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Abstract

The accuracy in negative-order norms is examined for a local-structure-preserving local

discontinuous Galerkin method for the Laplace equation [Li and Shu, Methods and Appli-

cations of Analysis, v13 (2006), pp.215-233]. With its distinctive feature in using harmonic

polynomials as local approximating functions, this method has lower computational com-

plexity than the standard local discontinuous Galerkin method while keeping the same order

of accuracy in both the energy and the L2 norms. In this note, numerical experiments are

presented to demonstrate some accuracy loss of the method in negative-order norms.
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1 Introduction

A local-structure-preserving (LSP) local discontinuous Galerkin (LDG) method was intro-

duced in [12] for the Laplace equation. The method is based on the standard LDG method for

the second order elliptic problems [3], and its distinctive feature is to use harmonic polyno-

mials (polynomials which satisfy 4u = 0, the Laplace equation) to approximate the solution

inside each mesh element. Using this local-structure-preserving discrete space significantly

reduces the size of the final algebraic system and therefore the overall computational com-

plexity. Meanwhile, the method keeps the same order of accuracy in both the energy and

the L2 norms as the standard LDG method (see [3, 12] and section 2). This work is among

the series of developments in [6, 10, 11] to design discontinuous Galerkin (DG) methods with

better cost efficiency for certain differential equations. Such efficiency is achieved by incor-

porating the a priori knowledge of the exact solutions into the choice of local approximating

functions in DG formulations, and it is mainly due to the flexibility of these methods in using

various local discrete spaces. Some other examples of DG methods utilizing this flexibility

include [17, 8].

The objective of this note is to investigate the accuracy of the aforementioned LSP LDG

method in negative-order norms. With harmonic polynomials as local approximations, the

standard duality argument can not be applied to obtain the error estimates in negative-order

norms for the LSP LDG method. On the other hand, negative-order norm error estimates

often contain the information on the oscillatory nature of the error, which can be used to

enhance the accuracy of the numerical solutions. In fact, a local post-processing technique

was applied to finite element solutions of elliptic problems in [2] and to DG solutions of

hyperbolic problems in [7, 15], and it filtered out the oscillation in the error and enhanced

the accuracy in the L2 norm up to the order of the error estimates in negative-order norms.

The success of this technique relies only on a negative-order norm error estimate of the nu-

merical solution and a local translation invariance of the mesh. Based on this, we apply the

post-processing technique of [2, 7, 15] to the numerical solutions of our LSP LDG method.
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By examining the accuracy of the post-processed solutions, we indirectly study the accuracy

of the method in negative-order norms. Numerical experiments indicate that the LSP LDG

method for the Laplace equation, though having lower computational complexity while keep-

ing the same order of accuracy as the standard LDG method [3] in commonly used norms,

has some accuracy loss in negative-order norms. Mathematical understanding of this result

is yet to be established.

The rest of this note is organized as follows. In section 2, both the standard and the LSP

LDG methods are reviewed for solving the Laplace equation. Computational complexity

and error estimates in the energy and the L2 norms are also briefly discussed. In section 3,

numerical experiments are presented to indicate some accuracy loss of the LSP LDG method

in negative-order norms. Concluding remarks are given in section 4.

2 Numerical methods

In this section, the standard [3] and the LSP [12] LDG methods will be reviewed for the

Laplace equation

−4 u = 0 in Ω, u|ΓD
= gD,

∂u

∂n
|ΓN

= gN · n, (2.1)

where Ω ⊂ Rd is a bounded domain with n being the outward unit normal along the domain

boundary Γ̄ = Γ̄N ∪ Γ̄D, ΓN and ΓD are disjoint, and |ΓD|Rd−1 > 0. Though these methods

can be formulated for general space dimension, they are presented here only for d = 2.

