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Abstract

An alternate formulation of the classical vehicle routing problem with stochastic demands

(VRPSD) is considered. We propose a new heuristic method to solve the problem. The

algorithm is a modified version of the so-called Cross-Entropy method, which has been proposed

in the literature as a heuristic for deterministic combinatorial optimization problems based

upon concepts of rare-event simulation. In our version of the method, the objective function is

computed using Monte-Carlo simulations at each point in the domain and the modified Cross-

Entropy heuristic is applied. A framework is also developed for obtaining exact solutions and

tight lower bounds for the problem under various conditions, which include specific families of

demand distributions. This is used to assess the heuristic’s performance. Finally, numerical

results are presented for various problem instances to illustrate the ideas.

1 Stochastic Vehicle Routing

The classical vehicle routing problem (VRP) is defined on a graph G = (V, A), where V =

{v0, v1, . . . , vn} is a set of vertices and A = {(vi, vj) : i, j ∈ {0, . . . , n}, vi, vj ∈ V } is the arc

set. A matrix L = (Li,j) can be defined on A, where the coefficient Li,j defines the distance be-

tween nodes vi and vj and is proportional to the cost of travelling the corresponding arc. There

can be one or more vehicles starting off from the depot v0 with a given capacity, visiting all or

a subset of the vertices, and returning to the depot after having satisfied the demands at the

vertices. The Stochastic Vehicle Routing Problem (SVRP) arises when elements of the vehicle

routing problem are stochastic — the set of customers visited, the demands at the vertices, or the

travel times. The solutions for the VRP problems no longer hold, considering the fundamental

1



structural differences between the two. SVRP problems have been studied under different formu-

lations: Travelling Salesman Problem with Stochastic Customers (TSPSC), Travelling Salesman

Problem with Stochastic Travel Times (TSPST), Vehicle Routing Problems with Stochastic De-

mands (VRPSD), Vehicle routing problem with Stochastic Customers (VRPSC), Vehicle Routing

Problem with Stochastic Customers and Demands (VRPSCD). For a survey of these methods and

the techniques proposed for them, we refer to Gendreau et al. (1996a).

The predominant approach for solving the SVRP class of problems is to use some “here-

and-now” optimization technique, where the sequence of customers to be visited is decided in

advance. On the given route, if the vehicle fails to meet the demands of a customer, there is

a recourse action taken. The recourse action could be in the form of going back to the depot

to replenish and fulfilling the customers demand, and continuing with the remaining sequence of

the customers to be visited or any other meaningful formulation. The problem then reduces to a

stochastic optimization problem where the sequence with the minimum expected distance travelled

(or equivalently, minimum expected cost) has to be arrived at. The alternative is to use a re-

optimization strategy where upon failure at a node, the optimum route for the remaining nodes is

recalculated. The degree of re-optimization varies. At one extreme is the use of a dynamic approach

where one can re-optimize at any point, using the newly obtained data about customer demands, or

to re-optimize after failure. Neuro Dynamic Programming has been used to implement techniques

based on re-optimization; see, e.g., Secomandi (2000, 2001).

A strategy using some “here-and-now” optimization approach becomes meaningful if it is not

feasible to adopt a re-optimization strategy due to resource constraints. Exact algorithms of that

type for a number of SVRPs have been proposed by Laporte et al. (1989, 1992, 1994). The first

algorithm for this was proposed by Tillman (1969) based on the Clark and Wright algorithm (Clarke

and Wright 1964). The chance constrained version of the problem, where the probability of failure

must not exceed a certain threshold but the expected cost of the recourse action is not taken into

account, has been studied by Golden and Yee (1979), Stewart Jr. and Golden (1983), and Laporte

et al. (1989). Dror et al. (1986a) present a savings heuristic algorithm for this case. Bertsimas

(1992) proposes an asymptotically optimum heuristic for the VRPSD problem with estimates

of the average performance. In Bertsimas (1995), Dynamic Programming is used to supplement

the recourse actions taken in the earlier paper. Dror et al. (1986b) present a solution framework

based on the Markovian Decision processes for the general class of SVR problems. Properties and

formulations of the VRPSD based on a priori optimization have been also been investigated by
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Laporte and Louveaux (1990), Bastian and Kan (1992), and Trudeau and Dror (1992). Gendreau

et al. (1995) solve the VRPSCD with demands following discrete probability distributions within

the framework of stochastic integer programming, using an integer L-shaped algorithm to produce

exact solutions. The demands at the vertices are taken to be discrete and independent. A similar

method has been proposed by Hjorring and Holt (1999). Gendreau et al. (1996b) have proposed

a heuristic based on Tabu Search with results comparing favorably with exact optimal solutions

derived from Gendreau et al. (1995).

1.1 Problem Description

In this paper we focus on the vehicle routing problem with stochastic demands (VRPSD). A

certain type of product is distributed from a plant to N customers, using a single vehicle, having a

fixed capacity Q. The vehicle strives to visit all the customers periodically to supply the product

and replenish their inventories. On a given periodical trip through the network, on visiting a

customer, an amount equal to the demand of that customer is downloaded from the vehicle, which

then moves to the next site. The demands of a given customer during each period are modelled as

independent and identically distributed random variables with known distribution. A reasonable

assumption is that all the customers demands belong to a certain distribution (say normal) with

varying parameters for different customers.

The vehicle sets out with the fixed capacity Q, and does not have knowledge of the demands

that it will encounter on a given route, save for their individual probability distributions. Hence,

there is a positive probability that the vehicle runs out of the product along the route, in which

case the remaining demands of that customer and the remaining customers further along the route

are not satisfied (a failure route). Such failures are discouraged with penalties, which are functions

of the recourse actions taken. Each customer in the set can have a unique penalty cost for not

satisfying the demand. The cost function for a particular route travelled by the vehicle during a

period is calculated as the sum of all the arcs visited and the penalties (if any) imposed. If the

vehicle satisfies all the demands on that route, the cost of that route will simply be the sum of the

arcs visited including the arc from the plant to the first customer visited, and the arc from the last

customer visited back to the plant.

Alternatively, if the vehicle fails to meet the demands of a particular customer, the vehicle heads

back to the plant at that point, terminating the remaining route. The cost function is then the sum

of all the arcs visited (including the arc from the customer where the failure occurred back to the
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plant) and the penalty for that customer. In addition, the penalties for the remaining customers

who were not visited will also be imposed. Thus, a given route can have a range of cost function

values associated with it. The objective is to find the route for which the expected value of the cost

function is minimum compared to all other routes.

The problem above formulated is common to some specific industries where a single transporta-

tion entity caters to the demands of a limited (usually not greater than 25) number of customers

for a single product. These customers must be served periodically and hence expected values of

the cost function become important. The time frame within which demand must be met is critical.

Failure to meet demand at certain points can result in lost revenue and/or emergency deliveries to

those customers. This motivates our use of penalties that are incorporated to the cost function.

Common industries where such type of problems occur include serving a group of restaurants, deliv-

ering products to hospitals/ pharmacies and delivering gases to industries. In fact, what motivated

us to work on this problem were the issues faced by a large distributor of liquid air.

