) is the vector of congestion
states for the entire network.
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III. NASH EQUILIBRIA

In this section, we characterize pure non-atomic Nash
equilibria of the network (also called Wardrop equilibria in
the transportation literature), which we simply refer to as
Nash equilibria.

A. Characterization of Nash Equilibria

We first recall the fundamental notion of Nash equilibrium
for the routing game instance (N, r) [12], [9].

Definition 1: Nash Equilibrium
An assignment (x,m) ∈ RN+ × {0, 1}N for the routing

game instance (N, r) is a Nash equilibrium if ∀n
xn > 0⇒ ∀k ∈ {1, . . . , N}, `n(xn,mn) ≤ `k(xk,mk)

In particular, every non-atomic agent cannot improve her/his
latency by switching to another link. As a consequence, all
links that are in the support of x have the same latency `0,
and links that are not in the support have latency greater than
or equal to `0. We will denote by Supp (x) the support of
x, i.e. the set {n ∈ {1, . . . , N} |xn > 0}.

Note that to fully describe the equilibrium, one needs to
specify the congestion state vector m in addition to the flow
assignment x, since the latency on a link depends on whether
the link is congested or not. The following lemma gives an
equivalent characterization of Nash equilibria.

Lemma 1: Characterization of a Nash Equilibrium
A feasible assignment (x,m) for a routing game instance

(N, r) is a Nash equilibrium if and only if ∃ `0 > 0 such
that

xn > 0⇒ `n(xn,mn) = `0

xn = 0⇒ `n(0, 0) ≥ `0
The total latency incurred by the network is C(x,m) = r`0.
Note that links that have zero flow are necessarily in free-
flow xn = 0⇒ mn = 0.

B. Multiple Nash equilibria on networks with horizontal
queues

Let NE (N, r) denote the set of Nash Equilibria for routing
game instance (N, r). For our class of latency functions, the
essential uniqueness property of Nash equilibrium [12] does
not hold. To see this, consider for example a routing game
instance (N=2, r=1) where xmax

1 = xmax
2 = 1, the free-

flow latencies are a1 = 1 and a2 = 2, and the congested
latency functions are given respectively by `1(x1, 1) = 1

x1

and `2(x2, 1) = 2
x2

. Then it is easy to see that (x,m) =

((1, 0), (0, 0)), (x′,m′) = (( 1
2 ,

1
2 ), (1, 0)), and (x′′,m′′) =

(( 1
3 ,

2
3 ), (1, 1)) are all Nash equilibria for this instance, and

they have different costs: C(x,m) = 1, C(x′,m′) = 2 and
C(x′′,m′′) = 3. This simple example shows that there are
at least two types of Nash equilibria: equilibria for which
every link in the support is congested (this is the case for
(x′′,m′′) in the previous example), and equilibria that have
one link in free-flow in their support (this is the case for both
(x,m) and (x′,m′)). In this section, we show that these are
in fact the only possible types of equilibria. To simplify the
discussion, we assume without loss of generality, that the

links are ordered by increasing free-flow latencies, and that
free-flow latencies are different to avoid degenerate cases
where the set of Nash equilibria is infinite:

Assumption: (a1 < a2 < . . . < aN ).
We start by deriving properties that the congestion state
vector m needs to satisfy for a Nash equilibrium (x,m).

Lemma 2: Congestion of lower links
Let (x,m) ∈ NE (N, r). Then

j ∈ Supp (x)⇒ mi = 1 ∀i ∈ {1, . . . , j − 1}
Proof: Let i ∈ {1, . . . , j − 1}. Then mi = 0 ⇒

`i(xi,mi) = ai < aj ≤ `j(xj ,mj), which violates the
characterization of Nash equilibrium in Lemma 1. Therefore,
mi = 1 ∀i ∈ {1, . . . , j − 1}.

Corollary 1: Congestion states under equilibrium
Let (x,m) ∈ NE (N, r). Assume that ∃j ∈ Supp (x)

such that mj = 0. Then m = (1, . . . ,
j−1

1 ,
j

0, . . . , 0) and
Supp (x) = {1, . . . , j}.

