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ABSTRACT
An effective control method that achieves movement over a

small ridge as an example of three-dimensional (3D) snake-like
creeping locomotion is presented. The creeping robot is mod-
eled as a continuum with zero thickness capable of generating
bending moment at arbitrary points. Under a simplified contact
condition, the optimal bending moment distribution in terms of
a quadratic cost function of input can be obtained as a function
of curvature by solving an isoperimetric problem. The solution
is well suited to an articulated body consisting of finite number
of links. The model is demonstrated through simulations and ex-
periments using a prototype robot to be effective for traversing
smooth 3D terrain.

Keywords: snake-like robot, continuum modeling, 3D loco-
motion

1 Introduction
The snake-like locomotive mechanism has long been studied

for its capability in moving over complicated and unknown ter-
rain. In recent years, active research has been carried out toward
applying this form of locomotion to rescue robots designed to
rove through disaster debris. Snakes in nature employ a variety
of locomotive gaits in response to the traversing environment,
including lateral undulation (serpentine movement), sidewind-
ing, rectilinear locomotion, inchworm, traveling wave, and con-
certina progression. The features common to all of these gaits
are the lack of any limbs and the realization of movement solely
1
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by bending their body. Thus, the mechanical structure of the
body appears quite simple. However, control is not simple due
to the large number of degrees of freedom (DOFs) that need to
be controlled properly. The most commonly used gait is lateral
undulation, and many species of snake adopt this gait on flat or
uneven terrain. The underside of a snake is longitudinally slip-
pery and laterally non-slippery. This form of locomotion is thus
achieved by exploiting reaction force from the ground in combi-
nation with pushing force to move the body forward using an al-
ternating sideways motion. This form of propulsion results in the
well-known S-shape. Similar motion is also employed in other
circumstances, such as climbing a tree or swimming underwa-
ter. This gait is therefore significant from an engineering point
of view. Among the extensive research on this gait, including
the analysis and development of prototypes, pioneering research
has been conducted by Hirose [1], who proposed the “serpenoid
curve”. This curve is sinusoidal with respect to an arclength,
and its winding approximates a snake’s lateral undulation well.
The same author also developed an articulated robot with an ac-
tive cord mechanism (ACM), consisting of 20 rigid links con-
nected in series by rotational joints with a passive wheel to pre-
vent sideslip. Using joint-level servo control, the robot could be
made to trace a pre-defined serpenoid curve. This approach was
successful for flat terrain, where an arbitrary path can be chosen
if no obstacles hinder movement.

Although there have been many such results concerning lat-
eral undulation on flat terrain [2–5], there have been no suc-
cesses for creeping locomotion on uneven terrain. Several rea-
Copyright c© 2005 by ASME
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sons can be conceived for this difficulty. The locomotive mech-
anism should be capable of three-dimensional (3D) motion in
order to adapt to the terrain. Efficient control methods are there-
fore necessary, as 3D motion is much more complicated than
two-dimensional (2D) motion. Furthermore, as no desired path
can be drawn a priori given the unpredictability of the rugged ter-
rain, joint-level servoing to a pre-defined trajectory (shape-based
control) cannot be applied, requiring some sort of adaptiveness
in the controller. It is also hard to model the exact condition of
contact between individual modules and an uneven part of the
terrain.

In order to overcome these difficulties, a continuum model
defined by a continuous backbone curve with zero thickness is
introduced to describe 3D motion, and some simplifying assump-
tions are adopted regarding the contact condition. The idea of a
continuum model for control of snake-like mechanisms first ap-
peared in [6–8]. The major advantages of approximating to the
continuum model are a reduction in computational cost by de-
scribing the kinematics or dynamics according to the curve ge-
ometry (i.e., no Jacobian is required), and the good interpretation
such an approach offers from a geometric perspective. Chirikjian
et al. applied this method to shape-based control using a dy-
namic model with general form in which the reaction force from
the environment was treated as an external force [8]. This for-
mulation cannot be directly applied for creeping locomotion. In
the present treatment, the reaction force is incorporated as inter-
nal force under a special condition in which the backbone curve
never moves in a transversal manner (i.e., perpendicular to the
tangent of the backbone curve). By adopting this ambitious as-
sumption, the expression of motion is dramatically simplified
compared to the corresponding articulated model with rigid bod-
ies. It is also possible to formulate the problem of the optimal
bending moment distribution in terms of a specific cost function
as an isoperimetric problem. It turns out that the solution can
be expressed as a function of curvature, which is suitable for ap-
proximating to the articulated model.