We start with a mesh Th = {K} for the domain Ω, with the triangular or rectangular

element being denoted as K, the edge as e, the diameter of K as hK , and the meshsize of

Th as h = maxK∈Th
hK . We further denote the union of all interior edges as Ei, the union of

boundary edges in ΓD (resp. ΓN) as ED (resp. EN), and E = Ei∪ED ∪EN . With an auxiliary

variable q, (2.1) can be rewritten as

q = ∇u, −∇ · q = 0 in Ω, u|ΓD
= gD, q · n|ΓN

= gN · n. (2.2)
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Based on [3], a general LDG method for (2.2) can be formulated as: finding (uh,qh) ∈

(Vh,Mh), such that∫
K

qh · rdx = −
∫

K

uh∇ · rdx+

∫
∂K

ûhr · nKds,

∫
K

qh · ∇vdx =

∫
∂K

vq̂h · nKds (2.3)

for any (v, r) ∈ (Vh,Mh) and K ∈ Th. Here nK is the outward unit normal of K, (Vh,Mh)

is a discrete space pair to approximate (u,q), and (ûh, q̂h) are the so-called numerical fluxes,

which are single-valued and approximate (u,q) along E . To finalize the scheme, one needs

to specify (ûh, q̂h) and (Vh,Mh).

The LSP LDG method in [12] employs the same numerical fluxes as the standard LDG

method in [3]. That is, for an interior edge e ∈ Ei,

q̂h = {{qh}} − C11[[uh]]−C12[[qh]], ûh = {{uh}}+ C12 · [[uh]]. (2.4)

Here the standard notations are used for the average {{·}} and the jump [[·]]: given e =

K+ ∩K− ∈ Ei, and with n± = nK± and (v±, r±) = (v, r)|K± , we define on e

{{v}} = (v+ + v−)/2, {{r}} = (r+ + r−)/2, [[v]] = v+n+ + v−n−, [[r]] = r+ · n+ + r− · n−.

And for a boundary edge e ∈ ∂K, with (v+, r+) = (v, r)|K

q̂h =

{
q+

h − C11(u
+
h − gD)n for e ∈ ED,

gN for e ∈ EN ,
ûh =

{
gD for e ∈ ED,
u+

h for e ∈ EN .
(2.5)

The parameters C11 and C12 in (2.4)-(2.5) can be chosen edge by edge, and their values may

affect the accuracy and stability of LDG methods as well as the matrix structures in the

final algebraic system [3].

We now turn to the choice of the discrete spaces (Vh,Mh). For the standard LDG method

in [3], (Vh,Mh) = (V k
h ,M

k
h) = (V k,STD

h ,Mk,STD
h ) is taken, with

V k,STD
h = {u ∈ L2(Ω) : u|K ∈ P k(K),∀K ∈ Th},

Mk,STD
h = {q ∈ [L2(Ω)]d : q|K ∈ [P k(K)]d,∀K ∈ Th},
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where P k(K) is the set of polynomials of the total degree at most k on K. For the LSP

LDG method in [12], we use (Vh,Mh) = (V k
h ,M

k
h) = (V k,LSP

h ,Mk,LSP
h ), with

V k,LSP
h = {u ∈ L2(Ω) : u|K ∈ P k(K),4u|K = 0,∀K ∈ Th},

Mk,LSP
h = {q ∈ [L2(Ω)]d : q|K ∈ [P k(K)]d,∇ · q|K = 0,∀K ∈ Th}.

Another choice, (V k
h ,M

k
h) = (V k,LSP

h , M̃k,LSP
h ), is also considered in [12] with M̃k,LSP

h =

Mk,STD
h . In both cases, the approximating functions in Vh for the LSP LDG method are

piecewise harmonic polynomials, and such functions satisfy the Laplace equation exactly in

each element K.

With (2.4)-(2.5), qh in (2.3) can be solved locally in terms of uh, so the size of the final

algebraic system of the LDG method depends only on the dimension of Vh. By incorporating

the a priori knowledge of the exact solution to the discrete space Vh, the LSP LDG method

results in a smaller linear system especially when polynomials of higher degrees are used,

and therefore has lower computational complexity. More specifically, the dimension of the

local-structure-preserving space V k,LSP
h on each element K ∈ Th is 2k + 1 which depends

on k linearly, whereas the dimension of the standard polynomial space V k,STD
h on K is

(k + 2)(k + 1)/2, which depends on k quadratically. Indeed, this local-structure-preserving

approximating space V k,LSP
h can be used in any of the DG methods discussed in [1] to provide

high order numerical methods for the Laplace equation with low computational complexity.