1.2 Solution Method

Studied from the point of view of the “here-and-now” optimization approach, i.e. deciding the

sequence of vertices to be visited in advance and independent of the demands encountered, the

problem can be cast as a discrete stochastic optimization problem with respect to the discrete set

of finite routes that can be taken. The class of discrete stochastic optimization problems we are

considering here are those of the form

min
r∈R

{G(r) := E[H(r,Dr)]}, (1)

where Dr is a random variable that may or may not depend on the parameter r, H is a deterministic,

real valued function and R is the discrete and finite (or countably infinite) feasible set of values that

r can take. Thus, H(r,Dr) is a random variable whose expected value, G(r) is usually estimated

by Monte Carlo simulation or experimentation, since an analytical expression is elusive. The global

optimum solution set can then be denoted by

R∗ = {r∗ ∈ R : G(r∗) ≤ G(r) ∀ r ∈ R}.

To solve the above problem, we use a new combination of Monte-Carlo techniques and the

Cross Entropy (CE) method, (referred henceforth as the CE method) developed by Rubinstein

(1999, 2002). The basic idea of CE method is to connect the underlying optimization problem to a
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problem of estimating rare-event probabilities, and use tools derived for that class of problems. The

method has been shown to work quite well in the context of deterministic optimization; see, e.g.,

the tutorial paper by de Boer et al. (2003) and references therein. Here we adapt the method to

the context of discrete stochastic optimization. The result is a new algorithm on its own — indeed,

we view that as one of the main contributions of the paper, see section 1.4.

1.3 Literature on Discrete Stochastic Optimization

Since the parameter space is discrete, methods for continuous stochastic optimization such as

the stochastic approximation method which rely on derivatives cannot be applied to such class

of problems. Ranking-and-selection and multiple comparison procedures have been proposed by

Hochberg and Tamhane (1987), Bechhofer and Santner (1995), and Hsu (1996) for cases where the

set of feasible solutions is small.

Global search methods via Markov Chains have been proposed by Yan and Mukai (1992), An-

dradottir (1995, 1996), Alrefaei and Andradottir (2001). There have been also a number of heuris-

tic techniques based on simulated annealing to solve discrete stochastic optimization problems.

Gelfland and Mitter (1989) show that when the noise is N(0, σ2) and under a suitable temperature

scheme, the simulated annealing procedure applied to the stochastic version converges with the

same probability as for the deterministic case to the set of global optimum solutions. Gutjahr and

Pflug (1996) show that Simulated Annealing algorithm can be applied directly to solve the discrete

optimization problems by using sampling to reduce the variance. They showed that if the noise

is symmetric around 0 and sharply peaked, the convergence is similar to that of the algorithm

applied to a deterministic problem. Their scheme requires that sampling be increased in successive

iterations to reduce the variance of the noise. Alrefaei and Andradottir (1999) apply the simulated

annealing procedure with a constant temperature scheme to solve the discrete stochastic optimiza-

tion problem, while avoiding excessive sampling to reduce the overall number of computations. For

other discrete stochastic optimization methods based on simulated annealing, we refer to Fox and

Heine (1995) and Gutjahr et al. (1999).

There has also been work on using heuristic procedures based on genetic algorithms to solve

discrete stochastic optimization problems. For work on using genetic algorithms, we refer to Aizawa

and Wah (1994). Allen and Ittiwattana (2002) have proposed a new procedure for general simulation

optimization that can be extended to the domain of discrete stochastic optimization problems. Zhai

et al. (1996) study the convergence properties of schemes using genetic algorithms to solve such
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problems.

1.4 Discussion of contributions

We discuss now the contributions of this work. They are two-fold, in the sense that part of the

contributions relates to the vehicle routing problem and part relates to the Cross-Entropy technique.

From the viewpoint of vehicle routing problems, we propose a new heuristic method to solve

a particular class — the VRPSD — as an alternative to existing techniques. In addition, the

bounds and exact formulations derived in section 3 are, to the best of our knowledge, new.

We also contribute to the ongoing development of the CE method. Our contribution here has

two aspects: first, we formalize the use of a trajectory generation procedure in routing problems

as a mechanism of sampling from some distribution. Although trajectory generation methods have

been proposed before (see, e.g., de Boer et al. 2003, Margolin 2002, Rubinstein 1999, 2002), the link

between such procedures and sampling had not been fully established in our view. Our formulation

provides such link, which also allows us to prove the correctness of the algorithm; we refer the

reader to section 4 for details.

Another contribution of this work to the CE area is the development of a CE-based algorithm for

stochastic optimization. Notice that here we use this term to refer to problems of the form (1) — i.e.,

problems where some of the data are random with known distributions. The reason we emphasize

this point is that “stochastic optimization” is sometimes used to refer to probabilistic algorithms, i.e.,

algorithms for deterministic problems that incorporate some randomization. Examples of methods

in the latter category are the original CE method as well as simulated annealing and pure random

search. The distinction, of course, is not just semantical — stochastic optimization problems have

a completely different nature than deterministic ones and are in general harder to solve.

As discussed in section 4.2, one way to deal with the uncertainty in stochastic optimization

problems is to use Monte Carlo sampling to approximate expected values. Although it is intuitive

that using large sample sizes should yield good approximating solutions — see, e.g., Kleywegt

et al. (2001), Homem-de-Mello (2003) for comprehensive discussions — in practice the choice of

the sample size is critical to the performance of the algorithm, since a very large sample may

unnecessarily slow down the convergence to the optimal solution. The method we propose balances

the effort between Monte Carlo sampling and the trajectory generation inherent to the CE algorithm.

Such approach is new, since previous papers such as Allon et al. (2003) that consider CE for

stochastic optimization problems do not touch the issue of choice of sample sizes.
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2 Problem Formulation

The problem can be defined on a graph G = (V, A), where V = {v0, v1, . . . , vn} is a set of n + 1

vertices and A = {(vi, vj) : i 6= j; vi, vj ∈ V } is the arc set. As before, define Li,j as the distance

between vi and vj .

Define the route r as the sequence of vertices visited in V always starting with v0 and coming

back to v0. That is, r := (r0, r1, . . . , rn, rn+1) with r0, rn+1 always representing v0, the starting

node.

During a particular route r, denote the surplus quantity of the product in the vehicle after

delivery at a node ri as Sur(ri), where Dri denotes the demand at node ri. Set Sur(r0) as Q, the

initial quantity in the vehicle. Then, define Sur(ri) as:

Sur(ri) :=





Sur(ri−1)−Dri : if Sur(ri−1) > 0

−∞ : if Sur(ri−1) ≤ 0
(2)

In (2), Sur(ri) = −∞ serves to indicate that the vehicle has failed to meet the demand at one of

the earlier nodes.

Define the penalty scheme as

f(ri) :=





0 : if Sur(ri) > 0

L(ri, r0) : if Sur(ri) = 0

φri + L(ri, r0) : if −∞ < Sur(ri) < 0

φri : if Surri = −∞,

where φri — a number, not a random variable — denotes the penalty for failing to meet the demand

at node ri. Define the indicator function

I(ri) :=





0 : if Sur(ri) ≤ 0

1 : if Sur(ri) > 0

We are now in a position to define the cost function of the route r as:

H(r,Dr) :=
n∑

i=0

L(ri, ri+1) · I(ri) +
n∑

i=1

f(ri), (3)

where Dr := [Dr1 , . . . , Drn ], the demands encountered at the nodes. The recourse action if the

demand is not satisfied at a particular node is to simply terminate the route and go back to the

depot and impose the penalties as per the scheme defined. Note that Dri is a random variable.