The goal of this paper is to provide an effective control strat-
egy for 3D creeping locomotion according to the optimal solu-
tion of the continuum model. In Section 2, a theoretical discus-
sion of the continuum modeling is presented, and the optimal
solution is obtained. In Section 3, the experimental system de-
veloped for verification is described, and in Section 4, the control
strategy for creeping locomotion on a smooth 3D surface is pro-
posed and verified through simulations and experiments.

2 Continuum Model
The continuum model considered is shown in Fig. 1. The

body consists of a continuous curve of length L and zero thick-
ness. This curve is called the backbone curve, and is parameter-
ized by the arclength s ∈ [0,L]. A point on the curve at time t is
specified by O(s, t). The derivative with respect to t is marked
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Figure 1. Frame set defined along the backbone curve

by an overdot, and the derivative with respect to s is denoted by a
prime. In the context of geometry, t is often omitted (e.g., O(s)),
even if it is a function of t. O(0) and O(L) denote the head and
tail, respectively. If not specified, vector values (bold face), their
derivatives, and angular velocities are observed from the refer-
ence frame fixed to the terrain. From a geometric perspective,
the following assumptions are imposed:

Assumption 1.

1. The terrain surface is a smooth manifold M
2. The backbone curve draws a smooth trajectory on the ter-

rain surface
3. The body is not stretchable
4. The body is torsion-free along the backbone curve

The first and second assumptions are made for simplicity of ma-
nipulating geometric quantities, while the third and fourth are set
from the viewpoint of reducing the total DOFs. From assump-
tion 1, at every point O(s) (s ∈ [0,L]), a reference frame Σ(s) is
attached to the backbone curve in the following manner. Note
that Σ(s) is different from the Frenet frame since it is necessary
to consider rotation around the backbone curve.

1. The origin of Σ(s) is located at O(s)
2. The orthonormal bases e1(s) e2(s), and e3(s) of Σ(s) form a

right-handed system
3. e1(s) is the tangent to the backbone curve at O(s):

e1(s) = O′(s)

4. e1(0) and e2(0) span the tangent plane TO(0)(M) of the ter-
rain surface at O(0) such that e2(0) points to the right

5. e3(0) is given as a binormal vector of e1(0) and e2(0) as
e3(s) = e1(s)× e2(s) (× is the cross product)
2 Copyright c© 2005 by ASME
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6. according to Assumption 1.4, Σ(s) does not twist around the
backbone curve:

〈e′2(s),e3(s)〉 = 〈e2(s),e′3(s)〉 = 0 〈·, ·〉 : inner product

7. The shape of the backbone curve is characterized by two
curvatures κ2(s) and κ3(s):

κ2(s) = 〈e′1(s),e2(s)〉, κ3(s) = 〈e′1(s),e3(s)〉 s∈ (0,L)

These variables can be represented by one vector:

κ(s) = −κ3(s)e2(s)+κ2(s)e3(s) (1)

On each edge, the vector is defined as

κ(0) = lim
s→+0

κ(s), κ(L) = lim
s→−L

κ(s)

Note that the vector κ(s) is perpendicular to the normal vec-
tor in Frenet-Serret theory, and so is parallel to the binormal
vector. These definitions were set for technical reasons to
facilitate subsequent vector operations.

2.1 Kinematics
To describe motion, the following conditions are assumed

from a kinematic perspective:

Assumption 2.

