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Molecular dynamics simulation is used to study the time-scales involved in the homogeneous melting
of a superheated crystal. The interaction model used is an embedded-atom model for Fe developed
in previous work, and the melting process is simulated in the microcanonical (N , V, E) ensemble.
We study periodically repeated systems containing from 96 to 7776 atoms, and the initial system is
always the perfect crystal without free surfaces or other defects. For each chosen total energy E and
number of atoms N , we perform several hundred statistically independent simulations, with each
simulation lasting for between 500 ps and 10 ns, in order to gather statistics for the waiting time τw

before melting occurs. We find that the probability distribution of τw is roughly exponential, and that
the mean value 〈τw〉 depends strongly on the excess of the initial steady temperature of the crystal
above the superheating limit identified by other researchers. The mean 〈τw〉 also depends strongly
on system size in a way that we have quantified. For very small systems of ∼100 atoms, we observe
a persistent alternation between the solid and liquid states, and we explain why this happens. Our
results allow us to draw conclusions about the reliability of the recently proposed Z method for
determining the melting properties of simulated materials and to suggest ways of correcting for the
errors of the method. © 2011 American Institute of Physics. [doi:10.1063/1.3605601]

I. INTRODUCTION

The supercooling of liquids below their thermodynamic
freezing point is familiar and easily observable, but the su-
perheating of solids above their melting point is much more
difficult to study. This is because melting is usually initiated
at surfaces (grain boundaries and other defects may also ini-
tiate melting), so that superheating is generally possible only
in solids that have no surfaces.1 Melting from the defect-free
superheated state, sometimes called “homogeneous melting,”
has been experimentally observed,2–5 but there is still rather
little detailed understanding of the kinetics of the process.
Fortunately, computer simulation offers a rather straightfor-
ward way of studying superheated defect-free solids, and this
has led to a recent resurgence of interest in the subject.6 In
addition to the purely scientific interest, it has recently been
shown that the concept of the “superheating limit” leads natu-
rally to a simulation technique known as the “Z method” that
offers a new and potentially useful way of determining the
melting properties of simulated materials.7 In the present pa-
per, we report new simulation results on the kinetics of homo-
geneous melting which shed light on the conditions needed
for the Z method to yield reliable results.

The study of melting properties by computer simulation
dates back over 50 years.8 Two main approaches have become
firmly established over that period. The first relies on the sep-
arate calculation of the free energies of the solid and liquid,
and is based on the fact that the two phases coexist in thermal
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equilibrium when both the pressures and the chemical poten-
tials in the solid and liquid are equal.9–11 The second approach
consists of the explicit simulation of coexisting solid and liq-
uid in the same simulated system.12 For any given interac-
tion model, careful application of the two approaches to large
enough systems should yield essentially identical results for
the relation between melting temperature Tm and the pressure
P on the melting curve, as well as other properties, includ-
ing the heat and volume of fusion. The two approaches have
been extensively used to determine the melting properties of
a wide variety of systems interacting via classical potentials,
including hard spheres,8, 13 inverse-power14, 15 and Lennard-
Jones models,16 as well as more complex models such as the
Born-Mayer model of ionic liquids,17 a variety of models for
water,18 and the embedded-atom model for metals.19, 20 In the
past 15 years, there has been rapidly increasing interest in the
determination of melting properties using ab initio molecu-
lar dynamics simulation (AIMD) based on density-functional
theory (DFT). Initially, the free-energy route was used,21–23

with thermodynamic integration employed to compute the
difference of free energy between the ab initio system and an
appropriately chosen reference system. The coexistence ap-
proach has also been extensively used, mainly with param-
eterised classical potentials tuned to data produced by DFT
simulations on the solid and liquid. However, there have also
been several studies in which direct ab initio simulations of
coexisting solid and liquid have been performed on systems
of several hundred atoms.24–29

The point of departure of the Z method7 is an apparently
simple question about the superheating of a solid. If a solid
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is allowed to evolve under the classical equations of motion
at constant number of atoms N , volume V and internal en-
ergy E , what is the maximum energy ELS it can have without
eventually transforming completely into the liquid state? The
proposed answer7 is that it is the lowest energy on the given
isochore within the field of thermodynamic stability of the
liquid.30 This energy ELS corresponds to a temperature TLS

representing the limit of superheating, above which the solid,
evolving at constant energy, will always melt. Since ELS is
the lowest energy of the liquid on the isochore, it should be
the energy of the liquid in coexistence with the solid so that
the energy ELS of the liquid is associated with the melting
temperature Tm:

E sol(V, TLS) = E liq(V, Tm). (1)

The procedure for determing the point (Tm, P) on the melting
curve belonging to a specified liquid-state V is then to per-
form a sequence of (N , V, E) MD simulations, monitoring
T and P in each, the aim being to locate the threshold ELS

(equivalently, the threshold TLS), above which the transition
to the liquid always occurs, and below which it never occurs.7

Implicit in these statements is an important question
about timescales, i.e., about the kinetics of homogeneous
melting. The original papers about the Z method7 emphasise
that in order to be reasonably certain whether the initial T is
above or below TLS, evolution must be allowed over a long
enough time, which may be on the order of nanosecond, and
the number of atoms N must also be large enough. (For sim-
plicity, we assume here a single-component system of atoms.)
This naturally raises a number of important questions, which
we shall try to answer. First, since homogeneous melting in
constant-(N , V, E) dynamics appears to be a rare-event pro-
cess, we want to examine the probability distribution of wait-
ing times τw before the transition occurs. This means repeat-
ing the simulation many times with the same (N , V, E) but
with statistically independent initial conditions. Second, we
want to study how the mean waiting time 〈τw〉 depends on
how far above TLS the system is initiated. Third, we need to
determine the dependence of 〈τw〉 on the system size N . Natu-
rally, the numerical answers to these questions will depend on
the nature of the system and the number density n = N/V .
Given the recent interest in using the Z method for the melt-
ing of metals,31 particularly at high pressures,32, 33 we have
decided to study the statistics of τw using an embedded atom
model (EAM) for Fe, whose melting properties are already
well known from previous work.34 We will also present Z-
method calculations on the melting of Fe using AIMD. We
take a density corresponding to the megabar pressures typical
of the Earth’s core.

In Sec. II, we summarise the details of the interaction
model and the simulation procedures. Our results on the sta-
tistical distribution of τw and the dependence of 〈τw〉 on initial
and final temperatures and system size from EAM and AIMD
simulations are presented in Sec. III. In Sec. IV, we discuss
the implications of our results for the understanding of ho-
mogeneous melting and for the reliability of the Z method,
particularly in the context of ab initio simulations.

II. TECHNIQUES

The EAM for Fe used in our simulations is the one used
as a reference system in our earlier work34 on the ab initio
melting curve of hcp Fe. Essentially the same EAM was also
used in the very recent work of Belonoshko et al.,33 in which
they used the Z method to study the melting of Fe and an
Fe/Si alloy. The model is actually a modification of a much
earlier EAM developed originally by Belonoshko’s group.35

We recall that in an EAM scheme the total potential energy
Etot is expressed as a sum of atomic energies: Etot = ∑

i Ei ,
with the sum running over the N atoms in the system. Each
term is a sum of two parts: Ei = E rep

i + F(ρi ). Here, E rep
i

consists of a sum of repulsive inverse-power pair potentials:
E rep

i = ∑
j
′
ε(a/ri j )n , where ri j is the distance between atoms

i and j , and the term i = j is excluded. F(ρi ) is an “embed-
ding function” which describes the metallic bonding. It has
the form F(ρi ) = −εCρ

1/2
i , with ρi = ∑

j
′(a/ri j )m . The val-

ues of a and m are those in the original Belonoshko model,35

while in Ref. 34 we showed how all the other parameters
could be optimised by minimising the fluctuations of the dif-
ference between the EAM and ab initio energies in simula-
tions of the liquid and the high-temperature solid. The numer-
ical values of the parameters are a = 3.4714 Å, m = 4.788,
ε = 0.1662 eV, n = 5.93, C = 16.55. We apply the spatial
cut-off rc = 5.5 Å, so that terms in both E rep

i and ρi for which
ri j > rc are set to zero, with the usual cutting and shifting
used to ensure continuity.