Since the cost function H is dependent on the demands, it is also a random variable.
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Let G(r) := E[H(r,Dr)] denote the expected value of the cost function. The “here-and-now”

optimization problem of finding the route with minimum expected cost value can be written as

min
r∈R

G(r), (4)

where R is the feasibility set of all the possible routes that can be constructed on the graph G.

This is a VRPSD.

3 Lower Bounds and Exact Solutions

The problem formulated in the previous section lends itself to different approaches depending on

the nature of the penalties and demands encountered at the nodes. It is reasonable to assume

that the demands are positive valued independent random variables. Then, the problem can be

categorized into four levels, each lending itself to a different type of analysis:

1. the demands are independent and identically distributed (iid), the penalties are identical;

2. the demands are iid, the penalties are non-identical;

3. the demands are non-iid, the penalties are identical;

4. the demands are non-iid, the penalties are non-identical.

In what follows, we will discuss each of these categories separately.

3.1 Demands are iid

Since the distribution of demand Dri is independent of node ri, the probability of failure at the ith

node is independent of the sequence taken. Consequently, it is possible to compute the cost due to

the path taken analytically. Let C denote the capacity of the vehicle. Define the quantities

p0 := 1 (5)

pi := P

(
i∑

k=1

Dk < C

)
i = 1, . . . , n− 1. (6)

The value pi corresponds to the probability that the vehicle continues the trip from ri to ri+1.

For the first n − 1 nodes, this happens when the sum of the demands on the path up to node ri

is strictly less than the vehicle capacity C. Notice that if the vehicle goes from rn−1 to rn then

the trip from rn to rn+1 will happen regardless of whether the demand at node rn is met or not.
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Therefore, we can count that cost in the “cost of trip back to depot” below. The expected cost of

traversing the arcs due to a route r := {r0, r1, . . . , rn+1} is then

T (r) :=
n−1∑

i=0

pi · L(ri, ri+1). (7)

Notice that if nothing is left in the vehicle after visiting node ri, then the vehicle interrupts its

journey and makes an unplanned trip back to the depot. Let p◦i denote the probability of that

event. We have

p◦1 := P (D1 ≥ C) (8)

p◦i := P

(
i∑

k=1

Dk ≥ C,
i−1∑

k=1

Dk < C

)
i = 2, . . . , n− 1 (9)

p◦n := P

(
n−1∑

k=1

Dk < C

)
. (10)

Node rn is treated separately, since as remarked above the cost of travelling from rn to rn+1 ≡ r0

will incur whenever the vehicle reaches rn. The expected cost of trips back to the depot is then

TB(r) :=
n∑

i=1

p◦i · L(ri, r0). (11)

To determine the expected cost of penalties, define

qi := P

(
i∑

k=1

Dk > C

)
i = 1, . . . , n.

The quantity qi denotes the probability that the demand at node ri is not met and hence a penalty

incurs. Next, recall that the penalty at node ri is defined as φri . The expected cost of penalties

can then be formulated as

P (r) :=
n∑

i=1

qi · φri . (12)

By putting the above equations together, we have that the total expected cost of route r is given

by

F ◦(r) := T (r) + TB(r) + P (r). (13)

Observe that F ◦(r) is equal to G(r), the expected value of the stochastic function H(r,Dr) given

in (3). The optimization problem can be restated as

min
r∈R

F ◦(r). (14)
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3.1.1 Solving as an Integer Linear Programming Problem

The optimization problem defined in (14) can be cast as a quadratic integer problem and solved

exactly. In what follows, the index k ∈ {0 · · ·n} refers to the position in the route and i, j ∈ {0 · · ·n}
refer to the nodes. xki is a binary decision variable to indicate if node vi is in the k’th position in

the route. Then, problem (14) can be recast as

min
x

n∑

k=1

pk−1

n∑

i=0

n∑

j=0

x(k−1)i · xkj · L(vi, vj) +
n∑

k=1

n∑

i=1

(xki · φvi · qk + p◦k · xki · L(vi, v0)) (15)

subject to the constraints

n∑

i=0

xki = 1, k = 0, . . . , n + 1 (16)

n∑

k=0

xki = 1, i = 0, . . . , n (17)

x00 = 1. (18)

The quadratic integer program given by (15)-(18) can be reduced to a Linear Integer Program in

the standard fashion by defining Wkij := x(k−1)i · xkj . We obtain

min
x,W

n∑

k=1

pk−1

n∑

i=0

n∑

j=0

Wkij · L(vi, vj) +
n∑

k=1

n∑

i=1

[xki · φvi · qk + p◦k · xki · L(vi, v0)] (19)

subject to the constraints

Wkij ≤ x(k−1)i (20)

Wkij ≤ xkj (21)

Wkij ≥ x(k−1)i + xkj − 1 (22)

(for each k ∈ {1, · · · , n + 1} and each i, j ∈ {0, · · · , n}) along with constraints given by (16)-(18).

This method can be used to obtain an exact solution for the problem at hand and provide a means

to test the validity of the solution using the CE method.

3.2 Demands are non-iid, penalties are uniform

To simplify the analysis, we will assume that the cost of going back to the depot — because of

failure at a node, or after serving all the nodes — can be disregarded. Such is the case, for example,

when the depot is approximately equidistant from all nodes, of when that cost is low in comparison
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to penalty costs. If this is not the case, we can easily bound that cost from below by the minimum

distance from any node back to the depot.

The analysis is complicated by the fact that the probability coefficients depend on the route

since demands are non-iid. Hence, it is not possible to get an exact solution for the optimization

problem. Instead, we shall endeavor to find a tight lower bound for this formulation as a means to

assess the CE method’s performance. In this context, define for a given route r,

p0(r) := 1 (23)

pi(r) := P

(
i∑

k=1

Drk
< C

)
, i = 1, . . . , n (24)

qi(r) := P

(
i∑

k=1

Drk
> C

)
, i = 1, . . . , n, (25)

where as before Dri is the demand at node ri for a route r. We note that pi(r) and qi(r) are

analogous to the quantities pi and qi defined in the previous section, except that they are also

functions of the route. Denote the identical penalties imposed at nodes by φ. Then, the expected

cost function of any route r ignoring the expected cost of going back to the home depot can be

formulated as

F (r) :=
n−1∑

i=0

pi(r) · L(ri, ri+1) + φ ·
n∑

i=1

qi(r), (26)

and the optimization problem can be restated as

min
r∈R

F (r). (27)

We now present a method to obtain a tight lower bound for the problem defined in (27). Let us

assume the following properties for the demands at the nodes:

1. The demands at the nodes are drawn from the same family of distributions F whose parameter

depends on the node i, i.e., Di ∼ F(µi).