1. Every part of the backbone curve is constrained on the sur-
face of the terrain

2. There is no sideslip
3. There is no constraint on relative rotation from the terrain

around the backbone curve (except the head)

These assumptions play a significant role in the proposed frame-
work. The first relates to the environment, such as the weight
of the body itself, surrounding debris, or a high-viscosity fluid.
The second is known as the basic principle of lateral undulation.
Snakes in nature have a specialized belly capable of this action.
Some sort of device is needed to impart this condition in an arti-
ficial mechanism, such as a passive wheel or knife-edge. These
constraints can be simply described by

〈Ȯ(s),e2(s)〉 = 〈Ȯ(s),e3(s)〉 = 0

The third conditions is required in order to maintain consistency
with Assumption 1.4.
3
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According to conditions 1 and 2 above, every part of the
body traces exactly the same trajectory as the head. Furthermore,
the progress speed v along the backbone curve is uniform over
the entire length due to the non-stretchability condition. There-
fore, the curvature at O(s) of the current time t is the same as that
of after a certain time ∆t at v∆t behind point O(s+ v∆t).

κ(s+ v∆t, t +∆t) = κ(s, t)

This leads to commutativity between κ̇ and κ′, as given by

κ̇(s, t) = −vκ′(s, t) s ∈ (0,L], κ′(L, t) = lim
s→−L

κ′(s, t) (2)

The snake-like locomotive mechanism achieves forward
motion by changing its shape. It is natural to let the time deriva-
tive of curvature κ̇(s) act a control values for such a kinematic
model. Under the current conditions, however, the control values
cannot be given arbitrarily due to Assumption 1. If there exists
at least one point s0 ∈ (0,L] such that κ′

i(s0) 6= 0 (i = 2 or 3), the
progress speed v is given by κ̇i(s0) as follows.

v =−
κ̇i(s0)

κ′
i(s0)

i = 2 or 3, (3)

Once v is fixed, at the other points, κ̇(s) (s 6= s0) is determined
uniquely by the corresponding κ′(s) according to Eq. (2).

Remark 1. If κ′(s) ≡ 0 for all s ∈ (0,L], that is, if the shape
is a straight line or circular arc, there is no means to control
the progress speed v. These shapes are called singular postures.
Motion must be carefully planned so as to avoid these shapes.

As long as the shape is not a singular posture, v and κ̇(s) can be
regarded as identical. Hereafter, v is taken as one of the control
inputs.

At the head point, a similar kinematic equation to Eq. (2)
holds:

κ̇(0) = −vκ′(0) κ′(0) = lim
s→+0

κ′(s)

Note that κ̇(0) cannot be freely chosen since κ̇(0) = 0 when-
ever v = 0. Therefore, κ̇(0) is not feasible for the control input.
Moreover, κ′

3(0) must follow the curvature (denoted Kterrain) of
the terrain surface along −e1(0). Thus, only κ′

2(0) can be used
as an additional control input.

The kinematic description is completed when all 6 DOFs of
motion of Σ(s) for each s ∈ [0,L] are specified. Let ωi(s) (i =
1,2,3) be the angular velocity of Σ(s) around ei(s). At every
Copyright c© 2005 by ASME
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point, from the curve geometry, the angular velocity of a refer-
ence frame is proportional to the curvature κ2(s), κ3(s) and the
progress speed v:

ω2(s) = κ3(s)v, ω3(s) = −κ2(s)v

By the assumption of no torsion, ω1(s) is uniform along the en-
tire length of the body:

ω1(s) = ω1(0) s ∈ (0,L]

Here, ω1(0) depends on the profile of the terrain, that is, the rate
of rotation (denoted Rterrain) of the surface along −e1(0):

ω1(0) = Rterrainv

The full motion can then be summarized as follows.

Control input:

v = u1, κ′
2(0) = u2 (4)

Shape:

κ̇2(0) = −u2u1

κ̇3(0) = −Kterrainu1
(5)

κ̇2(s) = −κ′
2(s)u1

κ̇3(s) = −κ′
3(s)u1

(s ∈ (0,L]) (6)

Translation:

〈Ȯ(s),e1(s)〉 = −u1, 〈Ȯ(s),e2(s)〉 = 〈Ȯ(s),e3(s)〉 = 0
(7)

Rotation:





ω1(s)
ω2(s)
ω3(s)



 =





Rterrain

κ3(s)
−κ2(s)



u1 s ∈ [0,L] (8)

2.2 Dynamics
Notions of mass, force and bending moment are introduced

as listed in Table 1. The following assumptions are made to assist
discussion of these dynamics:
4
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Figure 2. Forces acting on an infinitesimal slice of the backbone curve

Assumption 3.

