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Abstract
We study the formation of matter-wave soliton trains in Bose–Einstein
condensates confined in a box-like potential. We find that the generation of
‘real’ solitons understood as multipeak structures undergoing elastic collisions
is possible if the condensate is released from the box into the harmonic trap only
within well-defined time intervals. When the box-like potential is switched off
outside the existing time windows, the number of peaks in a train changes
resembling missing solitons observed in recent experiment (Strecker et al
2002 Nature 417 150). Our findings indicate that a new way of generating
soliton trains in condensates through the temporal, matter-wave Talbot effect
is possible.

The notion of soliton belongs to the most popular concepts in physics. Solitons are formed
because of the existence of nonlinear interaction in the system which cancels the dispersion
and hence allows for the propagation of shape preserving objects. In the case of dilute atomic
quantum gases, the nonlinearity is determined by the effective interaction between atoms
that can be both repulsive or attractive. For repulsive uniform condensates, the appropriate
nonlinear equation (i.e. the Gross–Pitaevskii equation) predicts dark soliton (a hole in the
density associated with a phase jump) as a solution [1]. Such excitations of Bose–Einstein
condensates have already been observed in experiments with trapped alkali atoms [2].

Generating bright solitons in atomic quantum gases is a more difficult task because it
requires working with attractive condensates. In such samples, the number of atoms is limited
and small (see [3]). This obstacle was overcome in two ways. In the first one, large repulsive
condensate is formed and then the interactions are changed from repulsive to attractive by
using the Feshbach resonance technique [4, 5], whereas in the second attempt [6] the optical
lattice and the notion of negative effective mass are utilized.

In this letter, we study the influence of the box-like confinement, as used in the
experimental set-up of [4], on the production of bright soliton trains in attractive condensate
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of 7Li atoms. Existing theoretical analysis of experiment of [4] involves quantum phase
fluctuations [7] or modulational instability [8, 9] as the main mechanism leading to the observed
structures. None of these papers, nor the experimental one, however, investigates the role of the
box-like potential. In our letter, we show that a regime exists where multiple scattering of gas
from the walls of the box might result in the formation of real solitons, i.e. multipeak structures
that undergo elastic collisions. We suggest a new version of the experiment and specify physical
conditions supporting the formation of ‘genuine’ soliton trains. The underlying physics of our
proposition can be understood with the help of the temporal Talbot effect, already observed
experimentally in the context of Bose–Einstein condensate of sodium atoms diffracted by the
pulsed grating [10].

We describe the Bose–Einstein condensate, as the authors of [8], with the time-dependent
dissipative Gross–Pitaevskii equation
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)
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where ψ(r, t) is the macroscopic wavefunction of Bose–Einstein condensate of 7Li atoms,
Vtr(z, ρ) = m
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zz
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2 + Vbox is the axially symmetric trapping potential, g =
4πh̄2as/m (as being the scattering length that determines the strength of the interaction). The
number of atoms equals N = 104, the geometry of the harmonic confinement is given by
ωz = 2π × 4 Hz and ω⊥ = 2π × 800 Hz and the box-like potential Vbox (the ‘end caps’)
of length L is positioned symmetrically with respect to the centre of the harmonic trap. The
initial value of the scattering length of 7Li condensate prepared in the end caps is positive and
equals 100a0 (a0—Bohr radius). Then the scattering length is changed within approximately
10 ms to its final value as = −3a0 and the condensate is additionally kept in the box-like
potential for a certain time. Finally, the end caps are turned off.

The imaginary term in equation (1) describes the losses due to three-body recombination
processes [11, 8]. Since such losses were not investigated experimentally, we follow the
references just mentioned and put γ = 2.05×10−26 cm6 s−1. In our simulation the dissipative
term is turned on, according to the observation in [4], when the interaction strength becomes
negative and then the losses are kept constant. Decreasing the dissipative term leads to the
condensate collapse. Hence the dissipation plays a crucial role in stabilizing the system.
Certainly, it has an influence on dynamics of the collapse studied recently in [9]. However,
the authors of [9] ignore the losses term completely.

