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ABSTRACT
This paper continues the development of a computationa

efficient potential flow code using a time-domain body-exactstrip
theory approach. The exact body boundary conditions and li-
earized free surface conditions are used. Present results include
further improvements, validations, and comparisons. Two differ-
ent formulations to obtain the forces on the vessel are studied:
pressure and momentum. Panel distribution techniques, critical
for large amplitude motions, are discussed. The slender-body
assumption requires finding the longitudinal interaction between
sections to compute the hydrodynamic forces. Finally, an equa-
tion of motion solver is implemented to predict the six degree-of-
freedom motions of the vessel in regular waves, including non-
linear effects.

INTRODUCTION
Nonlinear seakeeping methods have been under devel

ment and offer capabilities beyond classical linear strip theory.
Fully nonlinear approaches have problems with numerical sa-
bility and wave breaking. So called blended methods have ben
used to fill the gap between the two ends of the spectrum. Th
can range in complexity and are often tailored for a particular
problem. The objective of this paper is to discuss the develop-
ment of a computationally efficient seakeeping code that hasthe
ability to capture nonlinear forces acting on a ship.

The mixed Euler-Lagrange (MEL) method developed b
Longuet-Higgins & Cokelet [1] has been used to solve nonlinear
wave and wave-body interaction problems. The MEL approa
can lead to numerical instabilities and wave breaking. Advanced
ddress all correspondence to this author.
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numerical techniques can be used reduce some of these p
lems, but wave breaking is a natural occurrence and expectedfor
large amplitude motions and waves. Methods dealing with ts
phenomenon numerically are generally not robust and may ld
to nonphysical solutions. Moreover, solving the fully nonlinear
water-wave problem is computationally expensive.

The body-exact approximation is a middle ground betwe
the linear and fully nonlinear approaches. The mixed boun
ary value problem satisfies the linear free surface conditions and
exact body boundary conditions on the instantaneous wettedsur-
face. A time-domain approach allows for large amplitude m
tions including impact problems.

Zhang & Beck [2, 3] developed a two-dimensional body
exact method using desingularized sources above the free surface
and constant strength panels to represent the body. A matheat-
ically consistent three-dimensional approach was developed by
Zhang [4], while the two-dimensional approach was expand
into a strip theory. Comparisons between the two methods we
presented by Zhang et al. [5]. The results showed good ag
ment, although the strip theory showed advantages in compa-
tional speed and ease of modeling geometrically complex hl
forms.

This paper presents the continuing development of a bo
exact strip theory that was recently published by Bandyk
Beck [6]. This approach is applicable to slender monohulls.The
boundary integral problem is split into two-dimensional trans-
verse cuts, or strips, while taking into account the interaction
between these strips. The result is a set of forces and moms
acting on the vessel which can be used to solve the equat
of motion in the case of a free running model. Specifically, this
paper focuses on comparing two methods to compute the for
acting on the ship: pressure and momentum. The Euler equatns
Copyright c© 2009 by ASME

http://www.asme.org/about-asme/terms-of-use



o-

is

is
su

h

p

y
th

d

-

y

to

f

Downlo
of motion are used to compare vessel responses, including all six
degrees of freedom.

MATHEMATICAL FORMULATION
Three coordinate systems are referenced: thexo system is

fixed in space, thex system is fixed to the mean position of the
ship and translates at speedU(t) along the track of the ship, and
the x system is fixed to the ship. The origin of thex system is
at the calm waterline at amidships. Consistent with a right-hand
convention, thex-axis points in the direction of travel, they-axis
points to port on the calm water, and thez-axis points upward.
Thex, or equilibrium, reference frame is used to solve the hydr
dynamic problem, and therefore Bernoulli’s equation is derived
in this frame.

The fluid is assumed to be inviscid and incompressible. It
started from rest and remains irrotational. The effects of surface
tension are neglected. This allows the use of a velocity poten-
tial, Φ, whose gradient gives the fluid velocities. The domain
bounded by the exact body surface, mean free surface, and-
face at infinity. The total potential must satisfy Laplace’sequa-
tion everywhere in the domain.

