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We consider the problem of setting the uplink signal-to-noise-and-interference (SINR) target and allocating transmit powers for
mobile stations in multicell spatial multiplexing wireless systems. Our aim is twofold: to evaluate the potential of such mechanisms
in network multiple input multiple output (MIMO) systems, and to develop scalable numerical schemes that allow real-time near-
optimal resource allocation across multiple sites. We formulate two versions of the SINR target and power allocation problem: one
for maximizing the sum rate subject to power constraints, and one for minimizing the total power needed to meet a sum-rate target.
To evaluate the potential of our approach, we perform a semianalytical study in Mathematica using the augmented Lagrangian
penalty function method. We find that the gain of the joint optimum SINR setting and power allocation may be significant
depending on the degree of fairness that we impose. We develop a numerical technique, based on successive convexification, for
real-time optimization of SINR targets and transmit powers. We benchmark our procedure against the globally optimal solution
and demonstrate consistently strong performance in realistic network MIMO scenarios. Finally, we study the impact of near
optimal precoding in a multicell MIMO environment and find that precoding helps to reduce the sum transmit power while
meeting a capacity target.

1. Introduction

Recently, several works proposed and demonstrated various
forms of tight network coordination as a means to provide
high spectral efficiency in multicell multiple input multiple
output (MIMO) cellular networks [1, 2]. Such coordination
among the cells deployed over a certain geographical area
has initially aimed at coordinating transmitter and receiver
algorithms [3–5]. These promising results have triggered the
interest of standardization bodies and industry players to
investigate the architecture and protocol aspects of network
MIMO systems employing multisite coordination of signal
transmission and reception [6, 7].

Since network MIMO systems in general and multicell
spatial multiplexing systems in particular inherently support
the exchange of control information among multiple base
stations, they can readily benefit of joint radio resource
management functions, such as multicell scheduling, power

control and precoding [8–10]. Multicell scheduling is con-
cerned with assigning radio resources to users in multiple
cells such that some utility function is maximized; see, for
instance, [11, 12]. Multicell power control can be viewed as a
finer granularity control which is concerned with allocating
power to scheduled users. Specifically for the uplink, it has
been shown that coordinated power control can minimize
the overall transmit power so as to maintain a predetermined
signal-to-noise-and-interference (SINR) target [13].

For multicell scenarios, Hande et al. have demonstrated
significant advantages of optimizing the SINR targets accord-
ing to some criterion set by the network operator [14].
That work used SINR expressions for single input single
output (SISO) systems without spatial multiplexing and
considered network utility maximization problems with fair
user utility functions ui(·), in the sense that if the SINR tends
to zero, ui → −∞. If proportionally fair rate allocations
are desired, the SINR targets could also be set via optimal
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distributed power control algorithms; see, for example, [15,
16]. However, none of these methods are easily extended to
throughput maximization problems.

Similarly, we expect that setting the SINR targets in
multiple network MIMO cells is an efficient means to con-
trol fairness and multicell throughput performance. Unlike
traditional cellular networks, network MIMO systems allow
the adjustment of these SINR targets on a time scale that is
similar to scheduling and power control. Roughly speaking,
manipulating the SINR targets can be seen as an extension
of network MIMO power control algorithms (in the spirit
of [14]) that adjust the individual power levels taking into
account the channel variations such that predetermined
SINR targets are reached and the overall power is minimized.

Building on this key observation, the first contribution
of this paper is to evaluate the potential of such mechanisms
in multicell spatial multiplexing systems. To this end, we
develop a model that jointly optimizes the SINR targets
and the power levels for the uplink of spatially multiplexing
network MIMO systems. Our model can explicitly take into
account fairness constraints by requiring that the ratio of
the individual SINR (and thereby rate) targets for different
mobile stations remain under some prescribed value, ranging
from greedy throughput maximization (“no fairness”) to
equal rate allocation. Secondly, we develop scalable numer-
ical schemes that allow real-time near-optimal resource
allocation across multiple sites. Our major finding is that
the new degree of freedom in network MIMO systems (i.e.,
multicell SINR target control) is an efficient tool to control
the throughput performance and fairness in multicell sys-
tems. Finally, we find that when mobile stations employ fast,
channel aware precoding, they can either significantly reduce
their transmission power while maintaining a capacity target
or enhance the throughput for a fixed power budget.

The paper is structured as follows. Section 2 models the
uplink transmission of a network MIMO system employing
minimum mean square error (MMSE) receiver. Section 3
formulates the SINR setting and power allocation problem.
Sections 4 and 5 present a semianalytical and numerical solu-
tion approaches, respectively. Section 7 discusses numerical
results and Section 8 concludes the paper.

2. System Model

2.1. Modelling the Received Signal. In order to establish the
received signal model, we revise and merge the models of [13,
17, 18]. We consider the uplink transmission of a multicell
system with K cells and assume that each cell consists of
a base station (BS) with Nr being receive antennas and an
active mobile station (MS) with Nt being transmit antennas
and spatial multiplexing. The assumption of having a single
MS in each cell is not limiting, because it includes time
division, (orthogonal) frequency division and orthogonal
code division, multiplexing systems which ensure (time,
frequency, or code domain) orthogonality within a single
cell [13]. A narrow-band quasistatic flat-fading channel is
assumed, where the channel remains constant within several
scheduling instances (frames).

The received signal at the kth BS is represented as

yk = αk,kHk,kTkxk +
∑

j /= k
αk, jHk, jT jx j + nk , (1)

where

(i) αk, j =
√
Pjd

−ρ
k, j χk, j /Nt is a scalar coefficient depending

on the total transmit power Pj for user j, the log-
normal shadow fading χk, j , and distance dk, j between
the kth base station and the jth user with path loss
exponent ρ;

(ii) xk ∈ CNt×1 is the data vector that is assumed to be
zero-mean, normalized, and uncorrelated, E(xkx†k ) =
INt ;

(iii) Hk, j denotes the (Nr ×Nt) channel transfer matrix;

(iv) Tk is the MS-k (Nt × Nt) diagonal power loading
matrix; to keep the total transmit power constant, Tk

must satisfy

E
(

T†kTk

)
= trace

(
TkT†k

)
=

Nt∑

i=1

∣∣∣T(i,i)
k

∣∣∣
2 = Nt ∀k; (2)

(v) nk is a Nr × 1 additive white Gaussian noise vector at
the kth base station with zero mean and covariance
matrix Rnk = E(nkn†k ) = σ2

nINr for all k.