2. Also, F has the property that Di + Dj ∼ F(µi+j).

3. The demands can only take on positive values.

4. The parameter of F yields a stochastic ordering, so that if µi ≥ µj , then P (Di < C) ≤
P (Dj < C).

5. The demand realizations at the nodes are independent of one another.
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6. Demands have continuous distributions, so that P (Di > C) ≡ P (Di ≥ C).

These properties are satisfied, for example, if Di, · · · , Dn are independent random variables with

Di ∼ Gamma(αi, β).

For any route r̂, consider the problem

min
r∈R

n−1∑

i=0

pi(r̂) · L(ri, ri+1). (28)

Let r(r̂) be the solution to the optimization problem in (28). The optimization problem can be

easily solved by reducing (28) to a Linear Integer Problem as shown in the previous section. Define

h(r̂) as the optimal value of (28), i.e.,

h(r̂) :=
n−1∑

i=0

pi(r̂) · L(r(r̂)i, r(r̂)i+1). (29)

The quantity h(r̂) has no physical interpretation since the probability coefficients for the path r̂

have been used over the route r(r̂). Analogously to the definition in (12), let P (r̂) denote the

expected value of the penalty costs for the route r̂. We have

P (r̂) = φ ·
n∑

i=0

qi(r) = φ ·
n∑

i=0

(1− pi(r̂)).

Finally, define ψ(r̂) as

ψ(r̂) := h(r̂) + P (r̂).

Comparing the above equation with (26), it is easy to see that ψ(r̂) ≤ F (r̂). Now, consider the

route r? such that

µr?
1
≤ µr?

2
≤ . . . ≤ µr?

n
. (30)

Then since stochastic ordering is ensured, we have

1 ≥ pi(r?) ≥ . . . ≥ pn(r?).

Further, pi(r?) ≥ pi(r) for all r ∈ R, so

P (r?) ≤ P (r) for all r ∈ R.

The lemma below shows that ψ provides a lower bound on the optimal value.
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Lemma 1 Suppose that the penalty value φ is bigger than the largest possible arc length M . Then,

ψ(r?) is a tight lower bound to minr F (r).

Proof: Given an arbitrary route r̂, consider the difference ψ(r̂)− ψ(r?). We have

ψ(r̂)− ψ(r?) =
n−1∑

i=0

L[r(r̂)i, r(r̂)i+1] · pi(r̂) + P (r̂)−
n−1∑

i=0

L[r(r?)i, r(r?)i+1] · pi(r?)− P (r?)

=
n−1∑

i=0

L[r(r̂)i, r(r̂)i+1] · (pi(r̂)− pi(r?) + pi(r?)) + P (r̂)−

−
n−1∑

i=0

L[r(r?)i, r(r?)i+1] · pi(r?)− P (r?).

Rearranging, we have

ψ(r̂)− ψ(r?) =
n−1∑

i=0

L[r(r̂)i, r(r̂)i+1] · pi(r?)− L[r(r?)i, r(r?)i+1] · pi(r?)− (31)

−
n−1∑

i=0

(L[r(r̂)i, r(r̂)i+1]− φ) · (pi(r?)− pi(r̂)). (32)

Note that the term in (31) is always a non-negative quantity, since r(r?) is the solution to the

optimization problem defined in (28). Moreover, by the assumption in the lemma we have that

L[r(r̂)i, r(r̂)i+1] ≤ φ for all i. Since pi(r?) ≥ pi(r) for all r ∈ R, it follows that the term in (32) is

non-negative and thus ψ(r̂) − ψ(r?) is non-negative. As seen above, ψ(r̂) ≤ F (r̂). Finally, since

r̂ was chosen arbitrarily, we conclude that ψ(r?) ≤ minr F (r). The lower bound becomes tight

if r? ≡ r(r?) so that pi(r?) = pi(r(r?)). In this case, r? is the solution to the discrete stochastic

optimization problem minr F (r).

Note that if the converse holds, i.e. if φ is smaller than the lowest possible arc length m, then

ψ(r•) is a lower bound to minr F (r), where r• is the path such that

µr•1 ≥ µr•2 · · · ≥ µr•2 . (33)

If m ≤ φ ≤ M , then it is not possible to get a tight lower bound and a loose lower bound for

minr F (r) can be given as h(r•) + P (r?) where r?, r• are defined as before.

3.3 Demands are non-iid, penalties are non-uniform

Let the assumptions of the previous section hold here also. In this case, the expected cost function

of any route ignoring the expected value of going back to the home depot can be defined as

F (r) :=
n−1∑

i=0

L(ri, ri+1) · pi(r) +
n∑

i=1

(1− pi(r)) · φri . (34)
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Here, φri denotes the penalty at node ri for any route r. As in the previous section, define h(r̂) for

any route r̂ as

h(r̂) := min
r∈R

n−1∑

i=0

L(ri, ri+1) · pi(r̂). (35)

with r(r̂) being the solution to the optimization problem. Similarly, define g(r̂) as

g(r̂) := min
r∈R

n∑

i=1

(1− pi(r̂)) · φri . (36)

Now consider the route r• defined by (33). Then, by stochastic ordering we have

pi(r•) ≤ pi(r)

for any 1 ≤ i ≤ n and any r. Now consider h(r•) =
∑n−1

i=0 pi(r•) ·L[r(r•)i, r(r•)i+1]. Then we have,

for any r̂,

h(r•) ≤
n−1∑

i=0

pi(r•) · L[r(r̂)i, r(r̂)i+1]

≤
n−1∑

i=0

pi(r̂) · L[r(r̂)i, r(r̂)i+1]

= h(r̂).

Hence, h(r•) ≤ h(r̂) for any r̂ ∈ R. Similarly, g(r?) ≤ g(r̂) for any r̂ ∈ R, where r? is the route

such that

µr?
1
≤ µr?

2
≤ · · · ≤ µr?

n
.

It follows that h(r•) + g(r?) is a non-tight lower bound to minr F (r).

4 Application of the Cross Entropy Method to Solve the VRPSD

The problem formulated in section 2 can be solved as a discrete stochastic optimization problem.

We propose a modified version of the CE method to solve it. Before describing our method, we

first review some basic concepts of the CE technique.

The CE method was developed by Reuven Rubinstein in the context of rare event simulations,

where it is used in combination with the importance sampling (IS) technique. In those problems,

the goal is to estimate the probability of occurrence of a very rare event. The difficulty lies in the

fact that a standard Monte Carlo method will yield zero as the estimate, unless an extremely large

14



sample size is used. Roughly speaking, the IS technique aims to select a probability measure that

makes the occurrence of extremely rare events more frequent, thereby reducing the variance of the

estimator. It is known that an optimal zero-variance measure exists, but it is of impractical use

since it depends on the quantities one wants to estimate.

In the CE method, the Kullback-Liebler cross entropy is used to measure the distance between

the importance sampling distribution and the optimal zero-variance measure. Thus, one chooses

the distribution that minimizes that distance. The appeal of the method is that such minimization

problem can be solved even though the optimal zero-variance measure is not completely known.

This idea can be combined with and adaptive scheme, yielding a probability measure that can

be used as an approximation of the optimal IS distribution. In Homem-de-Mello and Rubinstein

(2002) the method is described in detail and some theoretical properties are established, including

convergence of the algorithm.