Following previous work,36–38 we focus here on the melt-
ing properties of Fe in the high-pressure region that is impor-
tant for understanding the solid inner core and the liquid outer
core of the Earth. Specifically, we confine ourselves to pres-
sures P � 330 GPa, which is the pressure at the boundary
between the inner and outer core.39 From extensive simula-
tions with our EAM on large systems containing solid and
liquid in stable coexistence,34 we know that its melting tem-
perature at P = 323 GPa is 6200 ± 100 K. We have recently
refined these coexistence simulations so as to reduce the sta-
tistical errors, finding that a more accurate value of Tm at this
pressure is 6215 ± 10 K.

All the simulations to be presented were performed at
the same density corresponding to a volume per atom V/N
= 7.139 Å3, which gives pressures in the region of interest.
In every simulation, we start from the perfect hcp crystal,
with all atoms on their regular lattice sites, and we assign
random velocities drawn from a Maxwellian distribution, the
velocities then being shifted and scaled so that the total mo-
mentum is zero and the kinetic energy per atom K/N has a
value corresponding exactly to a chosen initial temperature
Ti = 2K/3kB N . Verlet’s algorithm40 was used with a time-
step of 1 fs, which ensures conservation of total energy with
a drift of typically no more than ∼10 K over times of several
nanoseconds.

We shall present simulations on systems containing N
= 96, 150, 392, 972, and 7776 atoms. For each N and for
each initial temperature Ti, we have performed several hun-
dred MD simulations of at least 500 ps (in some cases we
have continued the simulations for over 10 ns), in order to
gather statistical information about the melting process. For
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the larger systems, the simulations were run on large paral-
lel computers, with each individual simulation running on 24
cores, and with typically 350 such simulations running simul-
taneously. This mode of operation makes it possible, for ex-
ample, to run an overall total of ∼1 μs of MD on the 7776-
atom system in only a few hours of wall-clock time. For the
small systems, we ran the calculations on single processors
using local facilities.

The ab initio simulations were run with exactly the same
technical details as described in Refs. 36–38, using the VASP

code41 with the projector augmented wave method42, 43 and an
efficient extrapolation of the charge density.44

III. RESULTS

We start by showing some examples of homogeneous
melting from our simulations on the system of 7776 atoms.
Figure 1 displays the time-dependent temperature and pres-
sure in four simulations that were all initiated from the perfect
hcp crystal with exactly the same kinetic energy correspond-
ing to the temperature Ti = 15 600 K, but with statistically in-
dependent random velocities. As expected from equipartition,
T drops rapidly to about half its initial value (this rapid drop is
not shown in the figure), and it then fluctuates about a quasi-
steady value Tsol = 7590 K for many picoseconds, before it
drops again over a rather short period of ∼8 ps, and then fluc-
tuates again about a lower steady value Tliq = 6315 K. The
second drop is due to melting, as we have verified by monitor-
ing the self-diffusion of atoms via the time-dependent mean-
square displacement 〈�r (t)2〉. The appearance of atomic dis-
order throughout the system when the system melts is also
easy to observe in movies prepared from the coordinate files.
Melting is accompanied by an increase of P by ∼10 GPa,
which occurs over the same rather short interval as the drop
in T . These effects are familiar from many previous reports
on the Z method:7, 32, 33 the drop in T is due to the latent heat
of fusion, and the increase of P is associated with the volume
increase that would occur on melting if the pressure were held

FIG. 1. Time-dependent temperature and pressure in four independent sim-
ulation runs, showing homogeneous melting from superheated hcp solid Fe
in a system of 7776 atoms. All four simulations were initiated from perfect
crystal positions, with initial random velocities corresponding to the same
temperature Tm = 15 600 K, the mean quasi-steady temperatures of the su-
perheated solid and the final liquid being Tsol = 7590 K and Tliq = 6315 K.

constant. We note that the waiting times τw that elapse before
melting are different in the four examples shown. This is what
we expect of a rare-event process and is consistent with the
statements in earlier reports7, 32, 33 that the time at which the
melting transition occurs is not correlated with the details of
the initial conditions. We find that the final mean temperature
Tliq and pressure Pliq of the liquid are the same in all the exam-
ples. This is expected, because in every case the system settles
into exactly the same thermodynamic state of the liquid. The
temperature Tliq is somewhat above the melting temperature
Tm at pressure Pliq, as expected because the system was initi-
ated above the limit of superheating.

