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Abstract—Recent works have shown that, contrary to a com-
mon belief, multi-modal biometric systems may be “forced” by an
impostor by submitting a spoofed biometric replica of a genuine
user to only one of the matchers. Although those results were
obtained under a worst-case scenario when the attacker is able to
replicate the exact appearance of the true biometric, this raises
the issue of investigating more thoroughly the robustness of multi-
modal systems against spoof attacks and devising new methods to
design robust systems against them. To this aim, in this paper we
propose a robustness evaluation method which takes into account
also scenarios more realistic than the worst-case one. Qur method
is based on an analytical model of the score distribution of fake
traits, which is assumed to lie between the one of genuine and
impostor scores, and is parametrised by a measure of the relative
distance to the distribution of impostor scores, we name ‘fake
strength”. Varying the value of such parameter allows one to
simulate the different factors which can affect the distribution
of fake scores, like the ability of the attacker to replicate a
certain biometric. Preliminary experimental results on real bi-
modal biometric data sets made up of faces and fingerprints show
that the widely used LLR rule can be highly vulnerable to spoof
attacks against one only matcher, even when the attack has a
low fake strength.

I. INTRODUCTION

With the rapid growth in the use of biometric systems, issues
about their robustness and security against external attacks are
also raising. Several researchers are investigating the vulner-
abilities of biometric systems, the potential attacks and the
related countermeasures. Among the others, the attack which
is of greatest interest in the biometric community consists
in submitting to the system a counterfeit, or fake, biometric
[1], which is known as “spoof attack”, “direct attack™, since
the true biometric is replaced by a fake one. Several authors
showed that biometrics such as fingerprints, iris and faces, can
be stealthy procured and used to generate synthetic biometric
traits to attack biometric sensors. Although several potential
countermeasures have been proposed so far, no effective one
exists yet.

Besides ad hoc countermeasures, it is commonly believed
that multi-modal systems are intrinsically more robust against
spoof attacks, since their evasion would require to spoof all
biometric traits simultaneously [2]. However such belief is
not based on theoretical or empirical evidences, but only on

intuitive and qualitative arguments, which rely mainly on the
higher performance of multi-modal systems with respect to
mono-modal ones.

Actually, such belief has been questioned very recently in
[3]-[5], where it has been shown that multi-modal systems
can be cracked by faking only one of the biometric traits.
Those results have been obtained under the stringent, worst-
case scenario when the attacker is capable to produce an exact
replica of the targeted client’s biometric. Anyway, they raise
the need of further investigations on the robustness of multi-
modal systems under spoof attacks, and of developing effective
countermeasures.

In this work, we address this issue by proposing a method
to evaluate the robustness of a multi-modal system against
spoof attacks. Our goal is to avoid the straightforward but
cumbersome solution of constructing spoofed biometric traits
to test the system. Since no multi-modal data set containing
spoof attacks has been made available so far, our method
is based on simulating the effects of a spoof attack on the
distribution of the corresponding matching scores, as in [3]-
[5]. However, differently from these works, our aim is to take
into account also more realistic, non-worst-case scenarios, in
which the fake score distribution can be different than the
genuine one. The distribution of fake scores may be affected
by different factors, like the particular spoofed biometric, the
sensor, the matching algorithm, the technique used to construct
fake biometrics, the skills of the attacker, etc. However, at
the state of the art their effect is unknown. We thus propose
to model such distribution by assuming that by effect of
the above factors they can exhibit different shapes, and in
particular, that in can be identical either to the impostor
or to the genuine score distributions, or lies between them.
To model distributions lying between the ones of genuine
and impostor scores, we introduce a single parameter that
controls their relative similarity to the genuine distribution
(or equivalently, the relative distance from the impostor one),
which we name “fake strength”: the higher the similarity, the
higher the “strength” of the spoof attack. For instance, this can
reflect the different ability of attackers to replicate the targeted
genuine biometric, being equal all the other factors mentioned



above.