In Rubinstein (1999, 2002), the idea behind the CE technique is applied to combinatorial op-

timization. The key concept is to view the selection of an optimal solution at random from the

domain of possible values as a rare event. More specifically, suppose we want to minimize a de-

terministic function h(x) over a finite set X, and assume that h has a unique minimizer x∗. Let

p(·) be a uniform distribution on X, and let Y be a random variable on X with distribution p.

Then, {Y = x∗} is a rare event under p. As it turns out, the corresponding optimal IS distribution

for this rare event is the atomic measure pointed at x∗. Thus, the CE method can be used as a

heuristics to obtain the optimal solution. The resulting method has been applied successfully to

numerous problems; we refer the reader to the tutorial by de Boer et al. (2003) for a more detailed

discussion and references.

To describe more specifically the application of the CE method to the problem under study, let

us consider first a simpler problem, where demand is not random and all demands and penalties are

identical. It is clear that in this case only the transportation costs matter; therefore, the problem

reduces to the well-known travelling salesman problem (TSP). Notice that such simplification is

done just to motivate the developments below — the actual problems we consider become far

more complicated than the TSP due to the introduction of random demands. The use of the CE

method for the TSP has been widely studied in CE literature, see for instance de Boer et al. (2003),

Margolin (2002), Rubinstein (1999, 2002). Despite that fact, there is a mathematical gap in the

formulation of the method for the TSP that has not been addressed by previous works. Such issue

is explained in detail below.
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To proceed, let us put the TSP in the context of rare events. Let R denote the set of all paths

of length n + 1 that form a hamiltonian circuit on V . That is,

R := {r ∈ V n+2 : r0 = rn+1 = v0, rj 6∈ {r0, . . . , rj−1} for j = 1, . . . , n.}

For the sake of terminology, we will say that the paths r ∈ R are valid routes.

Following the approach outlined above, we would like to define a distribution q on the feasibility

set R. A natural way to do that, as proposed by Rubinstein (1999), is to define probability of

transitions between any pair of nodes. That is, consider a Markov chain {Xk} with state space

S = V (recall that V = {v0, . . . , vn} is the set of vertices of the underlying graph) and transition

probability matrix P with no self-loops, i.e. Puu = 0 for all u ∈ V . Then, we can associate the

desired distribution on the feasibility set R with the probability that the Markov chain follows a

certain valid route. In other words, we would like to set

q(r) = P (X0 = r0, . . . , Xn+1 = rn+1). (37)

The problem with such approach, of course, is that q is not a probability distribution on R, since
∑

r∈R q(r) < 1. To illustrate, consider for example the case where there are only three nodes

v0, v1 and v2, and suppose that P is such that Pij = 1/2 for all i 6= j. Clearly, there are only

two valid routes: r1 = (v0, v1, v2, v0) and r2 = (v0, v2, v1, v0). The probability that the Markov

chain {Xk} follows route rj is (1/2)3 = 1/8. Therefore, the total probability of valid routes is

1/8 + 1/8 = 1/4 < 1.

One way to fix the problem is to define q(r) as the probability that the Markov chain {Xk}
follows route r conditionally on the fact that r is valid route. In that case, q(r) for r ∈ R is defined

as

q(r) = P (X0 = r0, . . . , Xn+1 = rn+1 | (X0, . . . , Xn+1) ∈ R) =
P (X0 = r0, . . . , Xn+1 = rn+1)

P ((X0, . . . , Xn+1) ∈ R)
.

(38)

Applying this idea in the above example yields q(r1) = q(r2) = (1/8)/(1/4) = 1/2. The calculation

is coherent — since there are only two valid routes and P is uniform, the probability of each valid

route should be 1/2.

Definition (38), although correct, does not provide a constructive way to determine q(r) since

computing the denominator is difficult. Moreover, it is unclear how to draw samples from q. In

what follows, we describe an alternative definition of q(r) to address these issues. We start by

making the following assumption:
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Assumption A: The matrix P is such that Puu = 0 for all u ∈ V and there exists r̂ ∈ R with

P (X0 = r̂0, . . . , Xn+1 = r̂n+1) > 0.

Next, let {Yk} be a stochastic process associated with the matrix P defined above such that, for

any r ∈ V n+2,

P (Y0 = r0) = I {r0 = v0} (39)

P (Yn+1 = rn+1) = I {rn+1 = v0} (40)

P (Yk = rk |Y0 = r0, . . . , Yk−1 = rk−1) = I {rk ∈ V \ {r0, . . . , rk−1}}
Prk−1,rk∑

s∈V \{r0,... ,rk−1} Prk−1,s
,(41)

where the k in the last equation spans 1, . . . , n. It is clear from (39)-(41) that the sample paths of

the process Y = (Y0, . . . , Yn+1) are valid routes. Notice that, because of assumption A, the process

Y is well defined, that is, there exists some r ∈ R such that P (Y = r) > 0.

We can now define q as the probability measure on R induced by the process Y , i.e., q(r) =

P (Y = r). Notice that q is completely determined by the underlying transition matrix P . When

P is the uniform matrix — i.e. Puv = 1/n for u 6= v, Puu = 0 — the fraction in (41) becomes

(1/n)/[(n− k + 1)(1/n)] = 1/(n− k + 1) and hence we have, for r ∈ R,

q(r) = P (Y0 = r0)P (Y1 = r1 |Y0 = r0) . . . P (Yn = rn |Y0 = r0, . . . , Yn−1 = rn−1)P (Yn+1 = rn+1)

=
n∏

k=1

1
n− k + 1

=
1
n!

.

Also, q(r) = 0 for r 6∈ R. Thus, the above construction yields the correct probability measure.

Notice that q(r) is easily computable for any given r. Moreover, it is easy to generate samples from

q(·), see the discussion in section 4.1.1.

Given a valid route r ∈ R, let F (r) be the associated cost. For a given threshold value a, the

probability (with respect to the measure q) that the cost is not more than a is then given by

f(a) := Eq[I{F (r) ≤ a}] =
∑

r∈R
I{F (r) ≤ a} q(r), (42)

where I{·} is the indicator function. Let qa be a measure in R such that if qa(r) = 0 then either

q(r) = 0 or F (r) > a. We can then write

f(a) = Eqa [I{F (r) ≤ a}W (q, qa)], (43)
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where

W (q, qa) =
q(r)
qa(r)

. (44)

Let a∗ be the optimal value of the TSP, and suppose that the corresponding optimal solution r∗

is unique. Since I{F (r) ≤ a∗} = 0 for any r 6= r∗, it is easy to see that the measure defined by

qa∗(r) :=





1 if r = r∗

0 otherwise

is a valid IS distribution. Moreover, the random variable inside the expectation in (43) is equal to a

constant — q(r∗) —- with qa∗-probability one. In other words, it yields a zero variance estimator.

It is easy to see that this implies that qa∗ is also the solution of the corresponding CE problem (see,

e.g., Homem-de-Mello and Rubinstein (2002)). Finally, notice that the measure qa∗ corresponds to

the transition probability matrix given by

P ∗
u,v :=





1 if u = r∗` and v = r∗`+1 for some `

0 otherwise.

