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ABSTRACT numerical techniques can be used reduce some of these prob-

This paper continues the development of a computationally lems, but wave breaking is a natural occurrence and expéuted

efficient potential flow code using a time-domain body-estaigt large amplitude motions and waves. Methods dealing with thi
theory approach. The exact body boundary conditions and lin phenomenon numerically are generally not robust and mal lea
earized free surface conditions are used. Present requitade to nonphysical solutions. Moreover, solving the fully rioelr
further improvements, validations, and comparisons. Tifferd water-wave problem is computationally expensive.
ent formulations to obtain the forces on the vessel are studi The body-exact approximation is a middle ground between
pressure and momentum. Panel distribution techniqueticai the linear and fully nonlinear approaches. The mixed bound-
for large amplitude motions, are discussed. The slendeybo  ary value problem satisfies the linear free surface conditamd
assumption requires finding the longitudinal interacti@ileen exact body boundary conditions on the instantaneous wstiied
sections to compute the hydrodynamic forces. Finally, atmeq  face. A time-domain approach allows for large amplitude mo-
tion of motion solver is implemented to predict the six degre tions including impact problems.
freedom motions of the vessel in regular waves, including no Zhang & Beck [2, 3] developed a two-dimensional body-
linear effects. exact method using desingularized sources above the frizesu

and constant strength panels to represent the body. A mathem
ically consistent three-dimensional approach was deeeldyy
INTROD_UCTION , Zhang [4], while the two-dimensional approach was expanded
Nonlinear seakeeping methods have been under develop-inq 5 strip theory. Comparisons between the two methods wer
ment and offer capabilities beyond classical linear stigoty. presented by Zhang et al. [5]. The results showed good agree-

F_u_IIy nonlinear apprqaches have problems with numerieal st ment, although the strip theory showed advantages in camput
bility and_ wave breaking. So called blended methods have bee ignal speed and ease of modeling geometrically complex hul
used to fill the gap between the two ends of the spectrum. They ¢qms.

can range in complexity and are often tailored for a paréicul
problem. The objective of this paper is to discuss the develo
ment of a computationally efficient seakeeping code thatheas

ability to capture nonlinear forces acting on a ship.

The mixed Euler-Lagrange (MEL) method developed by
Longuet-Higgins & Cokelet [1] has been used to solve noaline
wave and wave-body interaction problems. The MEL approach
can lead to numerical instabilities and wave breaking. Adea

This paper presents the continuing development of a body-
exact strip theory that was recently published by Bandyk &
Beck [6]. This approach is applicable to slender monohtilte
boundary integral problem is split into two-dimensionairts-
verse cuts, or strips, while taking into account the intgoac
between these strips. The result is a set of forces and mement
acting on the vessel which can be used to solve the equations
of motion in the case of a free running model. Specificallis th
paper focuses on comparing two methods to compute the forces
acting on the ship: pressure and momentum. The Euler eqgatio
*Address all correspondence to this author.
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of motion are used to compare vessel responses, includisig al
degrees of freedom.

MATHEMATICAL FORMULATION

Three coordinate systems are referenced:xthsystem is
fixed in space, th& system is fixed to the mean position of the
ship and translates at sped() along the track of the ship, and
theX system is fixed to the ship. The origin of tkesystem is
at the calm waterline at amidships. Consistent with a ritgnte
convention, the-axis points in the direction of travel, thyeaxis
points to port on the calm water, and th@xis points upward.
Thex, or equilibrium, reference frame is used to solve the hydro-
dynamic problem, and therefore Bernoulli's equation isvebet
in this frame.

The fluid is assumed to be inviscid and incompressible. Itis
started from rest and remains irrotational. The effectaidbse
tension are neglected. This allows the use of a velocityrpote
tial, ®, whose gradient gives the fluid velocities. The domain is

bounded by the exact body surface, mean free surface, and sur

face at infinity. The total potential must satisfy Laplacetgia-
tion everywhere in the domain.