These observations naturally raise the question of the sta-
tistical distribution of waiting times τw. To investigate this,
we have to repeat the simulations many times, starting always
from the perfect lattice with exactly the same initial kinetic
energy, but independent random velocities. To make the ques-
tion well posed, we need a definition of τw. We note from
Fig. 1 that the fluctuations of T about its mean value in
the quasi-steady state of the solid before melting are much
smaller than the drop of T during the melting process. We
therefore define τw to be the elapsed time from the start of
the simulation to the instant when T is mid-way between the
mean quasi-steady temperature Tsol of the solid and the mean
final temperature Tliq of the liquid.

For the 7776-atom system with Ti � 15 800 K, we re-
peated the simulations 350 times, with each run having a du-
ration of 650 ps. We found that it melted in all cases, and
we accumulated the histogram of τw shown in Fig. 2. We see
that after a short incubation time of no more than ∼20 ps, the
probability distribution of τw decays in a quasi-exponential
way. This is what we expect if melting is a random pro-
cess having short memory time with a constant probability
per unit time 1/τ0 of occurring, given that it has not already
occurred. In this case, the probability distribution of waiting
times p(τw) would have the form τ−1

0 exp(−τw/τ0) and the
mean waiting time would be 〈τw〉 = τ0. We show in Fig 2 a

FIG. 2. Histograms of waiting times τw before the transition to liquid con-
structed from repeated simulations at two initial temperatures for the system
of 7776 atoms. Histograms shown by dashed (red) and solid (black) lines re-
sult from initial temperatures of Ti = 15 800 and 16 000 K, respectively, the
quasi-steady solid and liquid temperatures in the two cases being Tsol = 7640
and 7740 K and Tliq = 6410 and 6505 K. Dashed and dotted curves show ex-
ponential functions fitted to histograms (see text).
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fit of the exponential function to the histogram. The value of
τ0 given by this fit is τ0 = 24.1 ps, which agrees well with
the value 〈τw〉 = 24.7 ps computed directly from the sample
of 350 values of τw. We have checked that the final mean Tliq

and Pliq of the liquid are the same in all cases, within statisti-
cal error, having the numerical values Tliq = 6410 ± 5 K and
Pl = 330.4 ± 0.3 GPa.

For comparison, we show the results for p(τw) when we
do exactly the same thing for the 7776-atom system, but now
with a higher initial Ti of 16 000 K, the number of independent
simulations in this case also being 350. As expected, melting
occurs on average more rapidly with this Ti, the values of τ0

from the exponential fit and from the directly computed 〈τw〉
being 8.3 ps and 9.4 ps. The mean temperatures of the solid
and the liquid in this case are are Tsol = 7750 K and Tliq =
6510 K, which, as expected, are higher than the values found
with the lower Ti.

It is clear from these observations that the mean wait-
ing time depends on the extent to which the temperature Tsol

exceeds the limit of superheating TLS. To study this further,
we have repeated the simulations with Ti values of 16 000,
15 800, 15 600, 15 400, and 15 200 K. At the lowest of these
Ti, melting was not seen in any of the simulations, even
though we repeated them 350 times with statistically inde-
pendent initial velocities, the duration of the simulation being
710 ps in every case. At Ti = 15 400 K and Ti = 15 600 K ,
melting was observed within 660 ps in only 14 and 283 out
of 350 simulations, respectively. At all the other Ti values,
melting occurred in all cases, and we were able to construct
essentially complete histograms; the values of 〈τw〉 and the
value of τ0 obtained by fitting p(τw) = τ−1

0 exp(−t/τ0) to the
histogram agreed closely.

The final mean Tliq of the liquid is a monotonically in-
creasing function of Ti, and it is convenient to examine the
dependence of 〈τw〉 on Tliq. We have found that it is help-
ful to plot the quantity 〈τw〉−1/2 against Tliq, as shown in
Fig. 3. The points fall roughly on a straight line, and the in-
dication is that 〈τw〉−1/2 → 0 (i.e., 〈τw〉 → ∞) at a charac-
teristic temperature. At the same time, Pliq also tends to a

FIG. 3. Dependence of mean waiting time 〈τw〉 on final liquid temperature
Tliq for systems of N = 7776 (black circles), 976 (red squares), 392 (green
diamonds), 150 (blue triangles) and 96 (brown stars) atoms. Quantity plotted
is 〈τw〉−1/2 as function of Tliq. Straight lines are linear least-squares fits to the
data for each N value.

limiting value. We identify the characteristic temperature as
the melting temperature Tm at the pressure Pliq, because Tm

is the lowest possible final mean temperature of the liquid,
namely the temperature found when Tsol = TLS. The value of
Tm obtained by this extrapolation is 6260 K, the extrapolated
pressure being 328 GPa. These results agree very well with
the value Tm = 6215 K from explicit coexistence simulations
at the pressure P = 323 GPa (see Sec. II).