The actual cost efficiency of such methods certainly needs additional investigation.

The reduction of the computational complexity discussed above does not compromise the

overall accuracy of the LSP LDG method when it is measured in the L2 norm and the energy

norm. In fact, with the meshes {Th}h being regular [4] and for the sufficiently smooth exact

solution u, one can establish the error estimate ||∇u− qh||L2(Ω) = O(hk) for both standard

and LSP LDG methods (see [3, 12]) with C11 = O(1/h) or O(1). If the full elliptic regularity

is further assumed for the adjoint problem of (2.1)

−4 ψ = f in Ω, ψ|ΓD
= 0,

∂ψ

∂n
|ΓN

= 0, (2.6)
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namely, ||ψ||2,Ω ≤ Cr||f ||L2(Ω), ∀ f ∈ L2(Ω) with a constant Cr solely depending on Ω and

|| · ||t,Ω with t > 0 being the standard Sobolev norm, then a duality argument can lead to the

L2 error estimate ||u − uh||L2(Ω) = O(hk+1) with C11 = O(1/h). This estimate was given in

[3] for the standard LDG method. And it can also be established for the LSP LDG method

by following the general analysis in [1] based on the primal formulation of the scheme. With

the focus of this note in mind, we will not present the proof but mention that the duality

argument uses the fact of V 1,LSP
h = V 1,STD

h , which ensures that the discrete space V 1,LSP
h can

be used to approximate the solutions of both the Laplace equation and its adjoint problem

(2.6). One can refer to [9] for the details of the proof.

3 Accuracy in negative-order norms

For many applications, numerical methods are regarded as being accurate if they are accurate

in commonly used norms such as the energy and L2 norms. In certain applications (with

an example indicated below), one may also be interested in the accuracy of the methods in

negative-order norms || · ||−s,Ω, namely, ||v||−s,Ω = supφ∈C∞0 (Ω)

R
Ω v(x)φ(x)dx

||φ||s,Ω
, with any natural

number s. The duality argument in [3] can be used to show the error estimates in negative-

order norms for the standard LDG method. However, such argument can not be applied

directly to the LSP LDG method in section 2 to get similar estimates, due to that V k,LSP
h

with k > 1 is not a suitable discrete space for the adjoint problem (2.6) of the Laplace

equation.

On the other hand, error estimates in negative-order norms often contain the information

on the oscillatory nature of the error, and this has been used to enhance the accuracy of

some numerical methods by a local post-processing technique, which was originally developed

by Bramble and Schatz [2] in the context of continuous finite element methods for elliptic

problems and later by Cockburn et al. [7], Ryan et al. [15], and Ryan and Cockburn [13] in

the context of DG methods for hyperbolic equations, and was also applied to LDG methods

for convection-diffusion equations [7] and for differential equations with even higher spatial
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derivatives [16]. With a negative-order norm error estimate of the numerical solution and

a local translation invariance of the mesh, this local post-processing technique can filter

out the (possible) oscillation in the error and recover the accuracy in the L2 norm, up to

the order of the error estimates in the negative-order norm. Note that a negative-order

norm of a function is no bigger than its L2 norm, that is, ||v||−s,Ω ≤ ||v||0,Ω for s ≥ 1.

When the error estimate in the negative-order norm for a numerical method is of higher

order than its L2 error estimate, the post-processed solution will be of higher order accuracy

than the original numerical solution in the L2 norm. Based on this, we next apply the post-

processing technique of [2, 7, 15] to the numerical solutions of our LSP LDG method. Instead

of aiming at enhancing the accuracy of the computed solution, we use this technique as an

indirect tool to study the accuracy of the method in negative-order norms. To facilitate our

understanding, the results for the standard LDG method are also presented.