O2d(x,y,zt) =0 1)

The total potential®, can be written in terms of the free
stream and perturbation potenti@l,The free stream potential is
useful when the ship has a mean speed associated with itasuch

constant forward speed. The perturbation velocity poaémntust
satisfy Laplace’s equation.

CD(Xv Y, Z,t) = _U0X+ (p(X, Y, th)
D2Q(x,y, zt) =0

(2)
®3)

The boundary integral problem can be solved once the ap-
propriate boundary conditions have been met. The totabpres
is given by Bernoulli’'s equation

1 2 L0
+ §|D(P| —Uo&

p= —p(g—ip +92) 4)

On the mean free surface, the linearized kinematic and dy-

potential on the free surface must be known to solve the mixed
boundary value problem.

Implementing the slender-body approximation, the three-
dimentional velocity potential is reduced into a seriesvad-t
dimensional potentials. They must satisfy the two-dimemai
Laplace equation on each transverse strip, and are subjtus t
free surface boundary conditions in Eqns. (5) and (6).

The hull surface can be defined lyy= +b(x,z). Three-
dimensional unit normals to the body surface can be found as

db db
(&7q:1’ E)

(P)2+1+(P)2

(7)

n=(ny,np,N3) =

where the normal direction points into the body.

Under the slender-body assumpti@@,<< (1, %), and the
strip theory unit normals are given by
Bb)

ob
(Wv:Fla 0z

N = (N1,N2,N3) = -
1+(5)?

(8)

where the two-dimensional unit normdl,Nz,N3), has unity
magnitude and is used to satisfy the two-dimensional body
boundary conditions. It is useful to defifids, N5, Ng) as

(N4,Ns,Ng) =1 x N 9)

wherer is the position vector of the node, relative to the origin
of the body axis system, in the body axis system.

Boundary Value Problem for ¢
The perturbation potential on each section is broken up into
four components

Py.zxt) =g+ ¢+ ¢ + ¢

¢ = incident wave potential
diffracted potential
radiated potential
non-zero angle potential

where

The resulting exact body boundary conditions are re-writte

namic free surface boundary conditions are used to march thein two dimensions using the strip theory approach

free surface in time, ignoring downstream effects

o¢ _ 09 _
P on S (z=0) (5)
g—(tp =-g{ on & (z=0) (6)

wherez = {(x,y,t) is the free surface elevatiog,is the accel-
eration due to gravity, anf is the free surface. The velocity

2

N-O¢' = —N-O¢ on S (10)
N-O¢ =V-N+Q:(rxN) on Sg (12)
N-O¢? = Uo(—NeN2+nsN3) on S (12)

whereV andQ are the translational and rotational velocities of
the body.n; represents the three translations-(1,2,3) and ro-
tations { = 4,5, 6) of the body-fixed fram& relative to the equi-
librium framex with respect to the-, y-, andz-axes. The terms
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on the right hand side of Eqns. (10) and (11) represent tharins
taneous velocity of the fluid in order to satisfy the correxting
body boundary conditions. The terms on the right hand side of
Egn. (12) are the two-dimensional corrections when theee is
non-zero pitch angleys, or non-zero yaw angleyg, in the case

of forward speed. This correction assumes small anglesvela

to the equilibrium frame, such thain(nse) ~ nse.

The velocity potential is known on the mean free surface. In
the far field, a radiation boundary condition is imposed shelt
only the incident waves are incoming. This is done numdgical
by incorporating an outer “beach” region, with exponetiad-
creasing node spacing, which absorbs outgoing waves. tiso,
water is assumed deep and the gradient of the perturbattenpo
tial vanishes ag — —oo. The incident wave potential is known,
while the other potentials must be computed. They are llyitia
set to zero and the dynamics (ship motions or incident waare el
vation) are ramped using a hyperbolic tangent function.