In other words, the CE-optimal measure assigns probability one to the arcs in the optimal route.

This result is well known, see for instance Rubinstein (1999). It implies that we can use the CE

method to solve the TSP problem. It is important to notice however that, since the algorithm

must run for finite time, it provides only an approximation to the optimal measure. Nevertheless,

the method yields a heuristic procedure which appears to behave very well, according to results

reported in the literature.

To summarize, in this section we have discussed how to put the TSP problem in the context of

rare events. This requires the definition of a suitable probability distribution from which it is easy

to draw samples. We emphasize that the above issue has not been discussed in previous papers

in the literature, which in our view creates a certain mathematical “gap” in the application of CE

method to the TSP. The purpose of this discussion was to build a bridge to cover such gap. In

section 4.1.1 we discuss how do draw samples from the aforementioned distribution.

4.1 The algorithm for deterministic case

We describe now the algorithm in more detail. We initially state the algorithm for the TSP, in a

similar form to the description in Rubinstein (1999, 2002), where a justification for the algorithm

can be found. Later we will describe the changes needed for the more general VRPSD.

18



Algorithm 1: CE for TSP

1. Let P be an initial transition probability matrix; set k := 1, ρ := 0.01.

2. Generate N valid routes r1, . . . , rN according to the transition probabilities in P , and compute

the cost F of each route.

3. Let γk be the sample (1− ρ)-quantile of the sequence F (r1), . . . , F (rN ).

4. (*) If necessary, decrease ρ and/or increase N and go back to step 2.

5. Update the transition probabilities as follows:

Puv :=

∑N
j=1 I{(u, v) ∈ rj} · I{F (rj) ≤ γk}∑N

j=1 I{F (rj) ≤ γk}
. (45)

6. Test stopping criterion; if satisfied, STOP; otherwise, let k := k + 1 and go back to step 2.

Step 4 of the above algorithm is in a sense optional, since it constitutes an enhancement to the

algorithm. In fact, many of the reported implementations omit that step. In the context of rare

event simulation, those updates are discussed in Homem-de-Mello and Rubinstein (2002).

4.1.1 Trajectory Generation

We discuss now step 2 of the algorithm — the generation of valid routes. With the notation defined

above, this amounts to generating values from the distribution q(·) defined as q(r) = P (Y = r)

corresponding to a given transition matrix P . From (39)-(41) we have

q(r) = I {r0 = v0, rn+1 = v0}
n−1∏

k=0

I {rk+1 ∈ V \ {r0, . . . , rk}}
Prk,rk+1∑

r∈V \{r0,... ,rk} Prk,r
. (46)

The construction of q suggests the procedure described below:

Algorithm 2: Trajectory Generation

1. Let r0 := rn+1 := v0, P (0) := P .

2. Repeat for k = 0, . . . , n− 1:

(a) Choose node rk+1 according to the probability distribution P
(k)
rk,·.
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(b) Define a new matrix P (k+1), obtained from P (k) by eliminating the row and column

corresponding to rk, and then normalizing the remaining elements.

The above algorithm differs slightly from algorithms previously proposed in the literature, see

e.g. Margolin (2002), Rubinstein (1999). The main reason is that Algorithm 2 is designed as a

sampling technique from the distribution q(·) defined in (46). This puts the TSP formulation

into the standard rare events framework. In addition, it allows us to prove the correctness of the

algorithm — again, an issue that has not been discussed in previous papers. The result is stated

below.

Proposition 1 The trajectories generated by Algorithm 2 have distribution q(·) defined in (46).

Proof. Let (r0, . . . , rn+1) be a trajectory generated by Algorithm 2. We shall prove first by induc-

tion that, for any k ∈ {0, 1, . . . , n}, P (k) has columns and rows corresponding to V \ {r0, . . . , rk−1}
and

P (k)
w,u =

Pw,u∑
s∈V \{r0,... ,rk−1} Pw,s

(47)

for any w, u ∈ V \ {r0, . . . , rk−1}. The statement is true for k = 0, since
∑

s Pw,s = 1 and

P (0) = P by definition. Suppose now the statement is true for all iterations from 0 to an arbitrary

k, 0 ≤ k ≤ n − 1. In step 2(b), P (k+1) is obtained from P (k) by eliminating the row and column

corresponding to rk and then normalizing the remaining elements. That is, P (k+1) has columns

and rows corresponding to V \ {r0, . . . , rk}. For w, u ∈ V \ {r0, . . . , rk} we have

P (k+1)
w,u =

P
(k)
w,u∑

s∈V \{r0,... ,rk} P
(k)
w,s

.

By applying the induction hypothesis to the right-hand side of the above equation we obtain

P (k+1)
w,u =

Pw,u/
∑

t∈V \{r0,... ,rk−1} Pw,t∑
s∈V \{r0,... ,rk} Pw,s/

∑
t∈V \{r0,... ,rk−1} Pw,t

=
Pw,u∑

s∈V \{r0,... ,rk} Pw,s
,

so the statement is true for k + 1.

Next, notice that in step 2(a) rk+1 is generated — conditionally on r0, . . . , rk — from the

distribution P
(k)
rk,·. Because P has no self-loops, when w = rk in (47) the sum in the denominator

spans s ∈ V \ {r0, . . . , rk}. Thus, rk+1 ∈ V \ {r0, . . . , rk} and, by unconditioning, we conclude that

the resulting route r = (r0, r1, . . . , rn+1) is generated with probability q(r) as in (46).
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4.2 Application of the CE method to the VRPSD

We now apply the ideas behind the CE method to solve the underlying stochastic vehicle routing

problem. It important to notice that the presence of random demands and penalties at each node

makes this problem much harder than the TSP. Moreover, as seen earlier the objective function

includes the expected value of the total cost, a feature that arises from the fact that the demands

are stochastic. Nevertheless, in view of the structural similarities between the two problems — both

aim at finding the optimal route — it is desirable to exploit the empirically observed efficiency of

the CE method in order to solve the VRPSD.

A version of the CE method for stochastic optimization problems has been proposed in Rubin-

stein (1999). In that paper, the goal is to minimize a function of the form E[H(r,D(r))], where

D(r) is a random variable that depends on the route r. Essentially, the idea in Rubinstein (1999)

is to incorporate the randomness into the generation of tours (step 2 of Algorithm 1), so that the

cost corresponding to the ith generated route is H(ri, d(ri)) — here, d(ri) denotes one realization

of the random variable D(ri). Aside from that, the algorithm remains the same as Algorithm 1.

Although in theory the method enjoys similar properties to the version for deterministic problems,

our studies show that the variability of the objective function due to randomness precludes the use

of such algorithm. In our experiments, this algorithm took very long to converge, and the solution

obtained was often not optimal.