All the results presented so far are for the large system of
7776 atoms. We have performed simulations of essentially the
same kind for systems of N = 972, 392, 150, and 96 atoms, in
each case initiating the simulations at sequence of initial tem-
peratures Ti, repeating the simulations at each (N , Ti) a few
hundred times, determining the liquid-state Tliq values for the
cases where melting occurs, and extracting the 〈τw〉 values.
The plots of 〈τw〉−1/2 against Tliq for all the system sizes are
displayed in Fig. 3. The results appear to be very coherent: for
each N , the 〈τw〉−1/2 points fall reasonably well on a straight
line, and the figure shows the linear least-square fits. These
linear fits extrapolate to give Tm values that agree for the dif-
ferent system sizes to within ∼100 K, i.e., to within ∼2%.
This agreement suggests that the Z method can be a robust
way of obtaining Tm values close to the thermodynamic limit
for systems that would be much too small for explicit coex-
istence simulations, provided very long simulations are per-
formed and provided one extrapolates to the 〈τw〉 → ∞ limit.

The plots of Fig. 3 show that for the given density n the
mean waiting times 〈τw〉 for different degrees of superheating
and different system sizes can all be roughly represented by
the formula 〈τw〉 = A/(Tliq − Tm)2, where Tm is independent
of Tliq and N but A depends on N . They also show that A
increases with decreasing N . More extensive results would be
needed to make precise statements about this N dependence,
but we find that the inverse proportionality A = B/N fits the
results quite well. As evidence for this, we display a plot of
(N 〈τw〉)−1/2 against Tliq in Fig. 4, showing that all our data
are quite well reproduced by the formula

(N 〈τw〉)−1/2 = C(Tliq − Tm), (2)

where Tm = 6315 K and C ≡ B−1/2 has the value 1.9 × 10−5

ps−1/2 K−1.

FIG. 4. Scaling of mean waiting times 〈τw〉 with system size specified by
number of atoms N . Quantity plotted is (N 〈τw〉)−1/2 as function of final liq-
uid temperature Tliq.
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FIG. 5. Alternation between solid and liquid states: temperature as function
of time in one of the constant-energy MD simulations on the system of 96
atoms, with total energy such that mean liquid-state temperature is Tliq =
6760 K, showing alternation between mean temperatures Tsol and Tliq.

For the system of 96 atoms, we observe a significant and
interesting effect, which sheds further light on the kinetics of
homogeneous melting. After the system has made the tran-
sition from superheated solid to liquid, it remains in the liq-
uid state only for a finite time, before reverting back to the
solid state. In fact, if the simulation is continued long enough,
we observe a continual alternation between the solid and liq-
uid states. An example of this behaviour is shown in Fig. 5,
where we see that the temperature alternates between solid-
like and liquid-like values Tsol and Tliq. This effect becomes
very clear if we construct a histogram of temperature T ob-
tained by sampling over the course of many simulations, all
having exactly the same total energy E , and hence the same
liquid temperature Tliq. The temperature histograms for the
96-atom system for different Tliq values are shown in Fig. 6.
We see that in each case T has a bimodal distribution, be-
ing the superposition of the quasi-Gaussian distributions that
would be found if the system were wholly in the solid state
or wholly in the liquid state. In fact, we can fit the histograms

FIG. 6. Histograms of temperature distribution at different constant total en-
ergies E in the system of 96 atoms. The histogram at each E was obtained
by sampling over typically 128 simulations, each having a typical duration of
5 ns. Instead of giving E directly, we specify each histogram by the liquid-
state temperature Tliq. Histograms shown by solid (black), dashed (red), dot-
ted (green), chain (blue), and dotted-chain (black) lines are for Tliq = 6935,
6760, 6590, 6565, and 6473 K.