∇2Φ(x,y,z; t) = 0 (1)

The total potential,Φ, can be written in terms of the free
stream and perturbation potential,φ. The free stream potential is
useful when the ship has a mean speed associated with it, sucas
constant forward speed. The perturbation velocity potential must
satisfy Laplace’s equation.

Φ(x,y,z; t) = −Uox+ φ(x,y,z; t) (2)

∇2φ(x,y,z; t) = 0 (3)

The boundary integral problem can be solved once the a
propriate boundary conditions have been met. The total pressure
is given by Bernoulli’s equation

p = −ρ(
∂φ
∂t

+
1
2
|∇φ|2−Uo

∂φ
∂x

+gz) (4)

On the mean free surface, the linearized kinematic and d
namic free surface boundary conditions are used to march
free surface in time, ignoring downstream effects

∂ζ
∂t

=
∂φ
∂z

on SF (z= 0) (5)

∂φ
∂t

= −gζ on SF (z= 0) (6)

wherez = ζ(x,y,t) is the free surface elevation,g is the accel-
eration due to gravity, andSF is the free surface. The velocity
2
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potential on the free surface must be known to solve the mixe
boundary value problem.

Implementing the slender-body approximation, the three
dimentional velocity potential is reduced into a series of two-
dimensional potentials. They must satisfy the two-dimensional
Laplace equation on each transverse strip, and are subject to the
free surface boundary conditions in Eqns. (5) and (6).

The hull surface can be defined byy = ±b(x,z). Three-
dimensional unit normals to the body surface can be found as

n = (n1,n2,n3) =
( ∂b

∂x ,∓1, ∂b
∂z)

√

( ∂b
∂x)2 +1+( ∂b

∂z)
2

(7)

where the normal direction points into the body.
Under the slender-body assumption,∂b

∂x << (1, ∂b
∂z), and the

strip theory unit normals are given by

N = (N1,N2,N3) =
( ∂b

∂x ,∓1, ∂b
∂z)

√

1+( ∂b
∂z)

2
(8)

where the two-dimensional unit normal,(0,N2,N3), has unity
magnitude and is used to satisfy the two-dimensional bod
boundary conditions. It is useful to define(N4,N5,N6) as

(N4,N5,N6) = r×N (9)

wherer is the position vector of the node, relative to the origin
of the body axis system, in the body axis system.

Boundary Value Problem for φ
The perturbation potential on each section is broken up in

four components

φ(y,z;x,t) = φi + φd + φr + φa

where φi = incident wave potential

φd = diffracted potential

φr = radiated potential

φa = non-zero angle potential

The resulting exact body boundary conditions are re-written
in two dimensions using the strip theory approach

N·∇φd = −N·∇φi on SB (10)

N·∇φr = V ·N+ Ω·(r×N) on SB (11)

N·∇φa = Uo(−η6N2 + η5N3) on SB (12)

whereV andΩ are the translational and rotational velocities o
the body.ηi represents the three translations (i = 1,2,3) and ro-
tations (i = 4,5,6) of the body-fixed framex relative to the equi-
librium framex with respect to thex-, y-, andz-axes. The terms
Copyright c© 2009 by ASME
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on the right hand side of Eqns. (10) and (11) represent the instan-
taneous velocity of the fluid in order to satisfy the corresponding
body boundary conditions. The terms on the right hand side
Eqn. (12) are the two-dimensional corrections when there isa
non-zero pitch angle,η5, or non-zero yaw angle,η6, in the case
of forward speed. This correction assumes small angles relative
to the equilibrium frame, such thatsin(η5,6) ≈ η5,6.

The velocity potential is known on the mean free surface.
the far field, a radiation boundary condition is imposed suchthat
only the incident waves are incoming. This is done numericaly
by incorporating an outer “beach” region, with exponentially in-
creasing node spacing, which absorbs outgoing waves. Also,the
water is assumed deep and the gradient of the perturbation poten-
tial vanishes asz→−∞. The incident wave potential is known,
while the other potentials must be computed. They are initially
set to zero and the dynamics (ship motions or incident wave ee-
vation) are ramped using a hyperbolic tangent function.