Once the mixed boundary value problem is solved, the ve-
locity potential and its derivatives can be determined dmsne

in the fluid domain. The pressure on the body can be determined

by using Bernoulli's equation (4). The free surface codit
are time-stepped using Eqgns. (5) and (6).

Momentum Formulation
The momentum formulation requires solving thproblem
first. However, the resulting formulae do not calculate thesp

sure on the body to find the forces and moments. This was de-

rived as an alternative to the direct pressure integratorite
“swimming fish” problem by Newman and Wu [7]. The deriva-
tion, including a free surface, is shown in Sclavounos [8heT
main difference is the use of thee= 0 for the free surface con-
ditions, instead of the weak scatterer assumption by Sclaa®.
The result is the following approximation for the dynamicse
tional forces

fy ~ —p/ pNd| (13)
SB
—pdt/qJNdI p/ (¢! —|——)Nd| (14)
Swp

whereSyp is the exact waterplane surface intersecting the body.
The total dynamic forces and moments can be written in
terms of the perturbation potential

—p/dxat/(del Uos- /<de|+/ gZ'+—NdI]
(15)

Boundary Value Problem for %‘p

Egn. (4) requires a knowledge (%? to find the pressure
on the body. Using numerical differentiation to find thisnter
may lead to problems for large amplitude motions. An alterna

tive method is to solve for th%%p term directly. An auxiliary

mixed boundary value problem is set up to solvelfice %—‘tp, the
time derivative following a moving node. It can be relatedhe
partial time derivative b;%‘p = Y —v-Og, wherev is the node
velocity in the equilibrium frame.

The mixed boundary value problem requig®on the free
surface andN-C0Y on the body. The free surface conditions are
already known from Egn. (6). The body boundary conditions
require taking the appropriate time-derivatives of Eqn40)(
through (12). The resulting boundary conditions can be doun
after a bit of vector calculus

N-Og¢ = —N-Oy' + (-0¢"—0O¢) on S (16)
N-OY" =a- N+E;—':l (-0¢ +v) on S (17)
N-Oy? = %—T ~0@+Usi) on S (18)

wherea andv are the body acceleration and velocity in the body
axis system, respectively, including rotational termshiuld be
noted that Eqns. (16) through (18) are solved in the equilibr
axis system. The scalar quantities are, of course, indegend
of axis system choice. For ease of computation, the vecidr an
gradients on the right hand side are evaluated in the body axi
system. In order to determir@ in the equilibrium frame, the
following identity is used

oN oN

(g)equnibrium (= 5 Jbody+ Q x N (19)

where the first term on the right hand side is zero, by defimitio

It is worth noting that the acceleration term in Eqn. (17) re-
quires special treatment in the case of free motions. Thaster
can be resolved into a six-by-six matrix, for each degreeead-f
dom, and moved to the other side of the equations of motion. A
canonical problem is set up which solugs= 0 on the free sur-
face,N-0Oy; = N; on the body, foi = 1..6, and a final problem
including the memory effects of the perturbed wave field. The
derivation of a similar approach in an unbounded fluid can be
found in Chapter 4 of Newman [9].

NUMERICAL METHODS
At each time step a mixed boundary value problem must
be solved;p is given on the free surface and its normal deriva-

The speed dependent component of the force is apparent intive is known on the body surface. The free surface boundary

the second term. Numerically, this is much simpler than axipr
mating‘;—‘)f atevery node. A drawback of the momentum approach
is that the pressure distribution is not known.

conditions are determined from the time marching of Eqn}. (5
and (6), while the body boundary conditions are given by pre-
scribed motions or an equations of motion solver. Desirrgula
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ized sources are placed above the linearized free surfalceoan
stant strength panels are used to model the instantanedigsiwe
body geometry, up to the incident wave elevation. The mixed
boundary value problem is solved by Gaussian eliminatiah an
the source strengths are determined. At this pgiahd its gradi-
ent are known everywhere in the domain. The x-derivativhef t
velocity potential must be estimated using numerical tephes.
Using this approach to find derivatives of known functiondiss
cussed by Buhmann [10]. Details on how this is applied to the
current method can be found in Zhang et al. [5]. The pressure o
momentum formulation may be followed to determine the ferce
on the hull. The momentum formulation is presented in the pre
vious section.