We consider an example with the smooth exact solution u(x, y) = e−x cos(y) in Ω = [0, 1]2

and the Dirichlet boundary condition. The numerical fluxes are taken as q̂ = q+ − C11[[u]],

û = u− for the interior edge e = K+ ∩ K− ∈ Ei, where (u−, q+) is either (u|K+ , q|K−)

or (u|K− , q|K+). Such choice results in a smaller local dependence stencil and hence a

sparser matrix in the final system. Both the standard and the LSP LDG methods are

simulated on uniform rectangular meshes in quadruple precision. We then apply the local

post-processing technique of [7, 15] by convoluting the numerical solution in (V k
h ,M

k
h) with

the two-dimensional kernel K2(k+1),k+1 defined in [15]. The tensor product of a six-point

Gaussian quadrature formula in one dimension is used to compute the errors, and this sim-

plifies the post-processing step into small matrix vector multiplications of the pre-stored

matrices and the coefficients which represent the numerical solution in the neighboring mesh

elements [15]. Since the kernel K2(k+1),k+1 involves a symmetric stencil, to avoid the bound-

ary effect, the errors before and after the post-processing step are computed in a sub-domain

Ωc = [0.25, 0.75]2. Alternatively, one can combine the one-sided post-processing technique

developed in [14] for errors in the whole domain Ω.
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For k = 1, 2, 3, convergence orders in the L2 norm are summarized in Table 3.1 for

numerical solutions before and after the post-processing procedure. The non-negative µi(k)

with i, k = 1, 2, 3 are defined as

µ1(k) =


0, for k = 1,

1, for k = 2,

0, for k = 3,

µ2(k) =


1, for k = 1,

1, for k = 2,

0.4 ∼ 0.5, for k = 3,

µ3(k) =


1, for k = 1,

0, for k = 2,

0, for k = 3.

(3.7)

The more detailed errors and convergence orders are reported in Tables 3.2-3.5. Here the

LSP LDG method I uses (V k,LSP
h ,Mk,LSP

h ) as the discrete space, and the LSP LDG method

II uses (V k,LSP
h , M̃k,LSP

h ). In addition, (u,q), (uh,qh), and (Puh,Pqh) represent the exact

solution, the numerical solution, and the post-processed numerical solution, respectively. We

take C11 = 1/h and 10. Based on the numerical results and [7], for k = 1, 2, 3, we conclude

that

(1) for standard LDG approximations in (V k,STD
h ,Mk,STD

h ), the post-processing technique

enhances the accuracy of (uh,qh) from (k + 1, k) to (2k, 2k) in the L2 norm. This

is consistent to the error estimate for uh in negative k-th order norm, namely, ||u −

uh||−k,Ω = O(h2k). Such estimate was not stated explicitly yet it is a direct consequence

of Lemma 2.4, Lemma 3.3, and Lemma 3.6 in [3]. The accuracy enhancement after the

post-processing step also suggests ||q− qh||−k,Ω = O(h2k).

(2) for LSP LDG approximations in either (V k,LSP
h ,Mk,LSP

h ) or (V k,LSP
h , M̃k,LSP

h ), the post-

processing technique in general does not improve the accuracy order for uh in the L2

norm, though the actual errors of the post-processed Puh are smaller. Such post-

processing step does improve the accuracy for qh by at least one order. These results

indicate that the error for uh ∈ V k,LSP
h in the negative k-th order norm is generally

of the same order as its L2 error, namely, ||u− uh||−k,Ω = O(hk+1+ν) with ν ≥ 0, and

the error for qh ∈ Mk,LSP
h or M̃k,LSP

h in the negative k-th order norm is of at least one

order higher than its L2 error, namely, ||q− qh||−k,Ω = O(hk+ν), ν ≥ 1.
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Table 3.1: The summary of the convergence orders of the LDG approximation (uh,qh) and
the post-processed approximations (Puh,Pqh). µi(k) with i, k = 1, 2, 3 are non-negative and
they are defined by (3.7).