Proof: We have from Lemma 2 that ∀i ∈
{1, . . . , j − 1}, mi = 1. And we have ∀i ∈ {j + 1, . . . , N},
`i(xi,mi) ≥ ai by definition of the latency function, and
ai > aj since i > j. Therefore the latency on link
i ∈ {j + 1, . . . , N} is strictly greater than the latency on
link j ∈ Supp (x), therefore i /∈ Supp (x) (follows from
the characterization of Nash equilibrium in Lemma 1) and
mi = 0.
The corollary states that if some link j in the support of
a Nash equilibrium is in free-flow, this completely deter-
mines the congestion state vector of the equilibrium: links
{1, . . . , j − 1} are in the support and are congested, and links
{j + 1, . . . , N} are not in the support. We will call such Nash
equilibria (where a single link in the support is in free-flow)
single-link-free-flow equilibria. In general a Nash equilibrium
does not necessarily have a link in free-flow: this defines a
second type of equilibria where all links in the support are
congested, i.e. mmax Supp(x) = 1. We will call such equilibria
congested equilibria.

Lemma 3: Enumerating Nash Equilibria
For a given congestion state m, there are at most two flow

assignments x such that (x,m) is a Nash equilibrium: one
single-link-free-flow equilibrium and one congested equilib-
rium.

The proof requires a long argument and is not presented
here. For a a detailed proof, we refer the reader to [6].

Lemma 3 shows that there are at most 2N Nash equilibria
for the instance (N, r): N single-link-free-flow equilibria,
corresponding to congestion states m = (0, . . . , 0), m =
(1, 0, . . . , 0), . . . , m = (1, . . . , 1, 0), and N congested equi-
libria, corresponding to congestion states m = (1, 0, . . . , 0),
. . . , m = (1, . . . , 1). Next, we characterize single-link-free-
flow equilibria.

C. Single link free-flow Equilibria

Consider a Nash equilibrium (x,m) and let k =
max [Supp (x)]. Assume mk = 0 (i.e. (x,m) is a free-
flow Nash equilibrium). We have from Corollary 1 that
links {1, . . . , k − 1} are congested and link k is in free-flow.
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Therefore we must have ∀n ∈ {1, . . . , k − 1}, `n(xn, 1) =
`k(xk, 0) = ak. This uniquely determines the flow on
congested links n ∈ {1, . . . , k − 1}. We define this flow to
be x̂n (k). More precisely,

Definition 2: Congestion flow
For 1 ≤ n < k ≤ N , the congestion flow x̂n (k)

is defined as the unique flow in (0, xmax
n ) that satisfies

`n(x̂n (k) , 1) = ak.
Proposition 1: Congestion Flows are decreasing

x̂n (k) = `n(·, 1)−1(ak) (2)

is a decreasing function of k since ak is increasing in k and
`n(·, 1)−1 is decreasing.
We can now characterize single-link-free-flow equilibria. All
single link free-flow equilibria are of the form

(
x̄k,r, m̄k

)

where
m̄k :=

(
1, . . . ,

k−1
1 ,

k
0, . . . , 0

)
(3)

x̄k,r :=
(
x̂1 (k) , . . . , x̂k−1 (k) , r −

k−1∑

n=1

x̂n (k) , 0, . . . , 0
)

(4)
Illustrations of Equations (2), (3) and (4) are shown in

Figure 3.

xn

`n

a1

x̂1(3)

a2

x̂2(3)

a3

r −
2∑

n=1

x̂n(3)

a4

Fig. 3: Example of a single-link-free-flow equilibrium
(x̄3,r , m̄3). Links 1 and 2 are congested, link 3 is in free-
flow, and link 4 is empty.

Proposition 2: Single link free-flow Nash Equilibria
If x̄k,r is a feasible assignment, i.e. r −∑k−1

n=1 x̂n (k) ∈
[0, xmax

k ], then
(
x̄k,r, m̄k

)
is a Nash Equilibrium for the

instance (N, r).
Proof: Follows directly from the definitions in Equati-

nos (2), (3) and (4).

D. Existence of a single-link free-flow Nash Equilibrium
From Proposition 2, we have a simple characterization of

single-link-free-flow equilibria. Next, we show that if the set
of Nash equilibria is non-empty, then it contains a single-
link-free-flow equilibrium.