Our calculations show that after switching off the box-like potential, the bosonic cloud
starts oscillating in harmonic trap. The cloud actually breaks into several peaks which
propagate in the potential for many oscillatory cycles. However, depending on the time the
box-like potential is removed, we observe qualitatively different response of the system (see
figure 1). First, we discover the existence of time windows, i.e. the time intervals for removing
the end caps that support the generation of train of real solitons (multipeak structures with
conserved number of peaks that undergo only elastic collisions). It is illustrated in figure 1(a),
where the condensate density is imaged at various times showing, however, always five
distinguishable peaks. Here, the end caps are separated by L = 4.0 osc. units (75.6 µm) and
are off 61 ms after the interaction strength is changed. There is a waiting time equal to the
nonlinear time scale Tnon = h̄/(gN/V ) (several milliseconds in our case) after which the well
separated peaks in the density profile are formed for the first time. Calculations also show
the existence of further time windows, especially for shorter length of the box-like potential.
The duration of the time window is about 3 ms and increases when the size of the box gets
larger. Only positioning the box-like potential symmetrically with respect to the centre of the
harmonic trap allows for having the same number of peaks during the evolution. In contrast,
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Figure 1. Illustration of the importance of a time when the end caps are switched off. Frame (a)
shows the condensate density at 30 ms, 66 ms and 108 ms after the end caps are off, i.e. 61 ms after
the interaction strength is changed. This is the case of the time window when the structure consists
of the same number of peaks. As opposed, frame (b) is an illustration of what we call the missing
soliton structure. Here, the number of peaks changes during the evolution. Successive snapshots
correspond to 30 ms, 66 ms and 139 ms after the end caps are turned off outside the time window
(52 ms after the change of the interaction strength).

when the end caps are off outside the time window, the number of peaks changes (frame (b)
in figure 1) during the evolution. Certain peaks disappear and reappear later. Such structures
cannot be, in fact, considered as solitons.

It is important to understand the role of the location of the box-like potential. We have
checked numerically that the time windows persist even if the end caps are shifted from
the centre of the harmonic potential by several per cent, depending on the size of the box.
However, we do not see the time windows when the size of the box is too large nor when the
box is positioned at the slope of the harmonic potential (as in the experiment of [4]). It is
clear that the discussed phenomenon is somehow modified by the presence of the harmonic
trap. As will be explained later, the disappearance of time windows is caused by the loss of
Talbot-type recurrence due to nonuniform shift of energy levels of the box potential forced by
the harmonic trap. Certainly, the most favourable conditions for the existence of time windows
are those when there is no axial harmonic confinement. Such calculations have already been
performed, see figure 1 in [8]. However, the authors of [8] have not investigated the influence
of the delay time between the removal of the end caps and switching of the scattering length
to the negative value. In figure 2, we plot the axial density profiles (frames (b) and (c)) in
the case when the box-like potential is turned off within the time window. The number of
peaks equals 8 not 4 nor 5 as might be suggested by the density profile at the time when the
end caps are removed (frame (b)). Surprisingly, this number coincides with the number of
distinguishable peaks in momentum distribution at the time when the condensate is released
(frame (a)).

Figure 2 also shows that the observed peaks are indeed solitons. We compare here the
longitudinal shapes of the peaks with the analytical solitonic solutions obtained by Zakharov
[1] and given by (1/

√|geff|a/cosh[a(z − z0)])2, where parameters a and z0 determine the
height and the width and the position of the centre of the soliton, respectively. The Zakharov
solution of the Gross–Pitaevskii equation is given only in one-dimensional space. However,
assuming that the three-dimensional solution can be factorized, i.e. written as a product
of functions depending on single variables, one can reduce (after integration over radial
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Figure 2. Momentum (frame (a)) and spatial but radially integrated (frames (b) and (c)) density
profiles of a condensate of 104 7Li atoms during the evolution under no axial confinement. The
size of the box equals 189 µm and the end caps are turned off within the time window (314 ms
after the scattering length is changed). Time is measured beginning from the instant when the end
caps are removed (time unit is equal to 39.8 ms). Frame (d) is a comparison between numerical
calculations and the theory [1]. It shows a density profile of the second extreme peak going to the
left at t = 16 accompanied by the fit (dashed line) according to the analytical Zakharov solution
(see the text for the details).