C11 Method ||u− uh||0,Ω ||u− Puh||0,Ω ||q− qh||0,Ω ||q− Pqh||0,Ω

LSP LDG method I k+1 k+1 k k+1+µ1(k)
1/h LSP LDG method II k+1 k+1 k k+1

Standard LDG method k+1 2k k 2k
LSP LDG method I k+1 k+1 k+µ2(k) k+2

10 LSP LDG method II k+1 k+1+µ3(k) k+µ3(k) k+1+µ3(k)
Standard LDG method k+1 2k+µ3(k) k+µ3(k) 2k+µ3(k)

Compared with the standard LDG method, the LSP LDG method has some accuracy

loss when measured in negative-order norms. In practice, one can always apply the local

post-processing technique to the LDG approximations to reduce the errors and therefore to

enhance the resolution of the numerical solutions.

When C11 = O(1), another relevant work is the superconvergence result in [5], which is

established for the LDG method in [3] when the numerical fluxes are suitably chosen, and

the finite elements with tensor structures are used on Cartesian meshes. It was proved that

||u − uh||L2(Ω) = O(hk+1) and ||q − qh||L2(Ω) = O(hk+ 1
2 ). These results are sharp, and the

estimate in qh is 1
2

order higher than that of the general LSP LDG methods. The numerical

experiments in this section with C11 = O(1) are also on Cartesian meshes with the same

type of numerical fluxes as in [5], and the only difference is in discrete spaces. Numerically,

compared with the LDG method in [5], the LSP LDG method I is 1
2

order more accurate

in qh when k = 1 and 2, and the LSP LDG method II is 1
2

order less accurate in qh when

k 6= 1, while the convergence orders in uh are the same among all methods in this note and

in [5].

4 Concluding remarks

To certain extent, this note reports some negative finding for the LSP LDG method in [12]

to solve the Laplace equation, and the mathematical understanding of this result is yet to be
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Table 3.2: Errors and convergence orders of the LDG approximation uh and the post-
processed approximation Puh. C11 = 1/h. h is the meshsize with h0 = 0.05.

||u− uh||0,Ω ||u− Puh||0,Ω

h error order error order
LSP LDG method I

h0 1.18e-04 - 1.18e-05 -
P 1 h0/2 2.96e-05 2.00 3.27e-06 1.85

h0/4 7.40e-06 2.00 8.56e-07 1.94
h0/8 1.85e-06 2.00 2.18e-07 1.97
h0 1.32e-06 - 1.55e-07 -

P 2 h0/2 1.65e-07 3.00 1.99e-08 2.96
h0/4 2.06e-08 3.00 2.52e-09 2.98
h0/8 2.58e-09 3.00 3.17e-10 2.99
h0 1.26e-08 - 8.11e-09 -

P 3 h0/2 7.90e-10 4.00 5.07e-10 4.00
h0/4 4.94e-11 4.00 3.17e-11 4.00

LSP LDG method II
h0 1.18e-04 - 1.27e-05 -

P 1 h0/2 2.96e-05 2.00 3.39e-06 1.91
h0/4 7.40e-06 2.00 8.71e-07 1.96
h0/8 1.85e-06 2.00 2.20e-07 1.98
h0 9.20e-07 - 7.56e-08 -

P 2 h0/2 1.15e-07 3.00 9.62e-09 2.97
h0/4 1.44e-08 3.00 1.22e-09 2.98
h0/8 1.80e-09 3.00 1.53e-10 2.99
h0 9.51e-09 - 5.24e-09 -

P 3 h0/2 5.93e-10 4.00 3.27e-10 4.00
h0/4 3.70e-11 4.00 2.04e-11 4.00

Standard LDG method
h0 1.18e-04 - 1.27e-05 -

P 1 h0/2 2.96e-05 2.00 3.39e-06 1.91
h0/4 7.40e-06 2.00 8.71e-07 1.96
h0/8 1.85e-06 2.00 2.20e-07 1.98
h0 9.20e-07 - 1.75e-08 -

P 2 h0/2 1.15e-07 3.00 1.13e-09 3.96
h0/4 1.44e-08 3.00 7.14e-11 3.98
h0 6.80e-09 - 5.44e-12 -

P 3 h0/2 4.24e-10 4.01 8.55e-14 5.99
h0/4 2.64e-11 4.00 1.34e-15 6.00
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Table 3.3: Errors and convergence orders of the LDG approximation uh and the post-
processed approximation Puh. C11 = 10. h is the meshsize with h0 = 0.05.