Lemma 4: Existence of a single-link-free-flow Nash equi-
librium

Consider instance (N, r). If the set of Nash equilibria
is non empty, NE (N, r) 6= ∅, then there exists a single-
link-free-flow Nash equilibrium

(
x̄j,r , m̄j

)
∈ NE (N, r) for

some j ≤ N .

Proof: We first observe that for a network
of N links, NE (N, r) 6= ∅ only if r ≤
maxk∈{1,...,N}

{
xmax
k +

∑k−1
n=1 x̂n (k)

}
. We denote this

quantity with rNE (N). Therefore, from Lemma 2, it suffices
to show the following property:

PN : ∀r ∈
[
0, rNE (N)

]
, there exists a single-link-free-flow

Nash equilibrium for the instance (N, r).
We show PN by induction on N , the size of the network.

For N = 1, it is clear that if 0 ≤ r ≤ xmax
1 , there is a

single-link free-flow equilibrium (x,m) = (r, 0).
Now let N ≥ 1, assume PN is true and let us show

PN+1. Let 0 ≤ r ≤ rNE (N + 1) and consider a routing
game instance (N + 1, r).

Case 1: If r ≤ rNE (N), then by the induction hypothesis
there exists a single-link-free-flow Nash equilibrium (x,m)
for the instance (N, r). Then assignment (x′,m′) defined as
x′ = (x1, . . . , xN , 0) and m′ = (m1, . . . ,mN , 0) is clearly a
single-link free-flow Nash equilibrium for the instance (N+
1, r).

Case 2: If rNE (N) < r ≤ rNE (N + 1) then we can
show that

(
x̄N+1,r , m̄N+1

)
∈ NE (N + 1, r). From Propo-

sition 2, we only need to show that

0 ≤ r −
N∑

n=1

x̂n (N + 1) ≤ xmax
N+1. (5)

First, we note that since rNE (N) < rNE (N + 1), then
rNE (N + 1) = xmax

N+1 +
∑N
n=1 x̂n (N + 1), thus from r <

rNE (N + 1), we have r ≤ xmax
N+1 +

∑N
n=1 x̂n (N + 1)

which proves the second inequality of (5). To show the first
inequality, we have

r ≥ xmax
N +

N−1∑
n=1

x̂n (N) since rNE (N)<r

≥ xmax
N +

N−1∑
n=1

x̂n (N + 1) since x̂n (N) ≥ x̂n (N + 1)

≥ x̂N (N + 1) +

N−1∑
n=1

x̂n (N + 1) since xmax
N ≥ x̂N (N + 1)

which achieves the induction.
Corollary 2: Cost of single-link-free-flow Equilibria
If there exists a congested equilibrium (x,m) ∈

NE (N, r), then there exists a single-link free-flow equilib-
rium (x′,m′) with lower cost.

Proof: Let (x,m) ∈ NE (N, r) be a congested equi-
librium, i.e. mk = 1 where k = max Supp (x). Then we
have r ≤ xmax

k +
∑k−1
n=1 x̂n (k) and by the property Pk,

there exists a single-link free-flow equilibrium (x̃, m̃) ∈
NE (k, r), and the cost of this equilibrium is C(x̃, m̃) ≤
akr. But this also provides a single-link free-flow equilibrium
(x′,m′) for the original instance (N, r) defined by x′ =
(x̃1, . . . , x̃k, 0, . . . , 0) and m′ = (m̃1, . . . , m̃k, 0, . . . , 0),
and C(x′,m′) = C(x̃, m̃) ≤ akr. To conclude, we simply
note that the cost of the congested equilibrium is C(x,m) =
`k(xk, 1)r > akr, thus C(x,m) > C(x′,m′).
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IV. BEST NASH EQUILIBRIA

A. Determining minimum cost Nash equilibria

In order to study the inefficiency of Nash equilibria, we
focus our attention on best Nash equilibria and price of sta-
bility as a measure of their inefficiency (see for example [1]).

Definition 3: Best Nash Equilibrium
The set of Best Nash Equilibria (BNE) is the set of mini-
mizers of the total cost function

BNE (N, r) = arg min
(x,m)∈NE(N,r)

C (x,m)

We show that the minimizer is, in fact, unique, and that it
satisfies some properties, given in the following Theorem.