The improved pressure formulation requires solving ¢the
problem, as discussed in the previous section. An advamtage
this method is that it is not sensitive to the time-step sibenv
computing the pressure on the body, sir%{ifeis solved for di-
rectly. Another advantage is that this method is robustdayé
amplitude motions and indifferent to panel variations hesw
time-steps. Once the pressure is found everywhere on thg bod
the forces acting on the body can be approximated by integrat
Eqn. (4) over the instantaneous submerged body surfacesrUnd
the slender-body assumption, they are

F:z/dx/deI
L S

Mz/dx/p(rxN)dl
L S

(20)

(21)

whereF are the three forces amd are the three moments acting
on the vessel.

are simply stopped. Upon re-entry, they are restarted wittal
conditions of zero for that particular section.

RESULTS AND DISCUSSION

Convergence studies have been carried out but will not be
presented here, due to the limited availability of spaceyldan
be found in Zhang [4] for the two-dimensional problems. Zjan
et al. [13] discuss more detailed convergence studiesdiraiu
the current body-exact strip theory. A range of validatioas be
found in Bandyk and Beck [6]. A variety of results and compar-
isons are presented in this paper, including: the improeedtp
ization technique implemented in this code; numerical aratt
solution of the%‘p term in the pressure equation for small and
large amplitude motions; pressure and momentum formulatio
results for six degree-of-freedom small amplitude motiotrs
this paper, all the computations are done using the S-175 con
tainership. The length, beam, and draft of the vessel ared175
25.4, and 9.5 meters, respectively. The vessel has a bl@afi-co
cient of 0.571 and waterplane coefficient of 0.711.

Direct Solution of Y

Forced heave simulations are used to validatetfermula-
tion. The dynamic heave forces on a typical midship sectiin w
be shown and discuss for a variety of amplitudes. The dynamic
force components include the radiation memory and impellsiv
components. The impulsive component is the solution oféhe r
diation problem withp= 0 on the free surface, while the memory
term accounts for the free surface radiation disturbance.

The first test case is for small amplitude forced heave, where
the panel number doesn’t change. Figure 1 shows a compari-
son between the numerical differentiation to estim%leusing

Once the forces and moments are known, the equations of At = T/50,T/100,T/200 and the direct solution usinfy =

motion can be solved. The Euler equations of motion (see Fos-

sen [11] for details) are solved and the body velocity andtipms
vectors are updated using a fourth-order Adams-Bashfionis t
stepping method. The roll momentincludes an empiricalodsc
roll damping model developed by Himeno [12]. A fourth-order
Adams-Bashforth method is also used to time-step the free su
face conditions.

As the vessel translates and rotates relative to the equilib
rium frame, translating dfl,, the body must be re-panelized. A
“fixed panel” technique is used to model the instantaneous we

ted geometry. The maximum number of panels is determined at

the start of the simulation and models the entire hull, ughto t
sheer line and closed off with a flat deck. The number of “wet”
panels is determined by the intersection of the body andhitie i

T /50, whereT is the period of oscillation andt is the time-

step size. The memory component is the upper set of curves,
in blue, and the impulsive components is the lower set, in red
This simple case confirms that the direct solution (soliddiy at

a course time-step size, yields a result that the numeriffard
entiation approaches as the time-step becomes smalleedisnc
ingly lighter dashed lines). A zoomed view of this convergen
can be seen in Figure 2. The advantages are already apparent:
more course time-step can be used in exchange for a few more
back substitutions with the inverted influence matrix.