||u− uh||0,Ω ||u− Puh||0,Ω

h error order error order
LSP LDG method I

h0 1.24e-04 - 4.86e-06 -
P 1 h0/2 3.19e-05 1.96 5.66e-07 3.10

h0/4 8.11e-06 1.98 6.81e-08 3.06
h0/8 2.05e-06 1.99 1.53e-08 2.16
h0 1.68e-06 - 1.73e-07 -

P 2 h0/2 2.52e-07 2.74 2.38e-08 2.86
h0/4 3.53e-08 2.84 3.14e-09 2.92
h0/8 4.71e-09 2.91 4.03e-10 2.96
h0 1.50e-08 - 9.72e-09 -

P 3 h0/2 1.08e-09 3.80 6.99e-10 3.80
h0/4 7.47e-11 3.86 4.79e-11 3.87

LSP LDG method II
h0 1.24e-04 - 6.19e-06 -

P 1 h0/2 3.19e-05 1.96 8.30e-07 2.90
h0/4 8.11e-06 1.98 1.07e-07 2.95
h0/8 2.05e-06 1.99 1.36e-08 2.98
h0 9.30e-07 - 8.14e-08 -

P 2 h0/2 1.17e-07 2.99 1.06e-08 2.94
h0/4 1.47e-08 2.99 1.36e-09 2.97
h0/8 1.84e-09 3.00 1.71e-10 2.99
h0 9.67e-09 - 5.30e-09 -

P 3 h0/2 6.10e-10 3.99 3.33e-10 3.99
h0/4 3.83e-11 3.99 2.09e-11 3.99

Standard LDG method
h0 1.24e-04 - 6.19e-06 -

P 1 h0/2 3.19e-05 1.96 8.30e-07 2.90
h0/4 8.11e-06 1.98 1.07e-07 2.95
h0/8 2.05e-06 1.99 1.36e-08 2.98
h0 9.29e-07 - 1.42e-08 -

P 2 h0/2 1.17e-07 2.99 8.12e-10 4.13
h0/4 1.47e-08 2.99 4.84e-11 4.07
h0 7.02e-09 - 5.09e-12 -

P 3 h0/2 4.46e-10 3.98 7.68e-14 6.05
h0/4 2.81e-11 3.99 1.18e-15 6.03
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Table 3.4: Errors and convergence orders of the LDG approximation qh and the post-
processed approximation Pqh. C11 = 1/h. h is the meshsize with h0 = 0.05.

||q− qh||0,Ω ||q− Pqh||0,Ω

h error order error order
LSP LDG method I

h0 2.66e-03 - 5.51e-05 -
P 1 h0/2 1.35e-03 0.98 1.44e-05 1.94

h0/4 6.82e-04 0.99 3.67e-06 1.97
h0/8 3.42e-04 0.99 9.25e-07 1.99
h0 7.44e-05 - 5.79e-09 -

P 2 h0/2 1.85e-05 2.00 2.89e-10 4.33
h0/4 4.63e-06 2.00 1.73e-11 4.06
h0/8 1.16e-06 2.00 1.08e-12 4.00
h0 6.67e-07 - 2.70e-09 -

P 3 h0/2 8.34e-08 3.00 1.69e-10 3.99
h0/4 1.04e-08 3.00 1.06e-11 4.00

LSP LDG method II
h0 2.66e-03 - 5.52e-05 -

P 1 h0/2 1.35e-03 0.98 1.44e-05 1.94
h0/4 6.82e-04 0.99 3.67e-06 1.97
h0/8 3.42e-04 0.99 9.26e-07 1.99
h0 1.25e-04 - 2.54e-07 -

P 2 h0/2 3.11e-05 2.01 3.18e-08 3.00
h0/4 7.76e-06 2.00 3.97e-09 3.00
h0/8 1.94e-06 2.00 4.95e-10 3.00
h0 9.94e-07 - 6.00e-09