The alternative we propose is to apply Monte Carlo techniques to the problem. An important

observation is that the distribution of the random vector in the objective function defined in 3

does not depend on the route — only the order of the components of vector does. Thus, we can

approximate the objective function G(r) = E[H(r,Dr)] by drawing a sample D1, . . . , DK from the

distribution of the vector D and computing

GK(r) :=
1
K

K∑

j=1

H(r,Dj). (48)

We can then solve the problem minr GK(r) as an approximation to the original one. Notice the

resulting problem is no longer stochastic and can be solved with a deterministic method — e.g., the

deterministic version of the CE method. Convergence properties of such approach are discussed

in Kleywegt et al. (2001). One variation of this basic idea is to incorporate sampling into a

deterministic algorithm, so that different sample averages are computed at different iterations. A

discussion of this approach can be found in Homem-de-Mello (2003).
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4.3 The Modified CE algorithm for the Stochastic TSP

The algorithm we implemented to solve the underlying VRPSD incorporates the Monte Carlo

techniques described above into the CE method. The outline is as follows.

Algorithm 3: CE for VRPSD

1. Take the initial transition matrix P such that any route is equally likely to be generated.

That is, P has zero in the diagonal and all remaining elements are identical. Set ` := 1,

ρ := 0.01.

2. Generate N` trajectories from the transition matrix P based on the TSP trajectory generation

rule and estimate the expected cost G(r) of each route as per (48), using a number K` of

demand samples. We will call N` the simulation size and K` the sampling size. Notice that

both N` and K` can follow fixed schemes, or changing schemes as explained in detail later.

3. Select the trajectories with GK`
(r) in the top 100 · ρ%, and denote by x` the cut off value for

this quantile. Store the trajectory with the minimum value generated thus far as (xmin, rmin).

Denote by x∗` the minimum objective function value obtained during the current iteration `.

4. Update the transition matrix P based on the generated trajectories according to the equation

below:

Puv :=

∑N`
j=1 I{(u, v) ∈ rj} · I{GK`

(rj) ≤ x`}∑N`
j=1 I{GK`

(rj) ≤ x`}
. (49)

5. If for some fixed t, x∗` = x∗`−1 . . . x∗`−t , STOP. Otherwise, set ` := ` + 1 and go to step 2.

At termination, the solution will be (xmin, rmin).

Two issues must be clarified at this point. First, in our actual implementation we used a

modified version of the update (49) that computes a weighted average between the right hand

side of (49) and the old matrix P . The purpose of this modification is to prevent elements of P

from going to zero prematurely. Such scheme has become standard in implementations of the CE

method, see for instance de Boer et al. (2003), Margolin (2002). In our implementation we used a

weight α = 0.9 but found that, due to the inherent variability in the problem, the behavior of the

algorithm is fairly insensitive to the choice of α.

We must also emphasize that Algorithm 3 is significantly different from previously proposed

variations of the CE method. The major difference is the presence of sampling (with a variable
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sample size) as well as the variation of the number of trajectories generated at every iteration. In

our experience, such features are crucial for the implementation of the CE method for a problem

with high variability such as the VRPSD.

5 Heuristic Implementation and Performance Characteristics

We discuss now some implementation aspects of the algorithm outlined above. There are 3 main

aspects that contribute to the performance of the algorithm :

1. The number of paths generated during each iteration, which we call the simulation scheme;

2. The number of demand samples used to estimate the expected cost of each route, which we

call the sampling scheme;

3. Structural features, such as whether the demands are iid, or whether the penalties are identical

for all nodes.

We describe now some characteristics of our implementation regarding each of the above topics.

5.1 Sampling scheme

• The sampling size and the data generated should be common for all the paths during a given

iteration. This reduces the randomness to a certain extent by ensuring that the objective

function value is the same for identical paths generated during the iteration. The sampling

size and the data generated may be fixed throughout the course of the run. Alternately, the

sample size may be fixed but a different set generated for every iteration. Notice that it is

difficult to estimate the appropriate sampling size for a given iteration as it depends on the

route, and the structural complexity. On one hand, an extremely large sampling size may

result in unnecessary computations and a small sampling size can result in convergence to a

wrong solution. We have attempted to tackle this problem as follows.

• For demands following normal distributions, a variable sampling scheme seems to work well.

The optimal strategy seems to be to start at an appropriate size and then increase as n log(n)

or O(n), until stability is achieved and further increase of the sampling is not required.

Homem-de-Mello (2003) presents theoretical results on variable sampling schemes used in the

context of discrete stochastic optimization problems where the sampling size is adaptively
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decided with every iteration even as the search for the optimum expected value narrows.This

scheme was implemented by starting with an initial sampling size of twice the problem size

and increasing by steps of 10 linearly for a fixed number of iterations. This is because

initially the accuracy does not matter anyway. After this customary period, the sampling

size is checked such that the half-width of a 95% confidence interval is not more than 1% of

the sampling mean. If this is not the case, the sampling is increased; otherwise it is kept a

constant. During the initial iterations, arriving at the exact value of the expected cost of a

path is not so important. Thus, the sampling size can start at a smaller level and then be

progressively increased. This increases the total number of iterations but the overall number

of computations decreases.

• Alternatively, we implemented a pre-processing routine to find a “good” sampling size a priori.

Here, a path is randomly picked and the expected value of the path function is estimated

using Monte-Carlo sampling. The sample size is taken to be very large (around 10,000)

and the sampling size is brought down in steps such that the interval in the subsequent

iteration always contains the interval of the previous iteration and the half-width of a 95%

confidence interval never exceeds 5% percent of the estimated cost function value. Having

picked the optimal sampling size using the above mentioned pre-processing routine, we start

the CE procedure. At every iteration, we generate a sample with the given sample size. If the

minimum cost function value’s half-width exceeds it by 5%, we increase the sample size for the

next iteration. Thus, the sampling size is still adaptive. This partially nullifies the possibility

that the preprocessing scheme picked an unrepresentative path for sample size selection .

• The main advantage for the adaptive sampling size scheme is that we need not make a priori

assumptions about the sampling size, which is a function of the structural complexity of the

problem and hence, difficult to estimate.

5.2 Simulation scheme

For the TSP, the optimal simulation size is Cn2. In our case, considering the additional complexity,

a higher value for the simulations size ought to be considered. Our studies indicate that ideally

the simulation scheme should start at a high level and then be decreased. The simulation size

does not matter towards the end since the probability of generating a certain path is high and it is

unlikely that any other path will be generated, irrespective of the simulation size. Our numerical
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studies indicate that having a larger simulation size during the earlier iterations seems to improve

the chances of converging to the optimal solution. We have implemented the simulation scheme

by starting with a simulation size of Bn2(B = 105) , and decreasing the values of B linearly with

every subsequent iteration until B becomes 5, whence it is not changed anymore.

5.3 Structural features

When demands are iid, we have shown that it is possible to get an exact solution. This provides

a framework to assess the performance of the heuristic. The heuristic is almost 100% accurate in

this case as results indicate. In the case of demands being non-iid, penalties being uniform and

ignoring the expected cost of going back to the home depot, we have a tight lower bound under

conditions discussed previously. This provides a framework to assess the heuristic’s performance.

The amount of variation between trials and the average percent deviation from the lower bound

gives an assessment of the heuristics performance.

6 Numerical Results

For simulation purposes, the demands at nodes were modelled as having Gamma distribution, i.e.

Di ∼ Gamma(αi, β). The value of β was identical for all the nodes and set to 10. The filling

coefficient ζ is defined as the ratio of vehicle capacity C to the sum of mean demands across all

the nodes, i.e.,

ζ :=
C

β ·∑n
k=1 αk

.