directions) the three-dimensional Gross–Pitaevskii equation to the one-dimensional equation
with the effective value of the interaction strength geff . Indeed, there exists a single value of
geff allowing for excellent fits with the help of a and z0 parameters only (see figure 2(d)).
By using the virial theorem 2Ekin + Eint = 0 [3] one finds for the Zakharov solution
h̄2/6mz̃2 − |geff|N/6z̃ = 0, where z̃ (=1/a) is the soliton width and N is the number of
atoms within the peak. Therefore, N = 2h̄2/mz̃geff and equals 526 in the case of figure 2(d)
which remains in good agreement with direct integration of the density distribution that gives
532 atoms. Certainly, peaks visible in figure 2(c) are solitons.

In the following, we shall indicate that the origin of time windows is due to the temporal
Talbot effect well known in the linear case. This effect can also survive a weak nonlinearity
as shown in the experiment of [10]. Let us consider first the linear dynamics of the symmetric
wave packet in a finite depth rectangular one-dimensional box. The walls of the box are
very high and therefore we will expand the initial wave packet on the basis of the symmetric
eigenstates of infinitely deep well potential that are

√
2/L cos(knz) with kn = π

L
(2n + 1),

where n = 0, 1, . . . and L is the length of the well. Consequently, the wavefunctions are set
to zero in the classically forbidden region. The Fourier transform of the wave packet reads

ψ̃(k, t) =
√

L

2

∑
n

αn e−iE0(2n+1)2t/h̄

(
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L
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)
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where E0 = h̄2π2/(2mL2) and {αn} are the coefficients of the expansion of ψ(z, 0). According
to the above formula the momentum distribution is recovered after a period of Trev = π/4 (in
units of h̄/E0) and this is the result of the Talbot-type recurrence originating from the particular
form of the phase factor (‘n(n + 1)’ dependence on the quantum number n). However, this
formula exhibits more structure. At time T lin

win = π/8 the resulting momentum distribution
forms a set of fully separated groups centred at momenta k = kn. This can be verified (e.g.
numerically) taking into account several facts: (1) the form of the phase factor in equation (2);
(2) the localization of the function sin(k)/k around k = 0; (3) assumed weak dependence
of coefficients αn on n. An example is given in figure 3, frame (b), where we took initially
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Figure 3. Illustration of a temporal Talbot effect. Frames (a) and (b) show the one-dimensional
momentum density in the linear case just before the appearance of the time window and within it,
respectively. Frame (c) proves that the time window survives when a small nonlinearity is present
in the dynamics. Here, the time window appears almost at the same time as in the linear case.
After the nonlinear time Tnon (≈40 ms) groups in momentum space are transformed into groups in
position space (frame (d)).

the Gaussian profile of the wave packet. Frame (a) shows the momentum distribution a few
microseconds before the first time window appears.

If the box-like potential is switched off within certain interval of time centred around
T lin

win = π/8 (50.5 ms in the case of figure 3), all groups of momenta transform into separated
wave packets which simply spread during further evolution. This spreading can be stopped by
including the nonlinear term in the dynamics. First, frame (c) in figure 3 proves that even under
a presence of the nonlinearity the time window still exists. The nonlinear time equals Tnon =
40 ms in this case and after this time the well separated peaks appear in the density distribution
(frame (d)). These peaks fit the Zakharov solitons [1], i.e. their shape is a secans-hyperbolicus
one, with the same quality as those in figure 2(d). Hence, the nonlinearity is essential to
built the solitons from the separated wave packets. Here, the separated wave packets originate
from the temporal Talbot effect combined with the appropriate initial conditions. In a real
experiment, initial conditions are formed as a result of modulational instability driven by the
condensate collapse.