The fixed panelization offers many advantages over a “rub-
ber banding” method; no need to repanelize and recompute nor
mals, and the ability to easily capture hard corners likeebi
Unfortunately, fixed panelization has problems when addimd)

dent wave. The number of panels can change in between timeremoving panels. However, the improved pressure formanati

steps, as numerical problems associated with this are edoid

when using either the improved pressure or momentum formu-

lation. Special care must be taken where the panel interfieet
incident free surface. Panels are truncated at the freacuaind,

if they are relatively small enough, may be combined with@n a
jacent panel. This is done to ensure reasonable influena&mat
condition numbers. When a section exits the water, comipusat

4

solving they problem, resolves this complication. Figure 3
shows a small amplitude where just one panel is added or re-
moved, in comparison to the previous results. The spikes can
be seen in the cases of numerical differentiation (dashe)i
around 16 and 21 seconds in both force components. The two
instances of time correspond to adding or removing one panel
either side of a symmetric section in this case of forced éeav
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Six Degree-of-Freedom Euler Equations

This section presents response amplitude operator (RAO) re
sults for the S-175 &n=0.0,0.2 in all six degrees-of-freedom,
as shown in Figures 5 through 28. It is worth noting that the ex
. - ! T tensive free motion results have been checked for conveegen
scribed motions, only the evolution of the free surface o in temporal and spatial resolution. All the cases are loegted

is sensitive to time-step size. Since they are linearizeshas/n regular waves with amplitude of Im. A range of 5 heading an-

in Eqns. (5) and (6), a more course time-step can be used whichgjes are considere@,= 0, 45, 90, 135, and 180 degrees where

offers significant savings in computational effort. B = 180 degrees is head seas. The small amplitude wave is used
As an extreme example, a large amplitude case is also done.for two reasons: to minimize the amount of drifting off-ceer

The heave amplitude is about half of the draft. In this caseym from second-order forces; and to compare to a linear code. Th

panels are added and removed as the vessel motions are veryode used for comparison is SHIMPO, a strip theory based on

significant. Figure 4 shows the how much smoother the force the work presented in Beck [14].

periodic motions. The spikes actually increase as the step-
is reduced.

However, the direct solution does not show this sensitivity
to different panelization between time-steps. Moreowarpfe-

time-series is when solving thgproblem directly. In the body-exact formulation, the ship would not remain
More complicated sections show even more drastic differ- course steady due to higher-order physical drift forcessigtit
ences between the direct and approximate solutions foz kg numerical inaccuracies. This is especially evident wittréas-
plitude cases. This simple section was used to illustraeath ing forward speed. The horizontal plane modes of motion have
ready visible advantages of using the direct solution withdi no restoring mechanisms so any perturbation will propagate
panelization. Therefore, the surge, sway, and yaw motions have lighttigrci
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Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



added in the transient ramp-up to minimize this drift. Tishe ACKNOWLEDGMENT
simplest way to slightly control the free motions so thaytban This work was supported by the Office of Naval Research,
be compared to linear results. This artificial force is dases as contracts N00167-04-D-0004, NO0014-05-1-0537, and N@o01
the transients die off, thus negligibly affecting the dynesrof 06-1-0879.
small amplitude motions. The body-exact time-domain fdemu
tion will require a controller to prevent the vessel fromfiing
off-course in the cases of large amplitude free motions. REFERENCES

Simulations were executed using both the pressure and mo- [1] Longuet-Higgins, M. S., and Cokelet, E. D., 1976. “The
mentum formulations. They are nearly identical in the z@res! deformation of steep surface waves on water. i. a numeri-
case, as expected. There are some differences in the forward ~ cal method of computation”. In Royal Society of London.
speed results. This is due to the treatment of fheterms. Series A: Mathematical and Physical Sciences, Vol. 350,
Overall, there is good agreement between the two methods and pp. 1-26.
SHIPMO. Neither method is superior when it comes to the for- [2] Zhang, X. S., and Beck, R. F., 2006. “2-d body-exact com-
ward speed cases. In certain cases, like surge motions don be putations in the time domain”. In 21st International Work-
seas in Figure 17, it appears that one method compares better ~ shop on Water Waves and Floating Bodies, pp. 197-200.
than the other. However, the scale of the RAO results must be [3] Zhang, X. S., and Beck, R. F., 2007. “Computations for