We note that the underlying assumption of the last bullet
item on equal noise covariance for all base stations is
reasonable for a set of base stations with the same antenna
configuration and other physical and hardware characteris-
tics within a limited geographical region and is often used
both in the literature and in standardization [6, 7, 13, 19].

We rewrite the signal model (1) in a compact form as

yk = αk,kHk,kTkxk + zk + nk, (3)

where zk = ∑
j /= k αk, jHk, jT jx j denotes the (Nr × 1)

interference vector from users in other cells, with covariance
matrix

Rzk = E
(

zkz†k
)
=
∑

j /= k
α2
k, jHk, jT jT

†
j H†

k, j . (4)

For ease of notation, we define an equivalent noise vector that
accounts both intercell interference and background noise

vk = zk + nk. (5)

It is easy to show that vk is zero-mean with covariance Rvk =
Rzk + Rnk ; see Appendix A.

2.2. MMSE Receiver Error Matrix and the Effective SINR.
As we shall see, calculating the error matrix of the specific
receiver that we employ in our system is a prerequisite
for calculating the SINR. In this work we assume that the
received signal is filtered through a linear MMSE receiver
with weighting matrix Gk to obtain the following estimate:

x̂k = Gkyk. (6)
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Proposition 1. For the linear MMSE receiver

Gk = 1
αk,k

T†kH†
k,k

×
⎛
⎝Hk,kTkT†kH†

k,k+
∑

j /= k

α2
k, j

α2
k,k

Hk, jT jT
†
j H†

k, j+
σ2
n

α2
k,k

INr

⎞
⎠
−1

.

(7)

In the special case of equal power distribution, that is, Tk = INt ,
the MMSE weighting matrix becomes

Gk = 1
αk,k

H†
k,k

⎛
⎝Hk,kH†

k,k +
∑

j /= k

α2
k, j

α2
k,k

Hk, jH
†
k, j +

σ2
n

α2
k,k

INr

⎞
⎠
−1

.

(8)

Proof. See Appendix A.

The (Nt ×Nr) linear MMSE weighting matrix Gk can be
expressed in an alternative, more compact, form as

Gk = 1
αk,k

T†kH†
k,k

(
Hk,kTkT†kH†

k,k +
1
α2
k,k

Rvk

)−1

=
(

I + T†kRHkTk

)−1
αk,kT†kH†

k,kR−1
vk ,

(9)

where RHk = α2
k,kH†

k,kR−1
vk Hk,k ; see, for example, [20, Chapter

12]. To derive the streamwise SINRs at base station k, we
will need the diagonal elements of the error matrix of the
MMSE filtered signal. To this end, the following proposition
is useful.

Proposition 2. The MMSE estimation error matrix (Nr ×Nr)
for the kth base station is

Ek =
(
αk,kGkHk,kTk − I

)(
αk,kT†kH†

k,kG†
k − I

)
+ GkRvkG†

k ,

(10)

or, equivalently

Ek =
(

I + T†kRHkTk

)−1
. (11)

Proof. The computation is derived in Appendix A.

Note that with equal power distribution, that is, Tk = INt

these results reduce to [13, Appendix A].
We are now in the position to calculate the SINR for the

signal model (3) assuming a linear MMSE receiver. Using
the linear MMSE weighting matrix Gk, the MSE and SINR
expressions can be rewritten, respectively, as

MSEk,s � (Ek)(s,s) =
{(
I + T†kRHkT†k

)−1
}

(s,s)
,

γk,s � 1
MSEk,s

− 1.

(12)

2.3. Summary. In this section we defined the multicell
MIMO-received signal model (3) and, assuming a linear
MMSE receiver, derived the associated effective SINR (γk,s)
for each stream of the received signal. Equations (12) are
important because they capture the dependence of the
SINRs on the transmission powers of the own MS and the
interfering MSs through the RHk ’s and the Rvk ’s. Thus, these
relations serve as the basis for the optimization problems of
the next section.

3. Problem Formulation

Our aim is to develop a mathematical framework for
systematic optimization of SINR-targets, transmit powers,
and precoding matrix to maximize a rate objective subject
to power budget and fairness constraints (or to minimize
power subject to rate constraints). To the best of the
authors’ knowledge, there are not efficient means for jointly
optimizing all these variables. We build our theoretical
developments on the following result from [13]: by assuming
equal power allocation for all streams s (i.e., no uplink beam
forming, Tk = INt for all k), the minimum stream SINR is
lower bounded as

min
s∈[1,Nt]

γk,s ≥ γ
k

(
p
)
, (13)

where p = (P1 · · ·PK )T is the power allocation vector, and

γ
k

(
p
) = Pkd

−ρ
k,kχk,k

∑
j /= k Pjd

−ρ
k, j χk, jμmax

(
Ωk, j,1

)
+Ntσ

2
k μmax

(
Ωk, j,2

) .

(14)

Here, μmax(·) is the maximum eigenvalue operator for a
Hermitian matrix, while Ωk, j,1 and Ωk, j,2 are defined as

Ωk, j,1 =
(

H†
k,kHk,k

)−1
H†
k,kHk, jH

†
k, jHk,k

(
H†
k,kHk,k

)−1
,

Ωk, j,2 =
(

H†
k,kHk,k

)−1
.

(15)

This bound allows to associate a single SINR value

γk
(

p
)

� min
s∈[1,Nt]

γk,s (16)

with each MS-k. In what follows, we will search for SINR
targets γ

tgt
k which are feasible for the lower-bound (and hence

for each individual stream) and let Γ = diag(γ
tgt
1 · · · γtgt

K ).

3.1. Minimizing Sum Power under Fixed SINR Target. The
above result was used in [13] to design power control
schemes which maintain a fixed minimum SINR target γ

tgt
k

for every stream s by enforcing γ
k
(p) ≥ γ

tgt
k for each user. As

shown in [13], the transmit power of MS-k must satisfy

Pk ≥ γ
tgt
k ·

⎛
⎝
∑

j /= k Pj · d
−ρ
k, j χk, jμmax

(
Ωk, j,1

)

d
−ρ
k,kχk,k

+
σ2
nNtμmax

(
Ωk, j,2

)

d
−ρ
k,kχk,k

⎞
⎠

(17)
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Moreover, the power vector that satisfies this requirement
and minimizes the sum power is

p� = (I− ΓF)−1Γn, (18)

where n is a K-dimensional effective noise variance vector
whose kth element is nk = Ntσ2

nμmax(Ωk, j,2)/d
−ρ
k,kχk,k , and

Fk, j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

d
−ρ
k, j χk, jμmax

(
Ωk, j,1

)

d
−ρ
k,kχk,k

, k /= j,

0, k = j.