Theorem 1: Characterization of Best Nash Equilibria
For a routing game instance (N, r), if the set of Nash
equilibria is nonempty, then there exists a unique best Nash
equilibrium, and it is the single-link free-flow equilibrium
that has smallest support

BNE (N, r) = arg min
(x,m)∈NEf(N,r)

{max [Supp (x)]}

Since the best Nash equilibrium is unique, we will, with a
slight abuse of notation, identify the set BNE (N, r) with its
unique element. Proof: From Corollary 2 we have that
if (x,m) ∈ NE (N, r) is a congested equilibrium, then these
exists a single-link free-flow equilibrium with lower cost.
Therefore the Best Nash Equilibrium is a single-link free-
flow equilibrium. To show that the BNE has smallest support,
we simply note that if (x,m) ∈ NEf(N, r) is a single-link
free-flow equilibrium and k = max Supp (x), then its cost
is C(x,m) = akr. Note that uniqueness is immediate since
two single-link free-flow equilibria (x,m) and (x′,m′) that
have the same support, hence the same congestion state m =
m′, coincide by Lemma 3.

B. Computational complexity of finding Best Nash Equilibria

In this section, we present a constructive algorithm for
finding the best Nash equilibrium of a routing game instance
(N, r) and then show the running time to be in O

(
N2
)
.

In Algorithm 1, subroutine freeFlowConfig outputs
a candidate single-link-free-flow assignment for the instance
(N, r), such that link i is the last link in the support
(Equation (4)). Starting with link 1 in free-flow, bestNE
checks if the output of freeFlowConfig is a feasible
assignment. If this is the case, the candidate assignment
is the Best Nash Equilibrium, and bestNE terminates. If
not, the free-flow link index is incremented by one, and the
process is repeated until either a feasible assignment is found,
or the number of links exceeds N , in which case no Nash
equilibrium exists.

We first note that we can precompute x̂i (k)∀1 ≤ i < k ≤
N) in O

(
N2
)
. The subroutine freeFlowConfig runs in

O (N) time. Finally, for each loop of the bestNE outer
routine (with N iterations), the running time is a constant
plus the running time of freeFlowConfig. Therefore, the
overall running time of the algorithm is O(N2).

Algorithm 1 Best Nash Equilibrium

procedure bestNE(N, r)
Inputs: Size of the network N, demand r
Outputs: Best Nash equilibrium (x,m)
for k ∈ {1, . . . , N}:

let (x,m) = freeFlowConfig(N, r, k)
if xi ∈ [0, xmax

i ]:
return (x,m)

return No-Solution

procedure freeFlowConfig(N, r, k)
Inputs: Size of the network N,

demand r, free-flow link index k

Outputs: assignment (x,m) = (x̄r,k, m̄k) (Eq. (6) and (7))
for i ∈ {1, . . . , N}:

if i < k:
xi = x̂i(k), mi = 1 (x̂i(k) defined in Eq. (2))

elseif i == k:
xi = r −

∑k
n=1 xn, mi = 0

else:
xi = 0, mi = 0

return (x,m)

V. INEFFICIENCY OF BEST NASH EQUILIBRIA

To study the inefficiency of Nash equilibria, in particular
of the best Nash equilibrium, we use price of stability as
a measure of inefficiency [1]. Price of stability is defined
as the ratio between the cost of the best Nash Equilibrium
and the social optimal cost. First we give an overview of
social optimum for our model. Then we consider a simple
two link parallel network and derive the price of stability for
a triangular fundamental diagram. This example illustrates
in particular the dependency of the price of stability on the
flow demand and the free-flow latencies.

A. Social Optima
Consider an instance (N, r) where the flow demand r

does not exceed the maximum capacity of the net-
work r ≤ ∑

n x
max
n . Since the total cost function is

C(x,m) =
∑N
n=1 xn`n(xn,mn), the social optimum of

the network is a solution to the optimization problem:
min
x,m

∑
n xn`n (xn,mn) such that

∑
n xn = r. It can be

shown that a socially optimal flow is necessarily in free
flow on all links, which leads to an equivalent linear pro-
gram: min

x,m

∑
n xnan such that

∑
n xn = r. Then, since

the links are ordered by increasing free-flow latency a1 <
· · · < aN , the social optimum is simply given by the
assignment that saturates most efficient links first. Formally,
if k0 = max{k|r > ∑k

n=1 x
max
n } then the social optimal

assignment x? is:

x? =
(
xmax

1 , . . . , xmax
k0 , r −

k0∑

n=1

xmax
n , 0, . . . , 0

)
(6)