Our method can be applied to any multi-modal system, and
can be used by a designer to obtain an estimation of the system
performance under potential spoof attacks of different strength.
It can also be used to compare the robustness of different score
fusion rules applied to a given multi-modal system.

We finally present a case study related to a bi-modal
system made up of a fingerprint and a face matcher, using
the likelihood ratio score fusion rule (LLR). Our results show
that the LLR may be highly vulnerable to spoof attacks, even
of low strength. This suggests as possible, relevant follow-ups
of this work, the construction of proper data sets containing
spoof attacks, to verify the assumptions behind our model,
and to compare the robustness of the different fusion rules
proposed so far in the literature.

The paper is organized as follows. In Sect. II we summarise
previous works on spoof attacks. Our robustness evaluation
method is presented in Sect. III. Experimental results are
reported in Sect. IV. Preliminary conclusions are drawn in
Sect. V.

II. BACKGROUND

A systematic analysis of the potential vulnerabilities of
biometric systems has been given in [1], where eight possible
different kinds of attacks have been identified (see also Fig. 5
of [1]). Spoof attacks, which are the focus of this paper,
have been considered by several authors. For instance, in [6]
artificial fingers were created using gum and gelatine, and a
60% impostor acceptance rate was reported, when they were
submitted to a fingerprint sensor. Liveness detection at sensor
level is a possible countermasure suggested by most of the
researchers [7]. Hardware- and software-based algorithms for
the so-called fingerprint liveness detection have been already
developed. The first survey on this topic is [8]. Several other
approaches have been subsequently proposed [9], [10].

The spoof attack does not involve only fingerprints. Re-
cently, some papers appeared regarding iris and faces [11],
[12]. In particular, it is well-known that iris may be faked
by appropriate contact lens, and it has been shown that a
simple photo in front of a camera may allow to deceive a
face verification system.

Although several fake detection algorithms have been pro-
posed to avoid spoof attacks, the state of the art is not yet
mature. The common effect of fingerprint, or face, liveness
detection systems is the increase of the false reject rate,
because several “live” fingerprints are misclassified as fake
ones. Recent results appeared on [13] pointed out that the av-
erage error rate of state-of-the-art fingerprint liveness detection
algorithms is about 15%, using the MAP criterion. Therefore,
the overall acceptability and performance of biometric verifi-
cation systems decreases when they are coupled with liveness
detection algorithms.

As mentioned in the introduction, multi-modal systems are
commonly believed to be a possible countermeasure against
spoof attacks. They have been originally proposed to improve

the performance of mono-modal systems, and their effec-
tivenss has been shown by extensive theoretical and empirical
evidences [14], [15]. Moreover, they also proved to be quite
robust under stress conditions, namely, deliberate attempts
of the user to deceive the system by poor co-operation or
some kind of forgery (e.g., wearing glasses or beard) [16].
Their claimed robustness against spoof attacks is based only
on a intuitive argument instead, namely that their evasion
would require to spoof all biometric traits simultaneously [2].
Such claim is however not supported so far by theoretical or
empirical evidences, and has been questioned in [3]-[5]. In
[3], the authors empirically simulated the effect of a spoof
attack on the matching scores of a bi-modal system made
up of a face and a fingerprint matcher, in the worst-case
scenario in which the attacker is capable to exactly replicate
the fingerprint of the targeted client, so that the same matching
score as the client’s template is obtained. In other words, the
distribution of the scores of fake fingerprints is identical to
the one of genuine users. Reported experiments on some real
data sets, with the widely used weighted sum and likelihood
ratio score fusion rules, showed that under the above scenario
the false acceptance rate (FAR) of a multi-modal system can
dramatically increase, allowing an attacker to crack the system
by spoofing only one biometric trait. Such results are very
discouraging, especially because LLR is known to be the
optimal decision rule when the score distributions are exactly
known, and lead the authors of [3] to propose two new score
fusion rules to improve robustness against spoof attacks. Such
rules (a fuzzy rule and a modification of the LLR rule) are
based on a quality measure aimed at discriminating among
fake and live traits, and (in the case of the modified LLR
rule) to take into account the possibility of spoof attack at
design phase, by simulating the presence of scores of spoofed
traits among training data.