Once the mixed boundary value problem is solved, the v
locity potential and its derivatives can be determined anywhere
in the fluid domain. The pressure on the body can be determin
by using Bernoulli’s equation (4). The free surface conditions
are time-stepped using Eqns. (5) and (6).

Momentum Formulation
The momentum formulation requires solving theφ problem

first. However, the resulting formulae do not calculate the pres-
sure on the body to find the forces and moments. This was
rived as an alternative to the direct pressure integration for the
“swimming fish” problem by Newman and Wu [7]. The deriva
tion, including a free surface, is shown in Sclavounos [8]. The
main difference is the use of thez= 0 for the free surface con-
ditions, instead of the weak scatterer assumption by Sclavounos.
The result is the following approximation for the dynamic sec-
tional forces

fd ≈−ρ
Z

SB

pNdl (13)

fd ≈−ρ
d
dt

Z

SB

ΦNdl−ρ
Z

SWP

(gζi +
dφi

dt
)Ndl (14)

whereSWP is the exact waterplane surface intersecting the bod
The total dynamic forces and moments can be written

terms of the perturbation potential

Fd ≈−ρ
Z

L

dx[
∂
∂t

Z

SB

φNdl−Uo
∂
∂x

Z

SB

φNdl +
Z

SWP

(gζi +
dφi

dt
)Ndl]

(15)
The speed dependent component of the force is apparen

the second term. Numerically, this is much simpler than approxi-
mating∂φ

∂x at every node. A drawback of the momentum approa
is that the pressure distribution is not known.
3
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Boundary Value Problem for ∂φ
∂t

Eqn. (4) requires a knowledge of∂φ
∂t to find the pressure

on the body. Using numerical differentiation to find this term
may lead to problems for large amplitude motions. An alterna-
tive method is to solve for the∂φ

∂t term directly. An auxiliary

mixed boundary value problem is set up to solve forψ = δφ
δt , the

time derivative following a moving node. It can be related tothe
partial time derivative by∂φ

∂t = ψ− v·∇φ, wherev is the node
velocity in the equilibrium frame.

The mixed boundary value problem requiresψ on the free
surface andN·∇ψ on the body. The free surface conditions are
already known from Eqn. (6). The body boundary condition
require taking the appropriate time-derivatives of Eqns. (10)
through (12). The resulting boundary conditions can be found
after a bit of vector calculus

N·∇ψd = −N·∇ψi +
δN
δt

· (−∇φd −∇φi) on SB (16)

N·∇ψr = a ·N+
δN
δt

· (−∇φr + v) on SB (17)

N·∇ψa =
δN
δt

· (−∇φa +Uoi) on SB (18)

wherea andv are the body acceleration and velocity in the bod
axis system, respectively, including rotational terms. Itshould be
noted that Eqns. (16) through (18) are solved in the equilibrium
axis system. The scalar quantities are, of course, independent
of axis system choice. For ease of computation, the vector ad
gradients on the right hand side are evaluated in the body as
system. In order to determineδN

δt in the equilibrium frame, the
following identity is used

(
δN
δt

)equilibrium = (
δN
δt

)body+ Ω×N (19)

where the first term on the right hand side is zero, by definition.
It is worth noting that the acceleration term in Eqn. (17) re

quires special treatment in the case of free motions. The terms
can be resolved into a six-by-six matrix, for each degree of free-
dom, and moved to the other side of the equations of motion.
canonical problem is set up which solvesψi = 0 on the free sur-
face,N·∇ψi = Ni on the body, fori = 1..6, and a final problem
including the memory effects of the perturbed wave field. Th
derivation of a similar approach in an unbounded fluid can b
found in Chapter 4 of Newman [9].