The Euclidean distance arcs L(i, j) were generated as uniform random numbers, usually between

0 and 100.

We discuss now each of the structural cases.

6.1 Uniform penalties, iid demands

We took the penalties at the nodes as 0. The demand at any node i was modelled as Di ∼
Gamma(α, β) with α = 5 and β = 10. To make the penalty scheme truly uniform, the expected

cost of going back to the home depot was dropped. Thus, we ran simulations for the following

formulation:

min
r∈R

f(r) =
n−1∑

i=0

L(ri, ri+1) · pi.
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The probability coefficients pi, i = 1 · · ·n defined in (6) were easily computed as:

pi = 1− exp(
−C

β
)

i·(α−1)∑

j=0

(C/β)j

j!
,

using the analytical formulation for the cumulative distribution function for the Gamma random

variable. p0 is defined in (5).

0.5 0.75 1.00 1.25

11 (9) (10) (10) (10)

16 (8) (6) (10) (10)

Table 1: Results for iid demands, uniform penalties

To get an exact solution, we solved the first part of the problem defined in (19) subject to

the constraints given by (16)-(18) and (20)-(22) . This was implemented in the ILOG SOLVER

4.4 system using a branch and bound technique. For each value of ζ, the vehicle capacity was

accordingly fixed. For a given problem size (in this case, n = 11 and n = 16) and value of ζ, we ran

10 trials using the CE. The figures in parenthesis in Table 1 indicate the number of times out of 10

the solution value using the CE method was within 5% of the exact solution for a given problem

size and filling coefficient. It was not feasible to get exact solutions using the solver for problem

instances with n > 16.

6.2 Non-uniform penalties and iid demands

In this case, we again dealt with the problem formulation as originally defined. The demands

were modelled as in the previous section, Di ∼ Gamma(α, β) with α = 5 and β = 10. Hence,

we ran simulations to solve the problem defined in (14). The problem defined by (19) subject to

the constraints given by (16)-(18) and (20)-(22) was solved using the solver as before to get exact

solutions. The probability coefficients p◦i (i = 2, . . . , n− 1) defined by (9) were computed as:

p◦i =
∫ C

0
(1− F (C − x)) · f(x, i) · dx (50)

In (50),

f(x, i) :=
β−(i−1)·α · x(i−1)∗α−1 · exp−x/β

Γ[(i− 1) ∗ α]
,

and

F (x) := 1− exp−x/β
α−1∑

j=0

(x/β)j

j!
.

26



Equation (50) refers to a convolution integral where f(x, i) is the probability density function for

the Gamma random variable X[(i− 1) · α, β] and F (x) is the cumulative distribution function for

the Gamma random variable X[α, β] with α being an integer. The coefficients p◦1, p
◦
n defined in

(8),(10) are easily computable. The penalties were generated as Uniform random numbers between

0 and 50 for a given problem size. The Euclidean distance arcs L(i, j) were generated as uniform

random numbers between 0 and 100. The figures in parenthesis in Table 2 indicate the number of

times out of 10 the solution value using the CE method was within 5% of the exact solution for a

given problem size and filling coefficient.

0.5 0.75 1.00 1.25

11 (9) (10) (10) (10)

16 (10) (9) (10) (10)

Table 2: iid demands and non-uniform penalties

6.3 Non-iid demands, uniform penalties

369 370 371 372 373 374 375 376 377 378 379

Size 11, ζ = 0.5

Lower Bound = 328.4
256 258 260 262 264 266

Size 11, ζ = 0.75

Lower Bound = 235.9

Figure 1: Non-iid demands, Uniform penalties-I

159.2 159.4 159.6 159.8 160 160.2 160.4 160.6 160.8 161

Size 11, ζ = 1.00

Lower Bound = 150.13

114 115 116 117 118 119

Size 11, ζ = 1.25

Lower Bound = 113.00

Figure 2: Non-iid demands, Uniform penalties-II

In this case, we took the expected cost of penalties into consideration but ignored the expected

cost of going back to the home depot. Hence, we ran simulations for the problem defined in (27).
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The tight lower bound was estimated using the ILOG SOLVER 4.4 system by solving the following

equation:

min
x

n∑

k=1

pk−1(r)
n∑

i=0

n∑

j=0

x(k−1)i · xkj · L(vi, vj) +
n∑

k=1

n∑

i=1

φ · (1− pk(r)) · xki (51)

subject to the constraints (16)-(18). In (51), r ≡ r• (defined by (30)) or r ≡ r? (defined by (33))

depending on the value of φ as discussed in Section 3.2. pk(r) is defined in (23)-(24). Figures. (1)-

(2) give box plots for 10 runs using the heuristic for each problem instance. The lower bound

is indicated at the bottom of each figure by solving (51). Each box plot depicts the minimum

and maximum values obtained with those 10 runs, the median value and 25% and 75% quantiles.

Outliers are indicated by the ‘+’ sign.

6.4 Non-iid demands, Non-uniform penalties

In this case, 10 simulations for each problem instance were run for the original problem defined by

(4) using the CE method. Box plots similar to those in the previous section are presented below.

182 184 186 188 190 192 194 196

Size 16, ζ = 0.5

Values
130 132 134 136 138 140 142 144 146 148 150

Size 16, ζ = 0.75

Values

Figure 3: Non-uniform penalties, Non-iid demands I

102 104 106 108 110 112 114 116 118 120

Size 16, ζ = 1.00

Values
94 96 98 100 102 104 106

Size 16, ζ = 1.25

Values

Figure 4: Non-uniform penalties, Non-iid demands II

The general trend as shown in Figures. (3)-(6) indicates that overall spread is greater for the

case of non-iid demands, non-uniform penalties compared to the other cases.
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185 190 195 200 205 210 215 220

Size 21, ζ = 0.5

Values
230 235 240 245 250 255 260

Size 21, ζ = 0.75

Values

Figure 5: Non-uniform penalties, Non-iid demands III

90 95 100 105 110 115

Size 21, ζ = 1.00

Values
80 85 90 95 100 105

Size 21, ζ = 1.25

Values

Figure 6: Non-uniform penalties, Non-iid demands IV

7 Conclusion

We have discussed a stochastic vehicle routing problem (VRPSD) and proposed a new technique

to solve it. Our method is a modified version of the CE method that incorporates Monte Carlo

techniques. The algorithm has produced encouraging results. Another contribution of this paper is

the development of theoretical results regarding exact solutions and lower bounds for the problem,

which can also serve as a good framework to test other heuristics for the problem formulation we

have considered.

We have also provided a formalization on the use of the CE method for TSP-like problems. As

a result, we have devised an algorithm for generating trajectories and proved its correctness. This

covers an existing gap in the literature.

The main advantage in using the CE algorithm for vehicle routing problems is that the method

is fairly independent of particular problem formulations but at the same time it does exploit of

the structure inherent in this class of problems. Thus, we envision that the CE method can also

be applied to other problem formulations in the SVRP class of problems. In particular, the CE

may be extended to multiple vehicle routing problems. Further studies are required to perfect the

method as before it can be used to provide solutions to real world logistics problems.
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