The results of [3] have been obtained under a worst-case
scenario, which may be not realistic in many practical settings.
In fact, faking some kinds of biometric traits, like fingerprints,
is not trivial [6]. Moreover, although simple spoofing tech-
niques may be effective for some biometrics (for instance,
showing a photo of the targeted client in front of the camera,
in the case of a face matcher), they can be easily detected in
systems with human intervention.

Nevertheless, the results of [3] raise the issue of investigat-
ing more systematically and more thoroughly the robustness
of multi-modal systems to spoof attacks, by focusing also on
realistic scenarios where fake traits are not exact replicas of
the original ones.

III. A METHOD FOR ROBUSTNESS ANALYSIS OF
MULTI-MODAL BIOMETRIC SYSTEMS UNDER SPOOF
ATTACKS

A straightforward way to evaluate the robustness of a
biometric system against spoof attacks is to construct fake
biometric traits and present them to the system. However this
can be a difficult and impractical task [13]. An alternative
solution is to simulate the effects of a spoof attack on the



matching score of the corresponding biometric trait, as in
[3]-[5]. In this section we follow this approach, and propose
a method based on a model of the fake scores distribution
(Sect. III-A) to estimate the performance of a multi-modal
system under spoof attacks (Sect. III-B). In Sect. III-C we
show how this method can be applied to a bi-modal system
using the LLR fusion rule, which is the case study of the
esperiments of Sect. IV.

A. A model of the fake scores distribution

In real scenarios it is reasonable to assume that the score
distribution of fake traits is different than the genuine one,
and that spoof attacks carried out using different techniques,
or attempted by different attackers with different forgery skills,
lead to different distributions of fake scores.

To develop a model of the fake scores distribution it
would be very useful to start from empirical data. However,
although several data sets of live and fake biometric traits
currently exist, like the LivDet09 data set (http://prag.diee.
unica.it/LivDet09), they do not provide useful information on
the score distribution of fake traits, since they have not been
indexed by the users’ identity. To our knowledge, the only
exception is the data set of [10], which however is rather small
and not publicly available.

The solution we propose is to make a working assumption
on the possible forms that the fake scores distribution may
exhibit, due to the possible effects of the different factors
mentioned above. In the following we denote with s the score
of a biometric matcher, and with G and I the events that the
input biometric is true and comes respectively from a genuine
user and an impostor, while the event that it is a fake biometric
will be denoted as F. The corresponding score distributions
will thus be denoted as p(s|G), p(s|I) and p(s|F). Our working
assumptions on the form of p(s|F) are the following:

1) In the worst case, the attacker is able to fabricate exact
replicas of the targeted biometric trait, and thus the
distribution of fake scores is identical to the one of
genuine user: p(s|F) = p(s|G). This is theonly scenario
considered in [3]-[5].

2) In the best case (for the system), the fake trait is very
different from the one of the targeted genuine user, such
that the attacker does not get a better result than if he
submitted his own original trait. Accordingly, in tis case
p(s|F) = p(s[I).

3) In “intermediate” cases, we assume that p(s|F) lies
between p(s|I) and p(s|G), and model its possible
shapes as discussed below.