B. Price of Stability on a Two-Link Network
Consider a routing game instance (2, r) such that a1 <

a2 and xmax
2 + x̂1 (2) > xmax

1 . Let BNE (2, r) =
(xBNE(r),mBNE(r)) be the best Nash equilibrium and
(x?(r), 0) be the social optimum, as defined by (6). The
price of stability is then defined as

POS (N, r) =
C (xBNE(r),mBNE(r))

C (x?(r),0)
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a) Case 1: 0 ≤ r ≤ xmax
1 : Using (6), all the demand

will be on link 1 in free-flow. Similarly, from Theorem 1
we have that since link 1 can accommodate r in free-flow
and the support cannot be smaller than a single link, then
BNE (2, r) has all flow demand on link 1 in free-flow, and
is coincides with the social optimum. In this case, the price
of stability is equal to 1.

b) Case 2: xmax
1 < r ≤ xmax

2 + x̂1 (2): We know
that all flow demand cannot be accommodated by link 1.
From Equation (6), the social optimum assignment is given
by x?(r) = (xmax

1 , r − xmax
1 ). From Theorem 1 we have

that BNE (2, r) has a single link in free-flow. Since the
total demand exceeds the capacity of link 1, then under a
best Nash equilibrium, link 2 is in free-flow, and link 1 is
congested. Therefore mBNE(r) = (1, 0). The corresponding
flow xBNE(r) is (x̂1 (2) , r − x̂1 (2)). The comparison of
the social optimum and Nash equilibrium assignments are
depicted in Figure 4. Then it can be shown that

POS (2, r > xmax
1 ) =

(
1− xmax

1

r

(
1− a1

a2

))−1

In this simple two-link parallel network, the price of stability
is maximal at r = (xmax

1 )+ and equal to a2/a1 (Figure 4c).
This shows in particular that for the general class of hor-
izontal queuing congestion latencies, the price of stability
is unbounded, since for any demand r and any positive
constant A, we can design an instance (2, r) such that the
price of stability is a2

a1
> A.

(a) Social optimum (b) Nash equilibrium (c) POS as a function of
demand.

Fig. 4: Visualization of POS on two-link network. Differ-
ences in flow assignments between social optimum and Nash
equilibrium are shown in 4a and 4b. The area of the shaded
regions in 4a,4b are the total costs attributed to each link. In
4c, the flat region corresponds to r ≤ xmax

1 (Case 1) and the
decreasing region to r > xmax

1 (Case 2).

We also observe that for a fixed flow demand r > xmax
1 ,

the price of stability is an increasing function of a2
a1

. And
as a2 → a1, the price of stability goes to 1. Intuitively, the
inefficiency of Nash equilibria can be directly attributed to
the difference in free-flow latency between the links.

Additionally, as the demand r > xmax
1 increases, the price

of stability decreases. This occurs because the difference in
total latency between social optimum and Nash equilibrium
is constant for r > xmax

1 .
This also shows that selfish routing is most costly when a

free-flow link is near maximum capacity (note the disconti-
nuity in total latency for Nash equilibrium that occurs when
demand exceeds the capacity of the first link r > xmax

1 ). If

a controller were to anticipate a scenario where demand was
slightly above this capacity, they could dramatically reduce
the inefficiency of the Nash equilibrium by rerouting a small
fraction of the flow and keeping the link in free-flow.

VI. CONCLUSION

We introduced a new class of latency functions that models
congestion in horizontal queuing networks, and studied the
resulting Nash equilibria for non-atomic congestion games
on parallel networks. We showed the essential uniqueness
property does not hold for this new class, and that there
may be up to 2N equilibria for a routing game instance
(N, r). Then we focused our attention on the best Nash
equilibrium BNE (N, r), which we proved is the single-
link-free-flow equilibrium with smallest support, and then
presented a constructive, quadratic time algorithm for find-
ing this equilibrium. Finally, we derived price of stability
results for a two-link network, then showed that if a link is
anticipated to be near capacity, congestion can be completely
averted by diverting only a small fraction of the demand.
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