(19)

Still, (18) requires feasibility of the SINR targets, which in
practice cannot be guaranteed a priori. Precoding optimiza-
tion was shown to be effective to balance the conservativeness
of the bound (13) and increase feasibility; see [13].

3.2. Optimal SINR Target Selection. In this paper we take a
step further and explore a key observation, not fully exploited
in [13]. Since the minimum user-stream SINR bound (13)
allows to associate a single SINR target per user, one can
regard each MS-BS connection as an equivalent SISO system
and model the minimum user-stream capacity as function
of the power allocation with a Shannon-like expression
(normalized to the bandwidth) as

ck
(
γ

tgt
k

)
= log2

(
1 + γ

tgt
k

)
∀k, (20)

where we enforce

γ
k

(
p
) = Pk

nk +
∑

j /= k Gk jPj
≥ γ

tgt
k ∀k (21)

with G = I + F. This observation is the basis for optimizing
the minimum user-stream SINR targets.

In network MIMO, it is possible (and as we shall see
beneficial) to exploit the possibility to set the SINR targets
such that the sum power is kept at a minimum level and the
overall system capacity (sum rate) target cm is reached. This
problem is formulated as follows:

minimize
Γ,p

∑

k

Pk

subject to
∑

k

ck
(
γ

tgt
k

)
≥ cm

γ
tgt
k = γ

k

(
p
) ∀k,

(22)

in the optimization variables Γ (SINR targets) and p (power).
We are also interested in the dual formulation of problem
(22), that is, maximizing the multicell capacity (sum rate)
subject to a total power budget:

maximize
Γ,p

∑

k

ck
(
γ

tgt
k

)

subject to
∑

k

Pk ≤ Ptot

γ
tgt
k = γ

k

(
p
) ∀k.

(23)

3.3. Enforcing Fairness Constraints. Fairness can be enforced
in the above formulations by limiting the ratio between SINR
targets, that is,

γ
tgt
k ≤ Φk jγ

tgt
j ∀k, j /= k. (24)

The matrix Φ collects the fairness ratios. These constraints
are written more compactly as a(Γ) � b(Γ), where
a = vec(a1 · · · ak) with ak = (1 − ek)γ

tgt
k , and b(Γ) =

vec(ΦΓ).(Here, ek is the vector with 1 in the kth coordinate
and 0’s elsewhere). To account for fairness constraints,
we include the inequalities a(Γ) � b(Γ) in (22) and
(23). In what follows, we develop a novel efficient SINR-
target optimization procedure and combine it with iterative
algorithms for power and precoding matrix optimization.
As we will see, the minimum SINR bound (13) is quite
conservative and including the precoding matrix Tk in the
optimization is instrumental to enhance the performance.

4. A Semianalytical Solution Approach

We propose to solve the problems formulated in Section 3.2
through the augmented Lagrangian penalty function method
[21]. In this method, the constrained nonlinear optimization
task is transformed into an unconstrained problem by adding
a penalty term to the Lagrangian function as follows:

L
(
Γ, p, ν,μ, ε

) =
∑

k

Pk + μ

⎛
⎝
∑

k

ck
(
γ

tgt
k

)
− cm

⎞
⎠ + νT(a− b)

+ ε

⎡
⎢⎣

⎛
⎝
∑

k

ck
(
γ

tgt
k

)
− cm

⎞
⎠

2

+
∑

n

(an − bn)2

⎤
⎥⎦.

(25)

Here, we present the method for the power minimization
problem (22). The Lagrangian for problem (23) follows
similarly. It can be shown that if the optimum Lagrange
multipliers are known, the solution to this unconstrained
problem corresponds to the solution of the original problem
(22) regardless of the value of the penalty parameter ε, see,
for example, [21, Chapter 9].

4.1. Solution of the Power Minimization Problem. For ease of
presentation, we consider a three cell system, that is K = 3.
First, we need to find the power vector as the function of
the target multicell capacity (sum rate) cm and the individual
SINR targets (the γ

tgt
i ’s):

p�
(
cm, γ

tgt
1 , γ

tgt
2 , γ

tgt
3

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 +M12 +M13

Dp

M21 +M22 +M23

Dp

M31 +M32 +M33

Dp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where the parameters M11, . . . ,M33 and Dp are given in
Appendix B. From the capacity constraint, it follows that
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(K−1) SINR values can be freely selected while theKth SINR
target value must be chosen such that the capacity constraint
is fulfilled. In the case of K = 3,

γ
tgt
3

(
cm, γ

tgt
1 , γ

tgt
2

)
= ecm−log(1+γ

tgt
1 )−log(1+γ

tgt
2 ) − 1. (27)

Using this relationship, the Mij parameters are expressed

as the functions of γ
tgt
1 and γ

tgt
2 (see Appendix B). That

is, for a specific capacity target cm, p� and the sum of
its components are expressed as a two-variable function of
γ

tgt
1 and γ

tgt
2 . Using (26), it is straightforward to find the

stationary points of the unconstrained problem and, by
establishing the second-order necessary conditions, to find
the local optimum solutions (that is the local minimum
points) of (22). In our Mathematica implementation, we
found that in all considered practically relevant examples, a
simple heuristic can then easily identify the global optimum
solution (see also Section 7 ).

4.2. Solution of the Capacity Maximization Problem. For the
capacity maximization case, we can freely choose (K − 1)
SINR values, while the Kth SINR target needs to be selected
to fulfil the constraint of (23). With an abuse of notation, let
P� =∑i P

�
i denote the sum of the components of p� in (18).

For the three cell system, summing the components of (18),
it is straightforward to show that setting the SINR targets γ

tgt
1

and γ
tgt
2 implies setting γ

tgt
3 as follows:

γ
tgt
3

(
P�, γ

tgt
1 , γ

tgt
2

)

≤
P�
(

1− F12F21γ
tgt
1 γ

tgt
2

)

Dc

− γ
tgt
1 γ

tgt
2 (n1F21 + n2F12)− n1γ

tgt
1 − n2γ

tgt
2

Dc
,

(28)

where Dc is

Dc = P�
(
F13F31γ

tgt
1 + F23F32γ

tgt
2 + F12F23F31γ

tgt
1 γ

tgt
2

+F21F13F32γ
tgt
1 γ

tgt
2

)

+ γ
tgt
1 γ

tgt
2 (n1(F23F31 − F23F32 + F21F32)

+ n2(F13F32 − F13F31 + F12F31)

+n3(F13F21 + F12F23 − F12F21))

+ γ
tgt
1 (n1F31 + n3F13) + γ

tgt
2 (n2F32 + n3F23).