We model p(s|F) in “intermediate” cases using a parametric
model based on a given distribution, like a Gaussian, Gamma
or Beta. We assume that p(s|F) has the same form as p(s|G)
and p(s|I), and that the value of each of its parameters is
between the values of the corresponding parameter in p(s|G)
and p(s|I). For instance, if p(s|G) and p(s|I) are modeled as
Gaussians with mean and variance denoted as g, i1, 0% and

o?, we are assuming that p(s|F) is Gaussian as well, and that

its mean and variance satisfy the constraints:

HF € [min{ug,m},max{ug,,ul}], (1)
or € [min{og, o1}, max{og, o1}

In other words, we model the possible fake score distributions
as a “morphing” of the impostor distribution toward the
genuine one. To simplify this model, we further constrain the
parameters of p(s|F) to satisfy a linear proportionality con-
straint with respect to their range, with the same value of the
coefficient. For instance, in the case of Gaussian distributions
this amounts to assume that the mean and variance of p(s|F)
is given by:

HF = Qg + (1 - a)/“ﬂ )

or = aog + (1 — a)or,

for some o € (0,1). From now on, we will explicitly
denote the dependence of the fake scores distribution on «
as p(s|F; ). Note that & = 1 and o = 0 lead respectively to
the worst and best cases of assumptions 1 and 2. By varying
« in [0, 1] one obtains different distributions p(s|F; a): they
approach p(s|G) as « approaches 1 (the worst-case), and
similarly they approach p(s|I) as « approaches O (the best-
case). Accordingly, we call the parameter o “fake strength”.

Through the o parameter, our model allows one to take into
account in the simplest possible way all the above mentioned
different factors which can affect the fake scores distribution,
in the absence of more precise information on their impact. In
the next section we show how to apply this model to assess
the robustness of a multi-modal biometric system under spoof
attacks.

B. Robustness analysis of multi-modal systems under spoof
attacks

Consider a system made up of IV different matchers, whose
scores are denoted as elements of a vector, s = (S1,...,SN).
Without loss of generality, assume that the first matcher
is subject to a spoofing attack. Accordingly, the marginal
distribution p(s1|F) follows the model described in Sect. III-A
with respect to p(s1|G) and p(s;1|I), while the marginal distri-
butions of the other scores equal the ones of the corresponding
impostor score, namely p(s;|F) = p(s;|I),4 > 1, given that
the corresponding traits are not subject to a spoofing attack.
We further make the usual assumption that the scores are
conditionally independent given the class, and extend it to the
score of the spoofed trait. Accordingly, p(s|F) is modelled as
p(s1|F) x Hl].VZQp(siH). This model can be easily generalised
to the case when more than one biometric trait is spoofed.

The distributions p(s;|G) and p(s;|I), ¢ > 1, can thus
be estimated from the available data set of scores using the
chosen parametric model, as usual, while p(s;|F) is modelled
as explained in Sect. III-A.

To assess the robustness of the multi-modal biometric
system against a spoof attack, the threshold of the score fusion
rule (and its parameters, if any) has to be estimated from
training data, using the genuine and impostor score distri-
butions, according to application requirements (for instance,
setting the operational point by choosing a desired FAR value).



Algorithm 1 Procedure for robustness analysis of a multi-
modal biometric system under spoof attacks
Inputs:

o A training set (Gy;, I;;) and a testing set (Gis, Its) made
up of N-dimensional matching score vectors coming
from genuine and impostor users;

o f(s;07) € {G,I}: a score fusion rule with parameters
0y (including the threshold), where s is an input score
vector and G and I denote the labels corresponding to
the ‘genuine’ and ‘impostor’ decision;

o P(-|0): a parametric model of the class-conditional gen-
uine and impostor score distributions;

e a,...,ayu: asetof fake quality values for the n matchers
subject to a simulated spoof attack.

QOutput: The system’s performance under a simulated
spoof attack to matchers 1,...,n, with fake quality values
Ay...yOp.

1: Set the parameters of f(s;6;), on training data (Gyy, Iir),
according to given performance requirements.

2: Fit the model ]5(\0) to testing data (Gis, [is), to ap-
proximate the genuine and impostor score distributions
P(S|G;0¢) and P(S|I; 6;).

