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Abstract

In the theory of lattice-ordered groups, there are interesting examples
of properties — such as projectability — that are defined in terms of the
overall structure of the lattice-ordered group, but are entirely determined by
the underlying lattice structure. In this paper, we explore the extent to
which projectability is a lattice-theoretic property for more general classes
of algebras of logic. For a class of integral residuated lattices that includes
Heyting algebras and semilinear residuated lattices, we prove that a member
of such is projectable iff the order dual of each subinterval [a, 1] is a Stone
lattice. We also show that an integral GMV algebra is projectable iff it can
be endowed with a positive Gödel implication. In particular, a ΨMV or an
MV algebra is projectable iff it can be endowed with a Gödel implication.
Moreover, those projectable involutive residuated lattices that admit a Gödel
implication are investigated as a variety in the expanded signature. We
establish that this variety is generated by its totally ordered members and is
a discriminator variety.

Keywords: Residuated lattice, lattice-ordered group, projectable
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1. Introduction

Two issues arise quite naturally in the study of lattice-ordered algebras,
in particular of algebras of logic:

1. To what extent are the properties of such algebras determined by the
structure of the underlying lattices?

2. Can one achieve valuable insights into the behavior of a given class of
lattice-ordered algebras by expanding its signature to include a term
realizing an operation that is everywhere definable in the class? How
can this strategy simplify its investigation with the tools of universal
algebra?

Although these questions are in some measure independent, they are not
as unrelated as they may appear. Hereafter, we will address them jointly,
meaning to present a case-study as an example of a much more general
situation that invites further inquiry.

1) As regards the first question, one can, for example, single out properties
of a lattice-ordered algebra that are preserved under isomorphisms of its
lattice reduct, or identify interesting cases where membership in some class
can be described by first order lattice-theoretical conditions. This line of
investigation has been pursued in the theories of MV algebras [12, Chapter
6] or of lattice-ordered groups (henceforth, `-groups); results exemplifying
this approach in the latter environment are the theorems by Conrad and
Darnel to the effect that free Abelian `-groups have a unique multiplication,
or that an `-group that is isomorphic as a lattice to a hyper-archimedean
`-group is semi-linear (representable) [19, Theorem 2.9].

A class of `-groups that is known to be characterized purely in terms of
its order structure is the class of projectable `-groups — namely, `-groups in
which every principal polar is a cardinal summand (see e.g. [39]). This is a
radical class of `-groups that includes conditionally σ-complete `-groups [3,
p. 230] and vector lattices with the principal projection property. Consider-
ing: a) the significance of such examples in functional analysis and in other
parts of mathematics (think of the Riesz decomposition theorem for order-
complete vector lattices [31]); b) the historical relevance attached to a prob-
lem suggested by Birkhoff [4, Problem 117], [18], who challenged his readers
to characterize projectable `-groups; c) the fact that every representable `-
group can be embedded into a member of this class [11], projectable `-groups
are definitely worth studying. One of the present authors has established that
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an `-group is projectable iff every interval [a, b] is a Stone lattice; as a conse-
quence, projectability is preserved under lattice isomorphisms ([39]; [36]; [37];
[38]). Also, the negative cone of an `-group is projectable iff its lattice reduct
can be endowed with a positive Gödel implication. This interesting property
immediately reverberates in an even more attractive form upon MV algebras,
the relative pseudo-complement being in fact — in the bounded case — a
Gödel implication.