(29)

Similarly to the minimum P� in problem (22), for a specific
total power budget Ptot, (28) allows us to express the sum-rate∑
ck(γ

tgt
k ) as a two-variable function of γ

tgt
1 and γ

tgt
2 , which

allows to derive the numerical results.

5. Scalable Near-Optimal SINR Target Setting

To design more scalable solutions and avoid the matrix
inversion in (18), we make use of the model (20)-(21) to
reformulate problem (23) as

maximize
p,r

∑

k

rk

subject to rk ≤ ck
(

p
) ∀k

∑

k

Pk ≤ Ptot.

(30)

This problem optimizes the minimum user-stream trans-
mission rates r and powers p, hence implicitly the mini-
mum user-stream SINR. Similarly to the formulation (23),
problem (30) is not convex due to the link rate constraints
rk ≤ ck(p).

5.1. Monotonic Optimization. Through an exponential trans-

form of the variables Pk ← eP̃k and rk ← er̃k and a log-
transformation of the constraints, we rewrite problem (30)
as

maximize
p̃,r̃

∑

k

er̃k

subject to r̃k ≤ log
(
ck
(
ep̃
))

∀k
∑

k

eP̃k ≤ Ptot.

(31)

Since the objective function is convex and monotonically
increasing in the variables r̃ and the feasibility set is convex,
problem (31) falls into the family of monotonic optimization,
for which, unlike standard convex optimization problems,
local optimality does not translate into global optimality.
Only recently, Qian et al. [22] have shown the equivalence
between the formulations (30) and (31) and have devised an
algorithm, MAPEL, that finds the global optimum solution
by constructing a series of polyblocks that approximate the
SINR region with increasing precision (see [22] for details).

Proposition 3. The MAPEL algorithm converges to the global
optimal solution of problem (31).

Proof. It follows analogously to [22, Theorem 2] by defining
the feasibility set as

F =
⎧
⎨
⎩p | 0 ≤ Pk ≤ Ptot,

∑

k

Pk ≤ Ptot fi
(

p
)
gi
(

p
)−1 ≥ 1

⎫
⎬
⎭,

(32)

where fi(p) and gi(p) are defined as in [22]. In our case, we
combine implicit peak-power constraints (i.e., 0 ≤ Pk ≤ Ptot)
with an explicit global power budget.

The MAPEL algorithm allows to trade-off between accu-
racy and convergence time by tuning an approximation fac-
tor δ. Since the computation times drastically increase with
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increasing accuracy and problem size, MAPEL is currently
not feasible for real-time SINR target setting. Nevertheless,
it is an excellent candidate for off-line benchmarking of the
low-complexity schemes that we will develop next.

5.2. An Approximation of the Link Rate Constraint. To reduce
problem complexity, we use an approximation to “convexify”
the problem. Inspired by [15, 23], we use the relation
θ log(x) + β ≤ log(1 + x) with θ = x0/(1 + x0) and β =
log(1 + x0)− θ log(x0) to approximate the link capacity. The
approximation becomes exact for x = x0. We replace the
expression (20) with a more conservative one:

c̃k
(

p
) =

[
θklog2

(
γ
k

(
p
))

+ βk
]
≤ ck

(
p
)
. (33)

By applying the approximation (33) to the stream rate
constraints of problem (30), we obtain the following approx-
imation of problem (30)

maximize
Γ,p

∑

k

[
θ(t)
k log2

(
γ

tgt
k

)
+ β(t)

k

]

subject to γ
tgt
k ≤ Pk

nk +
∑

j /= k Gk jPj
∀k

∑

k

Pk ≤ Ptot,

(34)

which explicitly optimizes the SINR targets Γ and the
transmit power p. Here, the SINR expression (21) has been
added to the constraint set to provide an explicit relationship
between these variables. Similarly to [15], we propose to solve
problem (30) through a sequence of convex approximations
according to the iterative Algorithm 1. At the tth iteration of
the algorithm, the following problem P (t) is solved:

maximize
Γ̃,p̃

∑

k

[
θ(t)
k γ̃

tgt
k + β(t)

k

]

subject to γ̃
tgt
k ≤ P̃k − log

⎛
⎝nk +

∑

j /= k
Gk je

P̃j

⎞
⎠ ∀k

∑

k

eP̃k ≤ Ptot.

(35)

The above formulation is obtained from problem (34)

through the exponential change of variables γ
tgt
k ← eγ̃

tgt
k ,

Pk ← eP̃k , and a log-transform of the constraints. Algorithm 1
iteratively solves the convex approximate problems {P (t)}t
in the variables Γ̃ and p̃ and appropriately tunes θ and β to
improve the objective function until convergence.

While the approximation was initially proposed in [23]
to tune the transmission power in DSL systems and then
applied in [15] to network utility maximization problems
with concave utilities, our formulation is used to optimize
the SINR targets. We prove that each iteration of Algorithm 1
consists of a convex problem (Proposition 4) and that the
sequence of solutions is convergent (Proposition 5), which
follow quite straightforward from [15]. In addition, we

Initialize p(0), θ(0), and β(0) to some feasible values for
the original problem (30).
Start with iteration step t = 1.

(1) Solve the approximate optimization problem (35).
Let {Γ(t), p(t)} denote the solution of the tth
iteration.

(2) Update θ(t+1), β(t+1) at x(t)
0 = γ(p(t)).

(3) Update t = t + 1 and repeat until convergence

Algorithm 1: Series of convex approximations.

demonstrate that the sequence converges to a solution that
satisfies the KKT optimality condition of both the monotonic
optimization (31) (Theorem 5.1) and the original nonconvex
problem (30) (Theorem 5.2).

Proposition 4. The approximating problem P (t) is convex.

Proof. The constraints contain a linear term in γ̃k and P̃k
and a convex term (log-sum-exp) in p̃. The power budget
is convex (sum-exp), and the objective is linear in γ̃k.

Proposition 5. The problem sequence {P (t)}t results in
a series of monotonically improving objective values. The
sequence always converges at which point the lower bound
approximation (33) becomes exact.