1. The bending moment can be generated on an arbitrary point
except the edges

2. The moment of inertia of an infinitesimal piece around each
axis is zero

3. The friction along the backbone curve is zero
4. Gravity does not affect the motion
5. The velocity is sufficiently small that the inertial force

caused by velocity can be ignored

Table 1. List of parameters for the dynamic model

ρ Linear density of backbone curve

fs(s) Stress force along e1(s)

ni(s)ds (i = 2,3) Distributed normal force along ei(s)

qi(s) (i = 2,3) Shearing force along ei(s)

τi(s) (i = 2,3) Bending moment around ei(s)

Recall that it is only necessary to deal with the 2 DOFs cor-
responding to u1 and u2 in Eq. (4). The parameter u2 can be re-
garded as a sort of “steering” that only influences a small neigh-
borhood near the head. The longitudinal motion is therefore dis-
cussed here. Figure 2 shows a slice of the backbone curve cut
from the infinitesimal interval [s,s+ds] projected onto the e1e2-
plane with the relevant applied forces. The slice has curvature
κ2(s) on this plane. Suppose that this slice is moving forward
Copyright c© 2005 by ASME
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with longitudinal acceleration α := u̇1. The following three equa-
tions then hold from force balances:

Tangential balance:

ρdsα = fs(s+ds)cos(κ2(s)ds)− fs(s)
−q2(s)sin(κ2(s)ds)

(9)

Lateral balance:

n2(s)ds = −q2(s+ds)cos(κ2(s)ds)+q2(s)
− fs(s+ds)sin(κ2(s)ds)

(10)

Momental balance:

τ3(s+ds)− τ3(s)+q(s+ds)ds = 0 (11)

By taking the limit as ds → 0, these three equations become

f ′s(s) = ρα−q2(s)κ2(s) (12)

n2(s) = −q′2(s)−κ2(s) fs(s) (13)

q2(s) = −τ′3(s) (14)

Substituting q2(s) in Eq. (12) with Eq. (14) and integrating
Eq. (12) from 0 to s gives

fs(s) = ρsα−
Z s

0
τ′3(σ)κ2(σ)ds

Since there is no stress at either edge, the boundary condition is
given by

fs(0) = fs(L) = 0

Applying the formula of integration by parts yields

mα = −
Z L

0
τ3(s)κ′

2(s)ds (15)

where m := ρL is the total mass.
A similar argument holds on the e1(s)e3(s)-plane with

n3(s)ds (distributed normal force along e3(s)), q3(s) (shearing
force along e3(s)), and τ2(s) (bending moment around e2(s)).
The resultant equation is given by

mα =

Z L

0
τ2(s)κ′

3(s)ds (16)
5
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By the principle of superposition, Eqs. (15) and (16) can be inte-
grated into one equation as follows.

mα = −

Z L

0

(

τ3(s)κ′
2(s)− τ2(s)κ′

3(s)
)

ds

The right-hand side can be simplified using a vector:

τ(s) = τ2(s)e2(s)+ τ3(s)e3(s)

Using κ(s) defined in Eq. (1), this leads to

τ3(s)κ′
2(s)− τ2(s)κ′

3(s) = 〈κ′(s),τ(s)〉

Thus, the equation of motion along the backbone curve govern-
ing the entire motion is obtained as follows.

Equation of motion

mα = −
Z L

0
〈τ(s),κ′(s)〉ds (17)

Remark 2. It is clear from Eq. (17) that a singular posture in
the kinematic model is also a singular posture in the dynamics
model. In fact, if κ′(s) = 0 for all s ∈ [0,L], the longitudinal
acceleration is 0.

2.3 Optimal Bending Moment
An infinite number of variations of the bending moment dis-

tribution are available. Here, an optimization problem involving
minimization of the cost function of τ is adopted. Consider the
cost function

J =

Z L

0
〈τ(s),τ(s)〉ds

and state the following problem:

Problem 1. For a given α in Eq. (17), find the optimal bending
moment distribution τ∗(s) that minimizes J.