The presence of the box-like potential is essential since it allows the condensate
wavefunction for multiple reflexions from the walls resulting in the interference pattern found
above. However, ‘small addition’ of the harmonic potential does not spoil the picture. This
can be proved by the perturbation calculation. It turns out that for not too large size of the box
as compared to the characteristic length scale of the harmonic potential (L < 5 osc. units),
all the levels but the lowest one are shifted approximately uniformly. In such a way the new
time scale that is proportional to the reciprocal of the difference of the shifts of the two lowest
levels (and approximately equals the trap period) can be introduced. It follows from formula
(2) that only those time windows survive that occur at times shorter than the trap period.

We can also prove that the temporal Talbot effect survives under the presence of the
nonlinearity. First, note that for small enough attraction the time windows appear almost
exactly at the same time as in the linear case (compare figures 3(b) and (c)). This can
be explained by observing that small nonlinearity uniformly shifts all single-particle energy
levels. Therefore, from formula (2), one should expect the formation of groups in momentum
space at the same times and of the same duration as in the linear case.
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Figure 4. Spatial (left column) and momentum (right column) densities at the time when the end
caps are off. The upper frames illustrate the case of the time window, i.e. when the momentum
density shows well-developed groups of momenta. The lower frames correspond to the case when
there are no separated peaks in a momentum space and consequently the probability flow leads to
missing soliton structures.

We have checked numerically that the temporal Talbot effect persists also when the
nonlinearity is larger and comparable to that present in the experiment of [4]. As it is the
case, we plot in figure 4 the axial momentum densities (at the time when the end caps are off)
corresponding to the frames (a) and (b) of figure 1. Figure 4 proves that the time windows
survive under the conditions when both the box-like and harmonic confinements and the
nonlinearity are present. When the end caps are off just within the time window (the upper
frames), the momentum density shows five distinguishable peaks whereas the density in the
position space consists of two broad peaks with partially developed three subpeaks. Upper
frames in figure 1 confirm that afterwards five (neither two nor six) solitons are developed.
It means that all momenta groups have been transformed to peaks in position space and the
time needed for that is of the order of nonlinear scale Tnon. These peaks oscillate with the trap
period, collide when they meet at the centre of the trap and then reappear. Their motion is
particle-like. If one considers a point-like particle moving according to the Newton equation,
initially placed at the trap centre and having the initial velocity determined by the maximum
value of the momenta group, the particle will follow the density peak. Hence, it is reasonable
to use the name solitons for the density peaks.

When the end caps are switched off outside the time window (lower frames in figure 4) the
number of density peaks changes during the evolution (see the lower part of figure 1). This is
because the momentum density does not consist of well separated groups and the probability
can flow from one group to the other forming the missing soliton structures. This is, in fact,
the case of numerical calculations reported in [8]. Figure 5 of [8] shows that the number of
peaks changes in time while the condensate is axially confined. On the other hand, when the
axial confinement is off, the condensate always ends in a state with a fixed number of solitons
although this happens after very long time.

In conclusion, we have investigated the role of the box-like potential in the process of
generating bright solitons in the attractive Bose–Einstein condensates. Although no theory
of solitons in a confined potential exists, there are some obvious properties the structures
have to possess to be considered as solitons. In particular, the solitons do not disappear in
consequence of collisions. We showed that to satisfy this condition the condensate needs to
be kept in the box-like potential for appropriate time, until it is decomposed into separated
groups in momentum space. In fact, what we propose is to utilize the Talbot effect that is
well known from the linear physics. It turns out, however, that this effect survives under
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the condition of not too strong nonlinearity. It is not surprising since the temporal Talbot
effect was already experimentally observed for a condensate of sodium atoms, although in a
different situation when the condensate was diffracted by a pair of pulsed gratings and the
periodicity with respect to the time delay between pulses in a series of condensate images was
discovered [10].
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