FIG. 7. Fraction of time spent by the system in the liquid state for different
liquid-state temperatures Tliq in simulations of 96-atom system.

very well by a superposition of Gaussians, and the relative
weights of the two Gaussians for a given Tliq tell us the rel-
ative amounts of time spent by the system in the solid and
liquid states. We display the fraction of time αliq spent in the
liquid state as a function of Tliq in Fig. 7.

At first sight, the ceaseless alternation between solid and
liquid might seem surprising, because it implies that homo-
geneous melting from the superheated solid is not the irre-
versible process that one might expect. However, in Sec. IV
we will point out why this alternation is required by the prin-
ciples of statistical mechanics, we give a simple formula that
explains why αliq depends on Tliq as shown in Fig. 7, and we
discuss whether the alternation should also be seen in larger
systems.

There has been considerable interest in using the Z-
method with AIMD simulation (we refer to this as AIMD-
Z) to obtain melting curves, particularly for metals.32, 33 To
test the practical operation of AIMD-Z, we have performed
our own calculations on the high-P melting of hcp Fe, on
which there is already very extensive previous work based on
both free-energy and explicit-coexistence methods, including
a recent study of AIMD coexistence on systems of N = 980
atoms.28 Before presenting our AIMD-Z results on this prob-
lem, it is useful to consider the errors that can be expected.
Our AIMD-Z simulations were performed on systems of 150
atoms with duration of ∼50 ps. Clearly, with a run of this
duration, initiated above TLS, we are unlikely to observe ho-
mogeneous melting unless 〈τw〉 is ∼50 ps or less. From the
formula given in Eq. (2), we estimate that this will yield
Tliq − Tm � 600 K, and this is the error we may make if Tm is
estimated as the lowest Tliq for which homogeneous melting
is observed.

We present in Fig. 8 our AIMD-Z results for the melting
of hcp Fe with N = 150 using 50-ps simulations. The figure
also shows the melting curve obtained many years ago with
exactly the same AIMD techniques but based on free-energy
calculations,37, 38, 44 as well as a point on the melting curve
from AIMD coexistence using 980 atoms.28 As expected,
AIMD-Z overestimates Tm, and the amount of the overesti-
mate Tliq − Tm is similar to our prediction from Eq. (2).
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FIG. 8. Z plot from a sequence of constant-energy AIMD simulations on
system of 150 atoms, duration of simulations being 50 ps. Black filled cir-
cles with error bars show final mean temperature and pressure, with upper-
left branch corresponding to energies for which the system remains solid,
and lower right branch to energies for which homogeneous melting occurs.
Dashed (red) line shows the ab initio melting curve obtained in earlier work
using the free energy technique, and green filled square with error bar shows
point on ab initio melting curve obtained with ab initio MD simulations on a
system of 980 atoms containing coexisting solid and liquid.

IV. DISCUSSION AND CONCLUSIONS

Our investigation has yielded several simple but impor-
tant insights into the kinetics of homogeneous melting under
(N , V, E) conditions. First, we have confirmed the existence
of a “limit of superheating” TLS proposed in previous work,7

and we have shown that for a given “excess” quasi-steady
temperature Tsol − TLS of the initial superheated solid, and for
a given number of atoms N , there is a fairly well defined prob-
ability per unit time (reciprocal of mean waiting time 〈τw〉) of
making the melting transition. For given N , 〈τw〉 appears to
scale roughly as A/(Tliq − Tm)2 with the excess of the final
liquid temperature Tliq above the true thermodynamic melting
temperature Tm associated with the specified liquid density.
The coefficient A appears to be roughly proportional to 1/N .
These rather simple findings are clearly interesting, and it is
natural to ask whether they will hold true for materials other
than the particular transition metal studied here. At present,
we have no way of answering this question and there is now
a clear need to extend the investigation to materials of other
kinds.