Proof. The proof details can be found in Appendix C.

Theorem 5.1. The problem sequence {P (t)}t converges to a
KKT-point of the monotonic optimization problem (31).

Proof. The proof follows from Proposition 5 and a direct
inspection of the KKT optimality conditions for problems
(C.1) and (31). The details can be found in Appendix C.

Theorem 5.2. The problem sequence {P (t)}t converges to a
KKT-point of the original nonconvex problem (30).

Proof. See Appendix C.

6. Precoding Optimization

The mathematical framework devised in the previous sec-
tions allows to optimally select the SINR targets under equal
power allocation for all streams (i.e., Tk = INt ) for two classes
of problems: problem (22) minimizes the sum power while
maintaining a fixed system capacity; problem (23) maximizes
the multicell capacity subject to a fixed power budget. Both
cases use the minimum per-stream SINR bound (13), that is,

γk
(

p
) ≥ Pkd

−ρ
k,kχk,k

∑
j /= k Pjd

−ρ
k, j χk, jμmax

(
Ωk, j,1

)
+Ntσ

2
k μmax

(
Ωk, j,2

) ,

(36)

to formulate the SINR and power allocation problem.
Originally proposed in [13, Lemma 1], this bound applies
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Given t = 0, ε(0) = 1, Ptot, εgap and T(0)
k = INt for all k.

Initialize SINR targets Γ(0) = diag(γ
tgt
k ) and transmission

powers p(0) solving either problem (22) or (23).
Repeat:

(1) t = t + 1.
(2) For k = 1 to K

(a) Given {T(t−1), P(t−1)}, compute the inter ference
ζk,s = f (T(t−1), P(t−1)) as in (38).

(b) Calculate the optimum loading matrix T(t)
k as

(
T(t)
k

)(s,s)
=
√√√√ ζk,sNt∑Nt

j=1 ζk, j

∀s ∈ [1,Nt].

(c) Calculate the new SINR targets Γ(t) and
update the optimum transmit power P(t)

k as
γ(t)
k = γ

tgt
k · ε(t−1) ∀k

P(t)
k = ζk,s∣∣∣∣

(
T(t)
k

)(ss)
∣∣∣∣

2 (γ(t)
k + 1) ∀k, s

(3) Update the control parameter ε:
(a) If objective is power minimization: ε(t) = ε(t−1);
(b) If objective is throughput maximization:

ε(t) =
{
ε(t−1) − κ

(
∑

k
P(t)
k − Ptot

)}+

.

Until |P(t)
k − P(t−1)

k | ≤ εgap, ∀k.

Algorithm 2: Iterative SINR and precoding optimization.

to the minimum postprocessing user SINR with linear
MMSE receiver with equal power allocation for all streams
s. Unfortunately, the Rayleigh-Ritz Theorem [24] used in
[13, Lemma 1] does not apply when the precoding matrix
Tk is also included in the optimization framework. In what
follows, we ask whether precoding optimization can bring
an additional gain in network MIMO systems where the
SINR targets are optimized based on this bound (without
precoding).

From the signal model (1), when user kth uses a diagonal

power loading matrix Tk ∈ CNt×Nt with
∑Nt

s=1

∣∣∣T(s,s)
k

∣∣∣
2 = Nt ,

the postprocessing SINR of its sth stream becomes

γk,s =
Pk
∣∣∣T(s,s)

k

∣∣∣
2

ζk,s
− 1, (37)

where

ζk,s =

⎧
⎪⎨
⎪⎩

⎛
⎝d−ρk,kχk,kH†

k,k

⎛
⎝
∑

j /= k
Pjd

−ρ
k, j χk, jHk, jT jT

†
j H†

k, j

+Ntσ
2
nI

)−1

Hk,k +
1
Pk

I

⎞
⎠
−1
⎫
⎪⎬
⎪⎭

(s,s)

(38)

denotes the effective interference after MMSE processing.
In [13], a heuristic algorithm for distributing the transmit
power over different streams was presented. By inverting

(37) for fixed SINR targets, the algorithm finds a near opti-
mal (sum power minimizing) precoding matrix for uplink
transmission. Precoding optimization is shown to enhance
the feasibility space of a rough SINR targets selection with
respect to the equal power allocation case. By applying this
algorithm to our optimized SINR targets for problem (22),
the total sum power can be reduced further. However, some
modifications are necessary for the capacity maximization
problem. At the optimal point of problem (23), the SINR
targets will consume the entire power budget Ptot. In this
case, by better distributing the power budget Ptot, precoding
optimization allows to sustain higher SINR targets, thus
yielding a throughput gain.

To capitalize on these gains, we modify the algorithm in
[13] as in Algorithm 2. The SINR targets are initialized to
the optimal values Γ = diag(γ

tgt
k ) yielded by either problem

(22) or (23) without precoding, that is, with Tk = INt for all
k. For sum-rate maximization, Algorithm 2 iteratively tunes
the SINR targets, along with the precoding matrix and the
transmission powers, until the entire power budget Ptot is
spent. At every iteration, the effective interference and the
new precoding matrix are computed as in steps (a) and (b),
respectively; the control parameter ε(t) is used to update the
SINR targets as

γ(t)
k = γ

tgt
k · ε(t) ∀k, (39)

which become the new reference for the power control
update in step (c). Finally, ε(t) is tuned differently for the
two problems in step (3): for problem (22), ε(t) is kept



8 International Journal of Digital Multimedia Broadcasting

−10

−5

0

5

10

15

20

25

30
Po

w
er

(d
B

m
)

1 2 3 4 5 6

Fairness case (from table II)

User 1
User 2

User 3
Sum power

(a) The individual power levels and the sum power for the six cases
we study. The sum power is significantly lower (21.6 dBm) without
fairness than with fairness (≈ 28.45 dBm). In fact, in a real system
Cases 4–6 would hardly be feasible for User-3 due to the typical power
limitation of MS (≈ 24 dBm)

0

1

2

3

4

5

6

7

R
at

e
(b

ps
/H

z)

1 2 3 4 5 6

Fairness case (from table II)

User 1
User 2

User 3
Sum rate

(b) The individual rates in the six fairness cases that we study. The sum
rate is kept constant (2 bps/Hz/cell), but this sum rate is “distributed”
unequally (Case 1) or nearly equally (Case 6) in the different cases

Figure 1: Sum power minimization subject capacity (sum rate) and fairness constraint.
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Figure 2: Sum power minimization. The figure shows the sum power as the function of SINR1 and SINR2 without fairness constraints (left)
and for Case 2, when the ratios between the lowest and highest SINR must not be greater than 100. In this case the sum power is somewhat
higher (22.11 dBm) than without fairness constraint (21.61 dBm).

fixed to 1 so that the SINR targets remain unchanged, thus
reflecting the original algorithm in [13]; for problem (23),
ε(t) is tuned with a subgradient-like step until the power
budget constraint is met with equality (point ε(t) will not
change anymore).