3: Compute the fake score distribution P(S|F; g, ') accord-
ing to our model, using P(S|G;60¢) and P(S|L; 6;).

4; Randomly draw a set Fi of scores from P(S|F;0p, ),
and label them as “impostors”.

5: Evaluate the system’s performance on the
(Gis, Fis), using the score fusion rule f(s;0y).

scores

The performance is then evaluated on testing data, using the
genuine and fake score distributions. This procedure can be
repeated for different « values in the range [0, 1], to get a
complete picture of the system’s performance as a function
of the fake strength. Note that the above procedure can be
carried out analitycally or numerically for some fusion rules
and some parametric model of the score distributions. For
instance, in the case of the LLR rule with Gaussian score
distributions, the expression of the FAR as a function of the
decision threshold can be obtained analitically (in integral
form), and its evaluation can be done numerically, as shown
in the next section. In general, the evaluation can always
be carried out empirically. To this aim one must add to the
genuine scores of the testing set a set of scores drawn from
the distribution p(s|F), which has to be modelled based on
genuine and impostor scores in the testing set. All the above
procedure is summarised by Algorithm 1.

Under our model for p(s|F), the system’s performance is
likely to decrease from the value attained for a = 0 (which
corresponds to the absence of attacks) to the worst case
corresponding to a = 1. Therefore, the above procedure allows
one to assess how the system’s performance degrades as the
attack strength increases: the more gracefully the performance
degrades, the more robust a system is. This also allows one to
compare the robustness of different fusion rules.

C. Case study: a bi-modal system using LLR fusion rule with
Gaussian distributions

Here we show how to analitically/numerically evaluate the
robustness of a bi-modal biometric system to a spoofing attack,
when the score distributions are modelled as Gaussians, and
the LLR rule is used. We assume that application requirements
are given in terms of a desired FAR value.

The logarithm of the likelihood ratio for a system with two
independent scores with class-conditional Gaussian distribu-
tions, denoted with z(s, s2), is given by:

o p(s1lCp(salG) _
2(s1,82) = log Brqmcan. —

10 ( 01519152 ) +
& 0G319Gs2

1 (“"1_“151)2 + (82_“‘132)2 _ (s1=pG,, )? _ (82_”G32)2
2 2 2
i i TG TGeo

3)

The decision function is given by sign (z(s1, s2) — logt),
where the value +1 means that the user is accepted as genuine,
while a value of —1 means that he is rejected as an impostor.
The threshold ¢ has to be set so that the desired FAR is
attained. The region of the score space (s1, s2) corresponding
to genuine users, denoted as G, can be found analitically by
solving the quadratic inequality z(s1, s2) —logt¢ > 0. The left-
hand side of such inequality can be rewritten by re-arranging
the terms of Eq. 3, as:

2(s1,82) —logt = As? + Bs1sy + Cs3 + Dsy + Esy + F,

“4)

where the threshold ¢ is included in the term F'. Depending on

the value of B? — 4AC, the solution of z(sq,s2) — logt =0
corresponds to:

e B2 —4AC < 0: an ellipse;
e B2 —4AC = 0: a parabola;
e B2 —4AC > 0: an hyperbola.
This allows to find analitycally the region G.
The FAR for a given ¢ value is defined as:

FAR(t) = [ o p(s1D)p(s2|I)dsidss. 5)

The above integral can be computed numerically.

Now the threshold ¢ can be set to the value ¢* which
gives the desired FAR on training data. Assuming that s;
corresponds to the matcher subject to a spoofing attack, the
corresponding FAR on testing data can be found as:

FAR(t*) = [ |4 p(s1|F)p(s2|T)ds1dss, (6)

where p(s1|F) and p(s2|I) are now obtained from testing data
as described in the previous section. The above integral can
be computed numerically as well.