This problem is a sort of isoperimetric problem. According
to the Lagrange multiplier method, a new functional x can be
constructed as follows.

x =

Z L

0
Fx(s)ds, Fx(s) = κ′(s)τ−λτ2
Copyright c© 2005 by ASME
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The corresponding Euler equation is then

∂Fx

∂τ
−

d
ds

∂Fx

∂τ′
= κ′(s)−2λτ = 0 (18)

Solving this equation about τ and substituting the result into
Eq. (17) leads to the following definition of the Lagrange multi-
plier λ:

λ =

R L
0 〈κ′(s),κ′(s)〉ds

2mα

This treatment gives the solution for the optimal bending mo-
ment:

Optimal bending moment

τ∗(s) = −
mα

R L
0 〈κ′(s),κ′(s)〉ds

κ′(s) (19)

This equation reveals two features:

1. The distribution of optimal bending moment is similar to
that of κ′(s)

2. Larger κ′(s) allows the bending moment τ(s) to be smaller

The first property is quite convenient in the treatment of an ar-
ticulated robot, as κ′(s) can be easily approximated as the differ-
ence of joint angles.

3 Development of a Snake-like Robot
A prototype articulated robot with 9 links and 8 joints has

been developed on the basis of this locomotive model, as shown
in Fig. 3. Each joint has a universal joint-like structure with 2
DOFs, allowing the body to bend in two ways (Fig. 4). All
joints are actuated by direct-current (DC) motors. Each link is
equipped with a control board and passive wheels. The control
boards consist of a one-chip microcomputer and 2 pairs of field
effect transistor (FET) H-bridge motor drivers, and each board
is connected to the adjacent board via a serial connection. A
summary of the specifications of the prototype is provided in Ta-
ble 2. The passive wheels generate constant force against
sideslip, as required by Assumption 2.2. The axle of the passive
wheel can freely rotate around the body axis (except for the head
link), satisfying Assumption 2.3 (Fig. 5). As the model requires
torque-based control, joint flexibility is an important capability.
To this end, a small motor and gearing system with low friction
and backlash is employed.

The kinematic parameters in the continuum model can be
translated into the articulated model as shown in Table 3. Note
6
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Figure 3. Overview of 9-link locomotive mechanism

Table 2. Specification of prototype

Total mass 2.8 [kg]

Total length 0.9 [m]

Microcomputer Renesas H8/3664 × 9

DC motor Maxon Re-max 17 × 17

Power source Ni-MH 2000 mAh × 6

φ2 (pitch)

φ3 (yaw)

e1

e2

e3

Figure 4. Joint structure

that κ2(s) corresponds to φi
3, and κ3(s) to −φi

2. The optimal
bending moment (Eq. (19)) can then be discretized to give the
following approximation:

[

τ∗2[i]
τ∗3[i]

]

= −
mαn2

L2 ∑n
i=2(∆φ2[i]

2 +∆φ3[i]
2)

[

∆φ2[i]
∆φ3[i]

]

(20)

where ∆φk[i] = φk[i]− φk[i− 1] (k = 2,3). The tasks of the ith
controller are summarized as follows.

1. Receive the joint angles φ[i−1] := (φ2[i−1],φ3[i−1]) from
the previous link
Copyright c© 2005 by ASME
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fixed

Figure 5. Axle of passive wheel

Table 3. Parameters in continuum model vs. articulated model

Continuum model Articulated model

Arclength s ∈ [0,L] i = 1, · · · ,n−1 Joint number

Curvature κ2(s),κ3(s) φ2[i],φ3[i] Joint angle

Bending moment τ2(s),τ3(s) τ2[i],τ3[i] Joint torque

τ2[i]

φ2[i]

controller

DC motor/gear

φ[i+1]

τ3[i]

φ3[i]

τ2[i+1]

φ2[i+1] φ3[i+1]

encoder

H8/3664

τ3[i+1]

φ[i]controller

H8/3664

φ[i−1]

Figure 6. Schematic of control system

2. Calculate and apply the desired joint torque τ2[i] and τ3[i]
according to Eq. (20)

3. Transmit the joint angles φ[i] := (φ2[i−1],φ3[i]) to the suc-
ceeding link

A schematic of the controller is shown in Fig. 6.