Another natural question concerns the relation between
homogeneous melting and the kinds of metastable behaviour
well known in, for example, supersaturated vapours or super-
cooled liquids. Of course, theories of such phenomena have
an extremely long history, the point of reference often be-
ing called “classical nucleation theory” (CNT).45 In CNT, the
waiting time for the transition to the thermal equilibrium state
(condensation, freezing, . . .) is governed by the time needed
to form a “critical nucleus”; the associated free-energy barrier
results from a competition between the lowering of bulk free
energy resulting from the transition and the free energy in-
crease due to the formation of interfaces (liquid-vapour, solid-
liquid, . . .) during the transition. The metastable behaviour of
a superheated solid that is only slightly beyond the thermal-
equilibrium stability field of the solid should also be describ-

able by an appropriate CNT. However, it is possible that the
formation of a critical nucleus described by such a CNT has
little to do with the homogeneous melting observed in pre-
vious simulations6 and in the ones presented here, for two
reasons. First, CNT theories and other theories of nucleation
would not predict a “superheating limit.” Instead, they would
predict a mean waiting time for nucleation that decreases con-
tinuously as we move further into the field of thermodynamic
instability. Second, the transition associated with classical nu-
cleation will generally lead to a final state in which both
phases are present, rather than the single (liquid) phase seen
in simulations of homogeneous melting.

The persistent alternation between solid and liquid states
that we observe for the very small 96-atom system is relevant
here.46 To understand why this happens, and to know when
we should expect to see it, we recall the ergodic principle,
which is generally accepted to hold for condensed-matter
systems. This states that the trajectory produced by (N , V, E)
MD starting from any phase-space point (set of positions and
momenta) having specified total energy E will, if continued
long enough, pass arbitrarily close to an arbitrarily chosen
phase-space point of the same E . The configurations we are
concerned with here are either solid-like or liquid-like; in
none of the simulations we have performed do we see solid
and liquid simultaneously present, so that the configurations
are either one or the other, except for the very small fraction
of configurations that occur during the transitions from solid
to liquid or vice versa. Now suppose that, starting from the
superheated solid, the system has homogeneously melted and
become liquid. Then the ergodic principle tells us that the
given trajectory, if continued long enough, will eventually
re-enter regions of solid-like configurations, so that it will
re-freeze. Indeed, the trajectory will densely cover the entire
constant-E manifold, and will spend well defined fractions
αliq and αsol ≡ 1 − αliq in the liquid and solid states. This is
exactly what we have seen, and Fig. 7 displays the value of
αliq as a function of Tliq.

It is straightforward to confirm that this explanation is
correct. The fractions αliq and αsol are proportional to the num-
bers Wliq and Wsol of liquid-like and solid-like microstates on
the given constant-E manifold. But these are related to the en-
tropies Sliq and Ssol of the corresponding macrostates as fol-
lows: Ssol,liq = kB ln Wsol,liq. Hence, we have

αliq/αsol = αliq/(1 − αliq) = exp((Sliq − Ssol)/kB). (3)

This means that if we choose E = E0 so that the system
spends equal amounts of its time in solid and liquid states,
then the entropies are equal. Let the temperatures in this sit-
uation be T 0

sol and T 0
liq. If we go to a nearby energy E =

E0 + δE , then αliq and αsol change because

Sliq − Ssol =
((

∂Sliq

∂ E

)
V

−
(

∂Ssol

∂ E

)
V

)
δE . (4)

But (∂S/∂ E)V = 1/T , and δE can be expressed as δE �
Cv,liqδTliq, where δTliq = Tliq − T 0

liq, and Cv,liq is the isochoric
specific heat of the liquid. From Eqs. (3) and (4), we then have

αliq = 1

1 + exp(−δTliq/Tint)
, (5)
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where the temperature interval Tint over which the transition
occurs is

1

Tint
= (NCv,liq/kB)

(
1

T 0
liq

− 1

T 0
sol

)
. (6)

The Fermi function of Eq. (5) is the function we have
used to fit our simulation results for αliq as a function of
Tliq (Fig. 7), and the parameters that emerge from this fit are
T 0

liq = 6705 K, Tint = 124 K. We can now check that this value
of Tint obtained by empirical fitting is indeed consistent with
the prediction of Eq. (6). From our EAM simulations of the
liquid, we obtain the estimate Cv,liq/kB = 3.36. Using the ob-
served values of T 0

sol and T 0
liq, we then obtain the prediction

Tint = 125 K, which is very close (perhaps fortuitously close)
to what we obtain from fitting.

It is clear from what we have said that solid-liquid al-
ternation is only an important effect for small systems. The
key feature that makes it easy to observe in our 96-atom sys-
tem is that the temperature distributions of the solid and liquid
states overlap significantly (Fig. 6). Since the rms temperature
fluctuation of a single-phase system in the microcanonical en-
semble is proportional to 1/

√
N , the overlap becomes negli-

gible for large systems. The same conclusion is clear from
Eqs. (5) and (6), which show that temperature interval Tint

goes as 1/N . For a large system, once the quasi-steady tem-
perature Tsol of the initial solid exceeds TLS, the homogeneous
melting transition is effectively irreversible.