taken into consideration and the motions are negligiblecein large-amplitude two-dimensional body motionsJournal
tain cases the heave-pitch coupling is significant with fmolv of Engineering Mathematics (Special Volume in Honor of
speed, and we see worse agreement with SHIPMO. For exam- J. N. Newman)
ple, the heave and pitch motions in Figures 9 and 10 or Figures [4] Zhang, X. S., 2007. “Large amplitude ship motion compu-
25 and 27 show significant heave and pitch motions at forward tations using a time dependent body geometry”. Phd thesis,
speed arounti/A = 0.9 or 1.0, respectively. The yaw responses The University of Michigan, Department of Naval Archi-
in quartering seas, Figures 16 and 28, show an over-estifate tecture and Marine Engineering.
the forward speed effects, relative to the zero speed sesultiien [5] Zhang, X. S., Bandyk, P. J., and Beck, R. F,, 2007. “Large
compared to SHIPMO. The differences in these forward speed amplitude body motion computations in the time-domain”.
results are currently being investigated. In 9th International Conference on Numerical Ship Hydro-
dynamics.

[6] Bandyk, P. J., and Beck, R. F., 2008. “Nonlinear ship mo-
tions in the time-domain using a body-exact strip theory”.

CONCLUSIONS In 27th Int’l Conference on Offshore Mechanics and Arctic
The results shown are very encouraging. The small ampli- Engineering, ASME.

tude free motions compare very well with linear theory insatl [71 Newman, J. N., and Wu, T. Y., 1973. *“A generalized

degrees-of-freedom. This is a meaningful realization,lass¢ slender-body theory for fish-like forms’Journal of Fluid

cal linear strip theory is based in the frequency domain aiig f Mechanics Digital Archive57(04), pp. 673—693.

linearized. No drift is present and the body does not have to [8] Sclavounos, P. D., 2008. Nonlinear response modeling of

be repanelized. The capabilities of the time-domain bodce a vessel in steep random waves. Personal Correspondence

code exceed those of a fully linear code, although it shoetd r with R. F. Beck.

duce to the linear code for small amplitudes. The good compar [9] Newman, J. N., 1977Marine HydrodynamicsMIT Press.

ison for this small amplitude motion validates this timeydon [10] Buhmann, M. D., 2000. “Radial basis functionsActa

code against the arguments made by linear theory. Numerica pp. 1-38.

The combination of fixed panelization and direct solution [11] Fossen, T. I, 1994. “Modeling of marine vehicles”. In
of % proves to be the most robust and accurate method when Guidance and Control of Ocean Vehicldshn Wiley and
computing the pressure on the hull. The hull is modeled more Sons, ch. 2, pp. 5-56. , _
accurately, repanelization is more straightforward tharbber [12] Himeno, Y., 1981. Pred|ctlop of sh|p roll Qamplng-statf
banding”, matrix condition numbers remain reasonable cahd the art. Te_ch. Rep. 239, UF"VefS'W_ of M|ch|gan, Dept. of
culating the pressure on the body is no longer dependenteon th Naval Architecture and Marine Engineering.

. . - [13] zZhang, X. S., Bandyk, P. J., and Beck, R. F., 2008. “Time-
time step. The numerical approximation £ seems to work o : . . . N

. . domain simulations of radiation and diffraction forces”.
well, but may still be improved upon.