7. Numerical Results

In this section we consider a three-cell system, each of which
is serving a single MS. In an OFDM cellular network, for
example, this setting corresponds to the situation in which
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Figure 3: Sum rate maximization subject to power budget and fairness constraints.

a single MS is served on an OFDM resource block and inter-
ference is caused by MS served in other cells (i.e., assuming
perfect intracell orthogonality). The main parameters of this
system are summarized in Table 1. MS-1 is located at the
cell edge, while MS-2 and MS-3 are close to their respective
serving base stations. Table 2 reports six fairness ratios (in
dB) between the best and the worst SINR targets, reflecting
increasing fairness constraints from unfair allocation (case 1)
to almost egalitarian SINR allocation (case 6).

7.1. Power Minimization under Rate and Fairness Constraints.
We have implemented the augmented Lagrangian penalty
function method in Mathematica [21]. Figures 1–6 are
obtained by generating the optimum SINR targets and
power allocations for 1000 independent channel realizations.
Figures 1 and 2 refer to the power minimization task when
the sum rate target is kept constant 6 bps (normalized per
Hz) in the 3 cells.

Figure 1(b) illustrates the individual stream rates (hence
implicitly the SINR targets) in each fairness case, Case 6
being the “most fair” SINR allocation at the expense of
a total power increase at around 28.5 dBm (Figure 1(a)).
Figure 1(b) confirms the fairness levels in the six cases in
terms of the individual (per MS) rates. Figure 2 shows the
sum power as a two-variable function of the SINR targets
γ

tgt
1 and γ

tgt
2 . The sum power attains its minimum (21.6 dBm

= 145 mW) when the SINR targets are set differently
corresponding to an unfair rate allocation (Case 1). In Case
2, there is a (loose) constraint on the ratio of SINR targets
which can only be fulfilled at a somewhat increased total
power level (22.11 dBm).

7.2. Rate Maximization under Power and Fairness Constraints.
Figures 3 and 4 show the results for the sum rate maximiza-
tion task with the power budget set to 21.6 dBm (145 mW).
In Figure 4 we see that the maximum sum rate is 6 bps; in
other words this point is the same as the minimum power for
the previous case. Similarly to the previous case, the unfair
Case 1 provides the highest performance and enforcing more
fair rate allocations reduces the achievable sum rate (Figures
3(a) and 3(b)). In Figure 3(a) we see that in Case 6, the cell
edge user must take a lion share of the overall power budget.
As Figure 3(b) clearly shows, the rate increase of the cell edge
user is still much less than the rate loss of the cell center user,
leading to an overall rate loss as compared with the unfair
Case 1.

7.3. Accuracy and Computation Complexity. Next, we eval-
uate the technique based on the series convexifications
described in Algorithm 1 and we compare it with the global
optimization algorithm MAPEL. We consider a 5-cell 1 × 2
MIMO network and we solve the sum-rate maximization
without fairness constraints for a set of 50 channel real-
izations with users placed at fixed positions in the plane
(the same in all experiments). The power budget is set to
21.6 dBm. Figure 5(a) compares the CDF of the computation
time for MAPEL and the iterative convexification procedure,
while Figure 5(b) exhibits the their output in terms of
achieved sum rate. For MAPEL, we select an accuracy δ
between 0.1 and 0.07 (we found experimentally that δ > 0.1
results in suboptimal points) and force the algorithm to stop
after 2 hours. As we can see, the iterative convexification
procedure converges to the optimal sum rate in only a couple
of seconds while the computation time of MAPEL increases
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execution time and achieved sum rate for a set of 50 channel realizations in a 5-cell 1×2 MIMO network with power budget set to 21.6 dBm.

exponentially with the required accuracy. Similar results were
observed for smaller networks, in which case the MAPEL
algorithm takes several minutes to solve, even for the 3-cell
scenario, while the iterative convexification procedure runs
in less than 100 milliseconds.

7.4. MIMO Gains. Finally, Figures 6 and 7 show the power
minimization and the capacity maximization results for the
1× 4 SIMO case. Here we observe the impact of the increased
receive diversity and array gains. For instance, in the power
minimization case, roughly half of the power of that of
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the 1 × 2 SIMO case is sufficient to maintain similar rate
performance. In the rate maximization case, it is possible to
increase the 1× 2 capacity with approximately 30% using the
same power budget.

7.5. Precoding Gains. Following the structure of Section 6,
we first combine our results on finding the optimal SINR
targets for sum-power minimization with the iterative chan-
nel inversion power control algorithm of [13]. To this end,
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Figure 10: The beneficial impact of transmission precoding in the sum power minimization problem (22) with optimal SINR target selection
with fairness.

we consider a three-cell 2 × 4 MIMO system with the input
parameters of Table 1 and a capacity target of 3 bps/Hz. For
a given channel realization, we use the method of Section 4.1
to find the optimal SINR targets and use them as input values
to the iterative channel inversion algorithm of [13] to find
the associated power levels and precoding matrices for each
mobile station.

The numerical results are shown in Figures 8–10.
Figure 8 is obtained by the sum power minimization method
of Section 4.1 without precoding. In Case 1, the required
sum power is around 19.45 dBm, but in this case the SINR
targets are drastically different (left-hand side). In Case 4, the
imposed SINR fairness constraint dictates that the weakest
SINR should be at least half of the strongest SINR, which
leads to a dramatic sum power increase (right-hand side). In
fact, this fairness case is not feasible in practical systems in
which mobile stations are power limited to around 24 dBm.

Figure 9(a) shows the beneficial impact of using trans-
mission precoding for the unconstrained case (Case 1). The
horizontal axis shows the iteration steps of the iterative
channel inversion algorithm, while the vertical axes show
the individual and sum power levels. Here, the sum power
is reduced more than 30% (on the linear scale) due to the
power reduction of MS-3 from around 17 dBm to around
15 dBm. This is an impressive precoding gain considering
the fact the power levels of Case 1 are low even without
precoding thanks to the optimal SINR target setting. This
demonstrates a twofold gain of our approach compared to
the alternatives in [13]: unlike a rough SINR target selection,
we have shown that optimizing the targets is an efficient tool

to enhance the throughput and control fairness in network
MIMO systems. Furthermore, since the approximation used
to derive the optimal SINR targets may lead to high power
consumption, optimizing the precoding matrix Tk based on
the given optimal SINR target allows to further reduce system
sum-power.