NUMERICAL METHODS
At each time step a mixed boundary value problem mu

be solved;φ is given on the free surface and its normal deriva
tive is known on the body surface. The free surface bounda
conditions are determined from the time marching of Eqns. (5)
and (6), while the body boundary conditions are given by pre
scribed motions or an equations of motion solver. Desingular-
Copyright c© 2009 by ASME
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ized sources are placed above the linearized free surface and con-
stant strength panels are used to model the instantaneous wetted
body geometry, up to the incident wave elevation. The mix
boundary value problem is solved by Gaussian elimination ad
the source strengths are determined. At this point,φ and its gradi-
ent are known everywhere in the domain. The x-derivative of the
velocity potential must be estimated using numerical techniques.
Using this approach to find derivatives of known functions isdis-
cussed by Buhmann [10]. Details on how this is applied to t
current method can be found in Zhang et al. [5]. The pressurer
momentum formulation may be followed to determine the forcs
on the hull. The momentum formulation is presented in the p-
vious section.

The improved pressure formulation requires solving theψ
problem, as discussed in the previous section. An advantagof
this method is that it is not sensitive to the time-step size when
computing the pressure on the body, since∂φ

∂t is solved for di-
rectly. Another advantage is that this method is robust for large
amplitude motions and indifferent to panel variations between
time-steps. Once the pressure is found everywhere on the boy,
the forces acting on the body can be approximated by integrating
Eqn. (4) over the instantaneous submerged body surface. Uner
the slender-body assumption, they are

F ≈
Z

L

dx
Z

SB

pNdl (20)

M ≈

Z

L

dx
Z

SB

p(r×N)dl (21)

whereF are the three forces andM are the three moments acting
on the vessel.

Once the forces and moments are known, the equations
motion can be solved. The Euler equations of motion (see F
sen [11] for details) are solved and the body velocity and position
vectors are updated using a fourth-order Adams-Bashforth time-
stepping method. The roll moment includes an empirical viscous
roll damping model developed by Himeno [12]. A fourth-orde
Adams-Bashforth method is also used to time-step the free sr-
face conditions.

As the vessel translates and rotates relative to the equi-
rium frame, translating atUo, the body must be re-panelized. A
“fixed panel” technique is used to model the instantaneous wt-
ted geometry. The maximum number of panels is determined
the start of the simulation and models the entire hull, up to the
sheer line and closed off with a flat deck. The number of “we
panels is determined by the intersection of the body and the inci-
dent wave. The number of panels can change in between t
steps, as numerical problems associated with this are avoied
when using either the improved pressure or momentum form
lation. Special care must be taken where the panel intersects the
incident free surface. Panels are truncated at the free surface and,
if they are relatively small enough, may be combined with an ad-
jacent panel. This is done to ensure reasonable influence marix
condition numbers. When a section exits the water, computations
4
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are simply stopped. Upon re-entry, they are restarted with initial
conditions of zero for that particular section.

RESULTS AND DISCUSSION
Convergence studies have been carried out but will not b

presented here, due to the limited availability of space. They can
be found in Zhang [4] for the two-dimensional problems. Zhang
et al. [13] discuss more detailed convergence studies including
the current body-exact strip theory. A range of validationscan be
found in Bandyk and Beck [6]. A variety of results and compar
isons are presented in this paper, including: the improved panel-
ization technique implemented in this code; numerical and direct
solution of the∂φ

∂t term in the pressure equation for small and
large amplitude motions; pressure and momentum formulation
results for six degree-of-freedom small amplitude motions. In
this paper, all the computations are done using the S-175 co-
tainership. The length, beam, and draft of the vessel are 175.0,
25.4, and 9.5 meters, respectively. The vessel has a block coeffi-
cient of 0.571 and waterplane coefficient of 0.711.

Direct Solution of ψ
Forced heave simulations are used to validate theψ formula-

tion. The dynamic heave forces on a typical midship section will
be shown and discuss for a variety of amplitudes. The dynam
force components include the radiation memory and impulsive
components. The impulsive component is the solution of the ra-
diation problem withφ = 0 on the free surface, while the memory
term accounts for the free surface radiation disturbance.