. o Submitted to the Journal of Ship Research
The final steps in this research are to add a controller and [14] Beck, R. F., 1989. “Ship responses to regular waves”. In

allow the vessel to follow a prescribed path, including yaive Principles of Naval Architecturevol. Ill. SNAME, ch. 8
result will be a coupled model of nonlinear seakeeping and ma pp. 41-83. ' ’

neuvering that is computationally efficient. The resultsvah

can be computed close to “real-time” on a more powerful desk-
top computer. The method could be used as a design tool or for
path optimization.

6 Copyright © 2009 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ROA amplitude [m/m]

RAO phase [deg]

ROA amplitude [m/m]

RAO phase [deg]

ROA amplitude [deg/m]

RAO phase [deg]

0000 kRRkRk
ovhoORMRD®

150
100
50

-50
-100
-150

000000000
okRNMwhUIO~N®LOR

150
100
50

-50
-100
-150

150
100
50

-50
-100
-150

S-175 Surge Response Amplitude Operators

= ,Am--lg-“-g-.. Fn=0.0 Pressure E
L g® Q‘"-Q Fn=0.0 Momentum ©
L Fn=0.0 SHIPMO E
L R Fn=0.2 Pressure X
- TR~ Fn=0.2 Momentum
i o N Fn=0.2 SHIPMO
L Bl N 2
0
C L L L L o ]
0 0.5 1 15 2 25 3
L/A
Figure 5. S-175 SURGE RAO IN FOLLOWING SEAS
S-175 Heave Response Amplitude Operators
Figure 6. S-175 HEAVE RAO IN FOLLOWING SEAS
S-175 Pitch Response Amplitude Operators
0
L 28
0 0.5 1 15 2 25 3

L/A

Figure 7. S-175 PITCH RAO IN FOLLOWING SEAS

ROA amplitude [m/m]

RAO phase [deg]

ROA amplitude [m/m]

RAO phase [deg]

ROA amplitude [deg/m]

RAO phase [deg]

000000000
oRrNWhrUON®©

150
100
50

-50
-100
-150

0000 kRRpRpk
ohvhoRrNMD®

150
100
50

-50
-100
-150

150
100
50

-50
-100
-150

S-175 Surge Response Amplitude Operators
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Figure 8. S-175 SURGE RAO IN HEAD SEAS
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Figure 9. S-175 HEAVE RAO IN HEAD SEAS
S-175 Pitch Response Amplitude Operators
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Figure 10. S-175 PITCH RAO IN HEAD SEAS
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Figure 11. S-175 SURGE RAO IN STERN QUARTERING SEAS
S-175 Sway Response Amplitude Operators
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Figure 12. S-175 SWAY RAO IN STERN QUARTERING SEAS
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Figure 13. S-175 HEAVE RAO IN STERN QUARTERING SEAS
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Figure 14. S-175 ROLL RAO IN STERN QUARTERING SEAS
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Figure 15. S-175 PITCH RAO IN STERN QUARTERING SEAS

S-175 Yaw Response Amplitude Operators
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Figure 16. S-175 YAW RAO IN STERN QUARTERING SEAS
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S-175 Surge Response Amplitude Operators
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Figure 17. S-175 SURGE RAO IN BEAM SEAS
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Figure 18. S-175 SWAY RAO IN BEAM SEAS

S-175 Heave Response Amplitude Operators
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Figure 19. S-175 HEAVE RAO IN BEAM SEAS
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Figure 20. S-175 ROLL RAO IN BEAM SEAS
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Figure 21. S-175 PITCH RAO IN BEAM SEAS
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Figure 22. S-175 YAW RAO IN BEAM SEAS
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Figure 23. S-175 SURGE RAO IN BOW QUARTERING SEAS
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Figure 24. S-175 SWAY RAO IN BOW QUARTERING SEAS
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Figure 25. S-175 HEAVE RAO IN BOW QUARTERING SEAS
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Figure 26. S-175 ROLL RAO IN BOW QUARTERING SEAS
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Figure 27. S-175 PITCH RAO IN BOW QUARTERING SEAS
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Figure 28. S-175 YAW RAO IN BOW QUARTERING SEAS
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