In Figure 9(b) we follow the evolution of the per-stream
SINR levels of MS-3 in Case 1 as determined by the iterative
channel inversion algorithm. Recall from Figure 8 that the
SINR target for MS-3 in Case 1 is 4.5686 (6.6 dB). With equal
power allocation, the stream with higher SINR is significantly
overallocated (upper figure). This waste of transmission
power is eliminated with optimal precoding setting (lower
figure) which allows for a lower transmission power of MS-
3. We also note that allocating less power for MS-3 reduces
the interference caused to neighbor cells, which is a second
contributing factor to an overall power decrease. Figure 10(a)
compares the power levels without and with precoding for
Case 4. Here, the power saving due to optimal precoding
is even more pronounced (from 30.8 dBm to 25.6 dBm
which is 66% reduction on the linear scale) than in Case
1. By equalizing the SINRs of the two streams as shown in
Figure 10(b), the transmission power of MS-3 is drastically
reduced, thus making Case 4 becomes feasible.

Finally, we consider the effect of precoding optimization
for the second class of problems where the SINR targets
are selected to maximize the system throughput for a fixed
power budget. Figure 11 illustrates the results for the same
three-cell 2 × 4 MIMO system with the input parameters
of Table I and a power budget Ptot = 21.6 dBm. From the
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Figure 11: Precoding gain in SINR target selection. The figure
shows that for the 2× 4 MIMO case with a power budget 21.6 dBM,
optimizing the precoder matrices allows to increase the original
(without precoding) optimal SINR targets for the same power
budget. This gain is more than 3 dB per user.

Table 1: Input parameters of the 3-cell OFDMA system.

Input parameters

Inter Site Distance [m] 500

Distance of the MS-i’s from 0.45, 0.15, and 0.1 [ISD]

their serving BS (i = 1, . . . , 3) respectively

Path loss exponent 3.07

Shadow fading Lognormal; st. dev: 10 dB

Fast fading model Rayleigh flat

AWGN noise variance σ2
n = 0.01

Antenna configurations 1× 2 and 1× 4 SIMO

Table 2: Fairness ratio between the best and worst SINR targets.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

— 20 dB 10 dB 3 dB 1.76 dB 0.41 dB

initialization phase of Algorithm 2, the initial SINR targets
derived with equal power allocation (Tk = INt for all k)
are Γ = [−47.4 0.36 6.41] dB. By optimizing the precoding
matrix, the same power budget allows to increase the SINR
targets to the values Γ = [−44.3 3.44 9.48] dB with a
throughput gain of roughly 42%. Interestingly, this approach
yields the same gain margin to all user’s SINR target (3.07 dB

in this example) due to the multiplicative term ε(t) used in
(39).

Comparing Figures 2, 6, and 8, we observe that the
optimal SINR targets are different for different antenna con-
figurations. Our conjecture is that higher antenna systems,
allowing for a higher overall capacity, may lead to greater
differences in the SINR setting (and consequently a higher
variation of the user bit rates) when no fairness constraint is
imposed. The intuitive explanation is that there is a greater
room for unequal SINR assignment in a system of higher
capacity. Hence, in higher-order MIMO systems, dealing
with fairness constraint may become increasingly important.

8. Conclusions

Tight coordination of network elements in cellular systems
enables not only the introduction of network MIMO trans-
mission and reception techniques but also the implementa-
tion of fast SINR target setting and tracking. We addressed
the problem of optimally assigning SINR targets and trans-
mission powers to mobile stations in tightly coordinated
multicell spatial multiplexing systems. We considered two
versions of the SINR target and power allocation problem:
one that maximizes the sum rate subject to a power budget
constraint, and another that minimizes the total power
needed to meet a sum-rate target. Both formulations are
constrained non-convex problems. We proposed a semi-
analytical solution via the augmented Lagrangian penalty
function method and developed a fast numerical technique
for the joint optimization of SINR targets and transmit
powers. Numerical results demonstrated significant gains of
the joint SINR target and power optimization depending on
the degree of fairness imposed. In realistic network MIMO
scenarios, our method displayed strong performance on a
par with the globally optimal, but computationally very
expensive, solution. We also showed how the transmission
power needed to maintain a given capacity target can be
reduced even further by also optimizing the precoding.
A natural extension of this work is to design distributed
schemes (such as that in [14]) for spatial multiplexing
systems and to analyze their robustness against limited and
inaccurate channel knowledge.

Appendices

A. Derivations for the Linear MMSE

For the sake of simplicity we rewrite the system model (3) as

yk = Akxk + vk, (A.1)

where Ak = αk,kHk,kTk, the vector xk is zero mean with
covariance Rxk = I, and vk = zk + nk models the
intercell interference plus noise with mean and covariance,
respectively:

μvk = E[vk] = E[zk] + E[nk] = 0,

Rvk = E
[

vkv†k
]
= E

[
zkz†k

]
+ E

[
nkn†k

]
= Rzk + Rnk ,

(A.2)
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where the intercell interference covariance matrix Rzk is
defined as in (4). Hence, yk is zero-mean, and according to
[25, 26] the linear MMSE receiver is given as

Gk = RxkA†k
(

AkRxkA†k + Rvk

)−1 = αk,kT†kH†
k,k

·
⎛
⎝α2

k,kHkkTkT†kH†
k,k +

∑

j /= k
α2
k, jHk, jT jT

†
j H†

k, j + σ2
nI

⎞
⎠
−1

.

(A.3)

Proposition 1 follows immediately by extracting α2
k,k.

A.1. Derivation of the MSE in Proposition 2. By applying the
standard theory on linear MMSE computation to the model
in (A.1), see, for example, [20, Chapter 12], the MMSE error
covariance matrix for the kth base station is

Ek = E
[

(x̂k − xk)(x̂k − xk)†
]

= α2
k,kGkHk,kTkT†kH†

k,kG†
k − 2αk,kGkHk,kTk

+ GkRzkG†
k + GkRnkG†

k

= (αk,kGkHk,kTk − I
)(
αk,kT†kH†

k,kG†
k − I

)
+ GkRvkG†

k .