The first test case is for small amplitude forced heave, whe
the panel number doesn’t change. Figure 1 shows a compa
son between the numerical differentiation to estimate∂φ

∂t using
∆t = T/50,T/100,T/200 and the direct solution using∆t =
T/50, whereT is the period of oscillation and∆t is the time-
step size. The memory component is the upper set of curv
in blue, and the impulsive components is the lower set, in re.
This simple case confirms that the direct solution (solid lines), at
a course time-step size, yields a result that the numerical differ-
entiation approaches as the time-step becomes smaller (increas-
ingly lighter dashed lines). A zoomed view of this convergence
can be seen in Figure 2. The advantages are already apparena
more course time-step can be used in exchange for a few m
back substitutions with the inverted influence matrix.

The fixed panelization offers many advantages over a “ru
ber banding” method; no need to repanelize and recompute n-
mals, and the ability to easily capture hard corners like chines.
Unfortunately, fixed panelization has problems when addingand
removing panels. However, the improved pressure formulation,
solving theψ problem, resolves this complication. Figure 3
shows a small amplitude where just one panel is added or
moved, in comparison to the previous results. The spikes c
be seen in the cases of numerical differentiation (dashed lines)
around 16 and 21 seconds in both force components. The t
instances of time correspond to adding or removing one panelon
either side of a symmetric section in this case of forced heae
Copyright c© 2009 by ASME
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Figure 1. SECTIONAL HEAVE FORCE, AMPLITUDE = 0.01m
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Figure 2. ZOOM: SECTIONAL HEAVE FORCE, AMPLITUDE = 0.01m

periodic motions. The spikes actually increase as the time-step
is reduced.

However, the direct solution does not show this sensitiv
to different panelization between time-steps. Moreover, for pre-
scribed motions, only the evolution of the free surface conditions
is sensitive to time-step size. Since they are linearized asshown
in Eqns. (5) and (6), a more course time-step can be used w
offers significant savings in computational effort.

As an extreme example, a large amplitude case is also d
The heave amplitude is about half of the draft. In this case, many
panels are added and removed as the vessel motions are
significant. Figure 4 shows the how much smoother the fo
time-series is when solving theψ problem directly.

More complicated sections show even more drastic diff
ences between the direct and approximate solutions for large am-
plitude cases. This simple section was used to illustrate the al-
ready visible advantages of using the direct solution with fixed
panelization.
5
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Six Degree-of-Freedom Euler Equations
This section presents response amplitude operator (RAO-

sults for the S-175 atFn= 0.0,0.2 in all six degrees-of-freedom
as shown in Figures 5 through 28. It is worth noting that the e-
tensive free motion results have been checked for convergece
in temporal and spatial resolution. All the cases are long crested
regular waves with amplitude of 0.1m. A range of 5 heading an-
gles are considered,β = 0, 45, 90, 135, and 180 degrees whe
β = 180 degrees is head seas. The small amplitude wave is u
for two reasons: to minimize the amount of drifting off-course
from second-order forces; and to compare to a linear code.e
code used for comparison is SHIMPO, a strip theory based
the work presented in Beck [14].

In the body-exact formulation, the ship would not rema
course steady due to higher-order physical drift forces andslight
numerical inaccuracies. This is especially evident with increas-
ing forward speed. The horizontal plane modes of motion ha
no restoring mechanisms so any perturbation will propoga.
Therefore, the surge, sway, and yaw motions have light forcng
Copyright c© 2009 by ASME
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added in the transient ramp-up to minimize this drift. This is the
simplest way to slightly control the free motions so that they can
be compared to linear results. This artificial force is decreases as
the transients die off, thus negligibly affecting the dynamics of
small amplitude motions. The body-exact time-domain formula-
tion will require a controller to prevent the vessel from drifting
off-course in the cases of large amplitude free motions.