4 Locomotion on smooth 3D surface
In order to explore a smooth 3D surface, the head link must

follow the terrain surface, requiring special control for the first
joint. Figure 7 describes a situation in which the head link
“floats” up from the terrain surface. In this case, τ2[1] is used
for the bowing action in recovering contact with the surface, as
7

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
h

τ2[1]

Figure 7. Lifting/bowing control of the head link

τ3[1]

et

Figure 8. Tracking control to desired path

follows.

τ2[1] = −K2h−D2φ̇2[1]

where h is the error from the desired distance from the surface
measured by a distance sensor, K2 is the coefficient of stiffness,
and D2 is a damping coefficient. In this case, τ3[1] is a kind
of steering torque, similar to that of a car model, and is used
for reducing tracking error from the desired trajectory (Fig. 8).
Tracking error et is measured by a tracking arm (Fig. 9). Many
conventional methods for line tracing robots can be applied in
this way. In the present case, the following control law is applied:

τ3[1] = −K3et −D3φ̇3[1]

For other links, the joint torques are given by Eq. (20) and
are approximately optimal in the sense of mechanical stress on
the actuator. Although Eq. (20) includes information on all
joints, the desired progress speed vd can be obtained as follows
without using this information.

[

τ2[i]
τ3[i]

]

= −K(vd − v)

[

∆φ2[i]
∆φ3[i]

]

(21)

where K is a constant feedback gain. This is equivalent to setting
Copyright c© 2005 by ASME
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Figure 9. Tracking arm

the acceleration α by

α = v̇ = K(vd − v)
L2 ∑n

i=2(∆φ2[i]
2 +∆φ3[i]

2)

mn2 (22)

It is clear that v converges to vd as long as the posture is non-
singular and there is no disturbance. Thus, the set of data that
should be transferred between links via serial communication
consists of φ2[i], φ3[i], v, and vd . It should be emphasized that
the order of complexity is just O(1), and is independent of the
number of links.

4.1 Simulation
Computer simulations were performed to verify whether the

proposed control strategy will work for exploration over un-
known 3D terrain. The simulation model was constructed us-
ing AutolevTM (Online Dynamics Inc.), a symbolic manipulation
software package. The contact conditions were modeled as a
spring-damper system, and the physical parameters were chosen
such that the behavior was as close to the real system as possible.
The prescribed task was traversal over a small ridge. Figure 10
shows snapshots of the resultant animations created by Scherzo
(free software using OpenGL). The robot is initially placed in
a flat area and formed into a winding shape to avoid a singular
posture at the outset. The robot moves toward the left. When
it arrives at the ascent, it raises its head and follows the surface.
The uphill part of the body is thrust by the succeeding links on
the flat area until it reaches the crest, beyond which traction is re-
established and is transmitted to the succeeding link (3rd figure).
At this time, the robot can progress without a horizontal winding
gait. It is important that non-floating condition, Assumption 2.1,
are satisfied.
8
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Figure 10. Snapshots of simulation

4.2 Experiment
A corresponding experiment was performed using the pro-

totype. As a suitable distance sensor could not be obtained for
surface following in this experiment, the initial position was set
as shown in Fig. 11. A total of 5 retro-reflective markers were
attached to the top of the head, 2nd, 4th, 6th, and 8th joints
for observation using a motion capture system (Qualisys Inc.).
Figure 12 shows the loci of these points in the xz-plane (plumb
plane). Each point draws an almost identical trajectory without
floating from the surface.
Copyright c© 2005 by ASME
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Figure 11. Experiment
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Figure 12. Loci of markers in xz-plane

5 Conclusion
A continuum model for snake-like creeping locomotion over

a smooth 3D surface was proposed. The kinematics and dynam-
ics of the system were derived using simplified assumptions, and
a control law for locomotion over unknown 3D terrain was pro-
posed. The optimal bending moment is found to have quite a
simple form. Despite the simplifications, however, the proposed
method was demonstrated to be effective for traversing unknown
3D terrain through both simulation and experiments using a pro-
9
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totype robot. A bcontrol algorithm and mechanism for non-
smooth terrain are logical extensions to this model that should
be addressed in future work.
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