IV. EXPERIMENTAL RESULTS

In this section we report a case study involving the evalua-
tion of the robustness of a bi-modal biometric system with the
LLR fusion rule. The interest on the LLR rule is motivated by
three main reasons: it is widely used in multi-modal systems;
it is the optimal rule when the score distributions are exactly



known (in the sense that it gives the minimum false rejection
rate, FRR, for any given FAR value, and vice-versa); its
robustness to spoof attacks has already been questioned in
previous works mentioned above.

A. Data set and experimental set up

We used the well known NIST biometric score set Releasel
(BSSR1).! It contains raw similarity scores obtained from two
different face matchers (denoted as C and G) and from one
fingerprint matcher, both using left and right index (denoted
as RI and LI), on a set of 517 people. For each individual,
one genuine score and 516 impostor scores are available for
each matcher and each modality.

We considered four different multi-modal systems by pair-
ing in all possible ways the scores of the face and fingerprint
matchers of the same individual. The resulting systems are
therefore (Face G, Fingerprint LI), (Face G, Fingerprint RI),
(Face C, Fingerprint LI), and (Face C, Fingerprint RI). In the
following they will be denoted for short with the correspond-
ing symbols: G-LI, G-RI, C-LI and C-RI. The scores were
normalized using the hyperbolic tangent method [2].

In these experiments we used the whole set of scores both
as training and testing data, which corresponds to the ideal
situation in which the score distributions are exactly known.
This allows us to evaluate the performance degradation due
to spoofing attacks only, decoupling it from the effect of a
mismatch between training and testing score distributions. To
this aim, we applied Algorithm 1 with Gy = Gy,, and [ =
I;;. In Algorithm 1 we used a Gaussian distribution to model
the genuine and impostor score distributions, and computed
the FAR values under a simulated spoof attack as described
in Sect. III-C.

Three different operational points were considered: 0.01%,
0.1% and 1% FAR. The values we used for the fake strength
« range form 0 to 0.1 with steps of 0.01, plus the values
from 0.1 to 1 with steps of 0.1. Note that in this setting
the simulated spoofing attacks affect only the FAR, while the
FRR remains unchanged. Accordingly, the robustness of the
considered multi-modal systems can be evaluated in terms of
the behaviour of their FAR as a function of the fake strength.

B. Results

In Figs. 1-4 the FAR attained by the four multi-modal
systems under a simulated spoofing attack on either the face or
fingerprint matcher is shown, for each operational point, as a
function of the fake strength . Note that the FAR attained for
o = 0 is the one corresponding to the absence of attacks, while
the one for & = 1 corresponds to the worst-case considered
in [3]. Note also that in each plot we reported the FAR vs «
both for fingeprint and face spoofing only for the sake of space.
However, using our method it is not possible to compare the
FAR attained under spoof attacks against different biometrics,
being equal the a value, as there is no relationship among
the « values related to fake score distributions of different
biometrics.

Uhttp://www.itl.nist.gov/iad/894.03/biometricscores/index.html

As expected, the FAR under attack increases as the fake
strength increases, namely as the simulated distribution of fake
scores approaches to genuine score distribution.

The most interesting result is that in all the considered
systems the increase in FAR is very steep when fingerprints are
spoofed, to the extent that the FAR becomes unacceptably high
even for low « values. For instance, in the G-RI system with
1% FAR operational point (Fig. 1, bottom), the FAR under
attack exceeds 50% as the fake strength is above 0.15. This
means that 1% of the impostors are erroneously recognised
as genuines, when they provide their real fingerprint and face.
Instead, when impostors provide a spoofed fingerprint of a
genuine user together with their real face, 50% of them would
be recognised as genuine users, as long as the mean and
variance of the score distribution of the spoofed fingerprints
is shifted from the one of the real impostors’ fingerprints of
just 15% towards the corresponding parameters of the genuine
score distribution. Face spoofing causes instead a relatively
more graceful increase of FAR as a function of the fake
strength, in all the considered systems. Nevertheless, it always
leads to FAR values exceeding 10%, for a sufficently high
fake strength. The reason of this different behaviour is that the
genuine and impostor score distributions of the face matchers
in the considered data sets turn out to be more overlapping than
the ones produced by the fingerprint matchers. Consequently,
for a same value of the fake strength «, when the face is
spoofed, the fingerprint matcher allows to detect a higher
fraction of impostors than vice versa.