Simulations were executed using both the pressure and
mentum formulations. They are nearly identical in the zero speed
case, as expected. There are some differences in the for
speed results. This is due to the treatment of the∂

∂x terms.
Overall, there is good agreement between the two methods
SHIPMO. Neither method is superior when it comes to the f
ward speed cases. In certain cases, like surge motions for bam
seas in Figure 17, it appears that one method compares b
than the other. However, the scale of the RAO results mus
taken into consideration and the motions are negligible. Incer-
tain cases the heave-pitch coupling is significant with forward
speed, and we see worse agreement with SHIPMO. For ex
ple, the heave and pitch motions in Figures 9 and 10 or Figu
25 and 27 show significant heave and pitch motions at forw
speed aroundL/λ = 0.9 or 1.0, respectively. The yaw respons
in quartering seas, Figures 16 and 28, show an over-estimaof
the forward speed effects, relative to the zero speed results, when
compared to SHIPMO. The differences in these forward sp
results are currently being investigated.

CONCLUSIONS
The results shown are very encouraging. The small am

tude free motions compare very well with linear theory in allsix
degrees-of-freedom. This is a meaningful realization, as classi-
cal linear strip theory is based in the frequency domain and fully
linearized. No drift is present and the body does not have
be repanelized. The capabilities of the time-domain body-exact
code exceed those of a fully linear code, although it shoulde-
duce to the linear code for small amplitudes. The good comp-
ison for this small amplitude motion validates this time-domain
code against the arguments made by linear theory.

The combination of fixed panelization and direct solutio
of ∂φ

∂t proves to be the most robust and accurate method w
computing the pressure on the hull. The hull is modeled m
accurately, repanelization is more straightforward than “rubber
banding”, matrix condition numbers remain reasonable, andcal-
culating the pressure on the body is no longer dependent one
time step. The numerical approximation of∂φ

∂x seems to work
well, but may still be improved upon.

The final steps in this research are to add a controller
allow the vessel to follow a prescribed path, including yaw.The
result will be a coupled model of nonlinear seakeeping and m-
neuvering that is computationally efficient. The results shown
can be computed close to “real-time” on a more powerful de
top computer. The method could be used as a design tool o
path optimization.
6
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Figure 5. S-175 SURGE RAO IN FOLLOWING SEAS
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Figure 6. S-175 HEAVE RAO IN FOLLOWING SEAS

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.5  1  1.5  2  2.5  3

R
O

A
 a

m
pl

itu
de

 [d
eg

/m
]

S-175 Pitch Response Amplitude Operators

-150
-100
-50

 0
 50

 100
 150

 0  0.5  1  1.5  2  2.5  3

R
A

O
 p

ha
se

 [d
eg

]

L / λ

S-175 Pitch Response Amplitude Operators

Figure 7. S-175 PITCH RAO IN FOLLOWING SEAS
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Figure 8. S-175 SURGE RAO IN HEAD SEAS
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Figure 9. S-175 HEAVE RAO IN HEAD SEAS
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Figure 10. S-175 PITCH RAO IN HEAD SEAS
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Figure 11. S-175 SURGE RAO IN STERN QUARTERING SEAS
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Figure 12. S-175 SWAY RAO IN STERN QUARTERING SEAS
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Figure 13. S-175 HEAVE RAO IN STERN QUARTERING SEAS
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Figure 14. S-175 ROLL RAO IN STERN QUARTERING SEAS
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Figure 15. S-175 PITCH RAO IN STERN QUARTERING SEAS
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Figure 16. S-175 YAW RAO IN STERN QUARTERING SEAS
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Figure 17. S-175 SURGE RAO IN BEAM SEAS
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Figure 18. S-175 SWAY RAO IN BEAM SEAS
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Figure 19. S-175 HEAVE RAO IN BEAM SEAS
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Figure 20. S-175 ROLL RAO IN BEAM SEAS
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Figure 21. S-175 PITCH RAO IN BEAM SEAS
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Figure 22. S-175 YAW RAO IN BEAM SEAS
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Figure 23. S-175 SURGE RAO IN BOW QUARTERING SEAS
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Figure 24. S-175 SWAY RAO IN BOW QUARTERING SEAS
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Figure 25. S-175 HEAVE RAO IN BOW QUARTERING SEAS
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Figure 26. S-175 ROLL RAO IN BOW QUARTERING SEAS
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Figure 27. S-175 PITCH RAO IN BOW QUARTERING SEAS
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Figure 28. S-175 YAW RAO IN BOW QUARTERING SEAS
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