Our results shed light on the Z method for the determina-
tion of melting properties. This method is simple to use, but
our work shows that it generally gives only an upper bound to
the melting temperature associated with a given liquid den-
sity, unless measures are taken to correct it. This is because
melting may not be observed even when the quasi-steady
temperature Tsol of the solid is above TLS. Indeed, melting is
very unlikely to be seen if Tsol − TLS is such that 〈τw〉 is much
longer than the duration of the simulation. This is a particular
problem for AIMD, where we have shown for the case of hcp
Fe that, even with 50 ps simulations on a system of 150 atoms,
melting is unlikely to be seen until Tsol − TLS � 300 K,
in which case the final liquid temperature will overestimate
Tm by ∼300 K. For the systems of less than 100 atoms and
simulations of less than 10 ps used in some recent AIMD-Z
work,32, 33 the overestimation is likely be much worse.

It is clearly desirable to have ways of correcting for the
overestimate of Tm given by the Z method. Our work demon-
strates that calculation of the mean waiting time 〈τw〉 provides
one way of doing this. For large enough Tsol − TLS, melting
will occur rapidly, and 〈τw〉 can then be estimated by repeat-
ing the simulation many times so as to reduce the statisti-
cal errors on 〈τw〉. If this is done at two or more values of
Tsol − TLS, we then have information about the dependence
of 〈τw〉−1/2 on Tliq, from which the necessary correction can
be made. This would be a somewhat expensive procedure for
AIMD, but would have the great advantage of being simple
and automatic, since many simulations could be run simulta-
neously on a large compute cluster. The relation with parallel
replica methods47 will be noted. As an alternative, it may well
be possible to use Bayesian techniques to extract the informa-

tion needed for corrections from the sequences of simulations
that are required in any case by the Z method. On a completely
different line of thought, we remark that since homogeneous
melting is a rare-event problem, it may be possible to exploit
techniques used for other rare-event problems to accelerate
melting in the Z method. Metadynamics48 might be one such
technique, since it would be easy to adopt “collective vari-
ables” that would discourage the system from remaining too
long in the solid state.49 We plan to investigate some of these
possibilities in the future.

Before concluding our discussion of the Z method,
we comment that further study of its theoretical basis is
very much needed. It appears to have been assumed by its
originators7 that when homogeneous melting of the super-
heated solid occurs, the final state will always consist en-
tirely of liquid, rather than of coexisting solid and liquid. This
is indeed what we have observed in the present work (apart
from the solid-liquid alternation for small systems). But the
assumption cannot be true in general. For a large enough sys-
tem initiated in the solid state, but superheated only slightly
beyond the field of true thermodynamic stability of the solid,
basic thermodynamics tells us that the final state must consist
of coexisting solid and liquid, simply because at constant in-
ternal energy this state has a higher entropy than pure solid
or pure liquid. In this sense, the whole concept of a “limit of
superheating” is questionable. We conjecture that the reason
why we do not observe final states of coexisting solid and liq-
uid even for systems consisting of several thousand atoms is
that the solid-liquid interface plays remains important enough
to make coexisting states entropically unfavourable. This con-
jecture clearly needs investigation.

In conclusion, our MD simulations on the homogeneous
melting of the transition metal Fe confirm the existence of a
rather well defined limit of superheating, beyond which melt-
ing occurs on a typical time-scale of nanosecond or less. We
have shown that the statistical distribution of waiting times τw

before melting displays a typical “rare event” character, con-
sistent with a probability per unit time for melting to occur.
The mean waiting time 〈τw〉 lengthens rapidly as the super-
heating limit is approached from above, being roughly pro-
portional to the inverse square of the excess beyond the limit;
it also lengthens as the system size (number of atoms N ) de-
creases, being roughly proportional to 1/N . This means that
the Z method for calculating melting temperatures can be sub-
ject to large errors if it is applied to small systems over short
times, though the method can work successfully under suit-
able conditions. We have noted that these conditions have not
always been satisfied in earlier work.
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