These preliminary results provide further evidence with
respect to [3]-[5] that multi-modal systems can be vulnerable
to spoof attacks against only one matcher. In particular, they
can be very vulnerable also in more realistic, non-worst-case
scenarios than the one considered in [3]-[5], when the spoofed
traits are not perfect replicas of the real genuine traits. In
particular, their performance can become unacceptable even
when the fake score distribution is much closer to the impostor
distribution than to the genuine one.

V. CONCLUSIONS

The main contribution of this work is a model of the
matching score distribution produced by fake biometric traits
under different possible realistic scenarios characterised by
different spoofing techniques and different degrees of fakes’
“strength” due to attackers’ capability. Such factors are sum-
marised in our model in a single parameter associated to
the degree of similarity of the fake score distribution to the
genuine one, which is named accordingly “fake strength”.
Our model allowed us to develop a method to empirically
or analitically/numerically evaluate the robustness of multi-
modal biometric systems to spoofing attacks, by simulating
their effect on the matching scores.

We applied our robustness evaluation method to a case study
involving bi-modal systems made up by a face and a fingeprint
matcher, whose scores are fused using the well known LLR
rule. Under the assumption of our model, experiments on
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Fig. 1. FAR (%) of the G-RI system at 0.01 % (top) , 0.1 % (middle)
and 1 % FAR (bottom), as function of the fake strength «, when either the
fingerprint (blue curve) or the face (red curve) is spoofed.

several real data sets provided further evidence, besides [3]-
[5], that multi-modal systems may be cracked by spoofing one
only biometric trait, contrary to a common belief. They also
showed that the LLR rule may be very vulnerable to such
spoofing attacks, and that its vulnerability increases as the
targeted matcher provides less overlapping score distributions.
Our results suggest several very interesting follow-ups:
« Constructing proper data sets containing spoofing attacks,
to analyse the behaviour of the real distribution of fake
scores under different conditions (different biometric
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Fig. 2. FAR (%) of the G-LI system at 0.01 % (top) , 0.1 % (middle) and 1
% FAR (bottom), as function of the fake strength, when either the fingerprint
(blue curve) or the face (red curve) is spoofed.

traits, spoofing techniques, matchers, etc.). This would
allow one to check whether the assumptions underlying
our model provide good approximations of the fake score
distributions, and to modify them if necessary. As a
consequence, this would allow to make our method for
robustness evaluation a practical tool for the designers
of biometric systems, without requiring the actual imple-
mentation of spoofing attacks.

o Applying our method to compare the robustness of dif-
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Fig. 3. FAR (%) of the C-RI system at 0.01 % (top) , 0.1 % (middle) and 1
% FAR (bottom), as function of the fake strength, when either the fingerprint
(blue curve) or the face (red curve) is spoofed.

Fig. 4. FAR (%) of the C-LI system at 0.01 % (top) , 0.1 % (middle) and 1
% FAR (bottom), as function of the fake strength, when either the fingerprint
(blue curve) or the face (red curve) is spoofed.

ferent score fusion rules to spoofing attacks.
« Finally, as our method allows to point out the vulnerabil-

ities of score fusion rules to spoofing attacks, it could be

exploited to develop proper countermeasure to improve PRIN 2008 project “Biometric Guards - Electronic guards for

their robustness. protection and security of biometric systems” funded by the
Italian Ministry of University and Scientific Research (MIUR);
and by the RegioneAutonoma della Sardegna, through the
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