P 3 h0/2 1.24e-07 3.00 3.75e-10 4.00
h0/4 1.55e-08 3.00 2.35e-11 4.00

Standard LDG method
h0 2.66e-03 - 5.52e-05 -

P 1 h0/2 1.35e-03 0.98 1.44e-05 1.94
h0/4 6.82e-04 0.99 3.67e-06 1.97
h0/8 3.42e-04 0.99 9.26e-07 1.99
h0 1.24e-04 - 1.45e-08 -

P 2 h0/2 3.10e-05 2.01 9.57e-10 3.92
h0/4 7.73e-06 2.00 6.24e-11 3.94
h0 7.92e-07 - 1.12e-11 -

P 3 h0/2 9.91e-08 3.00 1.76e-13 5.99
h0/4 1.24e-08 3.00 2.76e-15 5.99
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Table 3.5: Errors and convergence orders of the LDG approximation qh and the post-
processed approximation Pqh. C11 = 10. h is the meshsize with h0 = 0.05.

||q− qh||0,Ω ||q− Pqh||0,Ω

h error order error order
LSP LDG method I

h0 1.52e-03 - 2.98e-05 -
P 1 h0/2 4.11e-04 1.88 4.07e-06 2.87

h0/4 1.07e-04 1.94 5.32e-07 2.94
h0/8 2.74e-05 1.97 6.79e-08 2.97
h0 5.10e-05 - 5.82e-09 -

P 2 h0/2 7.81e-06 2.71 3.20e-10 4.18
h0/4 1.10e-06 2.83 1.99e-11 4.01
h0/8 1.47e-07 2.90 1.26e-12 3.98
h0 4.96e-07 - 1.89e-09 -

P 3 h0/2 4.46e-08 3.48 7.45e-11 4.67
h0/4 4.21e-09 3.41 2.67e-12 4.80

LSP LDG method II
h0 1.51e-03 - 3.00e-05 -

P 1 h0/2 4.11e-04 1.88 4.10e-06 2.87
h0/4 1.07e-04 1.94 5.36e-07 2.93
h0/8 2.74e-05 1.97 6.86e-08 2.97
h0 1.24e-04 - 2.71e-07 -

P 2 h0/2 3.09e-05 2.01 3.48e-08 2.96
h0/4 7.71e-06 2.00 4.41e-09 2.98
h0/8 1.93e-06 2.00 5.54e-10 2.99
h0 9.90e-07 - 6.07e-09 -

P 3 h0/2 1.23e-07 3.00 3.82e-10 3.99
h0/4 1.54e-08 3.00 2.40e-11 3.99

Standard LDG method
h0 1.51e-03 - 3.00e-05 -

P 1 h0/2 4.11e-04 1.88 4.10e-06 2.87
h0/4 1.07e-04 1.94 5.36e-07 2.93
h0/8 2.74e-05 1.97 6.86e-08 2.97
h0 1.24e-04 - 1.26e-08 -

P 2 h0/2 3.08e-05 2.01 7.38e-10 4.09
h0/4 7.68e-06 2.00 4.66e-11 3.99
h0 7.84e-07 - 1.05e-11 -

P 3 h0/2 9.78e-08 3.00 1.58e-13 6.05
h0/4 1.22e-08 3.00 2.43e-15 6.03
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established. In many applications when it is sufficient to have schemes which are accurate

in commonly used norms such as the energy and the L2 norms, this LSP LDG method is

still competitive due to its low computational complexity.

In the end, we want to mention that such post-processing technique was also applied

to the locally divergence-free DG approximations for time-dependent Maxwell equations in

[6]. This is another example of local-structure-preserving DG methods. Numerical results

in [6] suggest that using local-structure-preserving discrete spaces in DG frameworks does

not necessarily lead to accuracy loss in negative-order norms. In fact, the accuracy order

of the numerical solutions in [6] was enhanced from k + 1 to 2k + 1 in the L2 norm by the

post-processing technique, same as what occurs to the standard DG approximations. This

indicates that such local-structure-preserving DG approximations have the same (2k+ 1)-st

order of accuracy in negative k-th order norm as the standard DG approximations [7] when

solving the Maxwell equations. Mathematical justification for this is still an open problem.
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