(A.4)

Finally, by replacing the expression of Gk in (A.3) into Ek and
using similar techniques as in [17] we obtain

Ek = I− αk,kT†kH†
k,k

·
(
α2
k,kHk,kTkT†kH†

k,k + Rvk

)−1
αk,kHk,kTk

=
(
I + T†kRHkTk

)−1
,

(A.5)

where RHk = α2
k,kH†

k,kR−1
vk Hk,k.

B. Elements of the Sum Power Vector

The parameters of (26) are as follows:

M11 = γ
tgt
1 n1

(
1 + (1− κ)F23F32γ

tgt
2

)
,

M12 = γ
tgt
1 γ

tgt
2 n2(F12 − (1− κ)F13F32),

M13 = −(1− κ)
(
F13 + F12F23γ

tgt
2

)
γ

tgt
1 n3,

M21 = γ
tgt
1 γ

tgt
2 n1(F21 − (1− κ)F23F31),

M22 = γ
tgt
2 n2

(
1 + (1− κ)F13F31γ

tgt
1

)
,

M23 = −(1− κ)
(
F23 + F13F21γ

tgt
1

)
γ

tgt
2 n3,

M31 = −γtgt
1 n1

(
(1− κ)

(
F31 + F21F32γ

tgt
2

))
,

M32 = −γtgt
2 n2

(
(1− κ)

(
F32 + F12F31γ

tgt
1

))
,

M33 = −(1− κ)
(

1− F12F21γ
tgt
1 γ

tgt
2

)
n3;

(B.1)

where κ = ecm−log(1+γ
tgt
1 )−log(1+γ

tgt
2 ), and

Dp = 1− F12F21γ
tgt
1 γ

tgt
2 + (1− κ)

·
(
F31γ

tgt
1

(
F13 + F12F23γ

tgt
2

)
+F32γ

tgt
2

(
F23 + F13F21γ

tgt
1

))
.

(B.2)

C. Proofs

For ease of notation, we rewrite problem (34) as follows

maximize
p,r

∑

k

rk

subject to rk ≤W
[
θ(t)
k log2

(
γ
k

(
ep̃
))

+ β(t)
k

]
∀k

∑

k

eP̃k ≤ Ptot,

(C.1)

where we applied the approximation (33) to the link rate
constraint and the change of variables Pk ← eP̃k . In what
follows, we use this formulation to prove our theoretical
achievements since it easily maps back to the original
nonconvex problem (30) and to the monotonic optimization
(31).

C.1. Proof of Proposition 4. Similarly to [15, Lemma 4], we
show that

r(t)
k = c̃k

(
p(t), θ(t)

k ,β(t)
k

)
≤ ck

(
p(t)

)
= c̃k

(
p(t), θ(t+1)

k ,β(t+1)
k

)
.

(C.2)

We prove the first relationship by contradiction. Assume
that at the optimal solution of P (t) the rate rk is strictly
less than the approximate capacity. Then, we could increase
rk (while keeping p fixed) until we achieve equality. This
would improve the objective function; thus the solution
was not optimal. The other two relations follow from
the approximation (33). The rest of the proof follows
analogously to [15, Lemma 4].

C.2. Proof of Theorem 5.1. Let {r�, p̃�, λ�,ω�} denote the
primal-dual optimal solution for the series of convex prob-
lems {P(t)}t . The associated KKT optimality conditions can
be written as

λ�k θ
�
k − ω�eP̃

�
k −

∑

n /= k
λ�n θ

�
n γn

(
ep̃�
)GnkeP̃

�
k

GnneP̃
�
n

= 0, (C.3)

1− λ�k = 0. (C.4)

By Proposition 5, the problem sequence {P(t)}t converges at
which point the rate constraint becomes tight, that is,

c̃k
(
ep̃(t)

, θ(t)
k ,β(t)

k

)
= ck

(
ep̃(t)

)
= c̃k

(
ep̃(t+1)

, θ(t+1)
k ,β(t+1)

k

)
∀k.

(C.5)
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Therefore, by replacing p� = ep̃(t)
and θ�k = γ

k
(p�)/(1 +

γ
k
(p�)) into (C.3), the KKT conditions become

λ�k
γ
k

(
p�
)

1 + γ
k

(
p�
) − ω�P�k −

∑

n /= k
λ�n

γ2
n

(
p�
)

1 + γ
n

(
p�
) GnkP

�
k

GnnP�n
= 0,

(C.6)

1− λ�k = 0. (C.7)

It is easy to recognize that (C.6)-(C.7) coincides with
the KKT optimality conditions of the original nonconvex
problem (30). Thus, the problem series {P(t)}t converges to a
point {r�, p�} that satisfies the KKT conditions of problem
(30).

C.3. Proof of Theorem 5.2. Let ν denote the Lagrange multi-
pliers for the rate constraint in the monotonic optimization
problem (31), and let {r̃�, p̃�, ν�,ω�} denote the primal-
dual optimal solution. The associated KKT conditions can
be written as

ν�k
c�k

γ�
k

1 + γ�
k

− ω�eP̃�k −
∑

n /= k

ν�n
c�n

γ�
n

1 + γ�
n

GnkeP̃
�
k

GnneP̃
�
n

= 0, (C.8)

er̃
�
k − ν�k = 0, (C.9)

where γ�
k

� γ
k
(ep̃�) and c�k � ck(ep̃�). Moreover, (C.9) can

be expressed equivalently as follows:

er̃
�
k − ν�k = 0 ⇐⇒ r�k − ν�k = 0 ⇐⇒ r�k

(
1− ν�k

r�k

)
= 0.

(C.10)

Let now {r̂�, p̂�, λ�,ω�} denote the optimal solution of
the problem series {P (t)}t, along with the approximation
vectors {θ�,β�}. By Theorem 5.1, this solution satisfies the
KKT optimality conditions (C.7), and by Proposition 5 all
constraints are active and the approximation becomes exact,
that is,

r̂�k = c̃k
(

p̂�, θ�,β�
)
= ck

(
p̂�
) ∀k. (C.11)

By constructing an auxiliary set of optimal dual variables as

ν�k = λ�k ck
(

p̂�
) = λ�k r̂

�
k ∀k, (C.12)

the proof follows immediately by replacing λ�k = ν�k /ck(p̂�)
and λ�k = ν�k /r̂

�
k in (C.6)-(C.7), respectively.
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