2) It is not uncommon to find examples of order-theoretically relevant
classes of algebras that fail to be varieties in their original signature, but
they become so once their signature is expanded by a term realizing some
definable operation. When this happens, these classes evidently become
more tractable from the perspective of universal algebra and more easily
investigated. A case in point is represented by generalized Boolean algebras
(GBAs), which — unlike Boolean algebras proper — may fail to have a bot-
tom element. GBAs, albeit not a variety in the language (∧,∨, 1), become
equationally definable if a binary implication operation is added to their sig-
nature; more precisely, they can be viewed as a variety of residuated lattices
[28]. Another instance is provided by the equivalent quasivariety semantics of
product  Lukasiewicz logic, obtained from infinite-valued  Lukasiewicz logic by
adding a set of axioms for the product T-norm [32]; this class is not a variety
and, in particular, fails to coincide with the variety of product MV algebras,
generated by the standard MV algebra over the [0, 1] real interval endowed
with the natural product [27]. However, it becomes a variety if expanded
with a globalization1 operator δ (and suitable additional equations) whose
values on subdirectly irreducible algebras A are given by δ (a) = 0 if a < 1
and δ (a) = 1 otherwise, for all a ∈ A [33]. For projectable MV algebras, we
have an analogous situation. Once their signature is expanded with a Gödel
implication as suggested by the above-mentioned result, one obtains not only
a variety, but a discriminator one at that. This observation has in fact been
made by Cattaneo et al., see [8] and [9], even if their motivation for studying
these hybrid structures, which they call Heyting-Wajsberg algebras, was of a
different kind.

Against the backdrop of this preliminary discussion, the aim of this paper
is twofold:

1The globalization operator is sometimes also called Baaz Delta, after some pioneering
work done on the topic by Matthias Baaz [1].
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• We explore whether the lattice-theoretical characterization of projectable
`-groups and their negative cones in [39] carries over to arbitrary inte-
gral, distributive residuated lattices. We prove that:

Theorem A (see Theorem 20) An integral, distributive residuated lat-
tice satisfying

x ∨ y ≈ 1 =⇒ xy ≈ x ∧ y.

is projectable iff the order dual of each interval [a, 1] is a Stone lattice.

In general, having a positive Gödel implication is a stronger condition
than being projectable, although it is equivalent in some especially
well-behaved cases:

Theorem B (see Corollary 21) An integral GMV algebra is projectable
iff it can be endowed with a positive Gödel implication.

Theorem C (see Corollary 21) A ΨMV (in particular, MV) algebra is
projectable iff it can be endowed with a Gödel implication.

• We investigate these particular projectable residuated lattices in the
involutive case and in the expanded signature containing a Gödel impli-
cation, although we do not require, contrary to the suggestion by Cat-
taneo and his colleagues, that the latter be necessarily an MV algebra
reduct. The additional involutivity assumption is rendered necessary
by the need to effectively cope with the problem of filter generation
without further expanding our language. For these algebras, hereby
called Gödel residuated lattices, we prove:

Theorem D (see Theorem 32) The variety of Gödel residuated lattices
is generated by its totally ordered members.

Theorem E (see Theorem 40) The variety of Gödel residuated lattices
is a discriminator variety.

It is important to be mentioned at this point that, although it is not
assumed that the residuated lattice reducts of Gödel residuated lattices
are semi-linear, these algebras are in fact semi-linear as a consequence of
Theorem D. In other words, a non-semi-linear residuated lattice cannot
be endowed with a Gödel implication or a positive Gödel implication.

Our work presents connections with other approaches taken in the litera-
ture. Besides the already mentioned product MV algebras, it is known that
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many other varieties of logic — including MV algebras and, more generally,
BL algebras — can be made into discriminator varieties if enriched with a
globalization operator as defined above, and additional equations involving
this operator. The same goal can be attained if one replaces δ by a Gödel
negation, which analogously maps any element in a subdirectly irreducible
algebra to the Boolean subalgebra with universe {0, 1}. Indeed, it is im-
plicit in [33] and explicitly proved in [9] that MV algebras with globalization
are term equivalent to Heyting-Wajsberg algebras. Subsequently, Chajda
and Vychodil [10] showed that divisibility of the residuated lattice plays no
role in getting a discriminator variety, since the same property obtains for
every bounded commutative integral residuated lattice with globalization.
Another related research stream is a series of papers by Cignoli and Torrens
[14, 15, 16] who study integral residuated lattices with Boolean retracts2,
and by Cignoli and Esteva, who investigate integral residuated lattices with
a Stonean negation and an additional involutive negation [13].

2. Preliminaries

The present section reviews some basic notions on pseudo-complemented
lattices, Gödel algebras and (pointed) residuated lattices only to such an
extent as is necessary to make this paper reasonably self-contained. For ad-
ditional information on Gödel algebras and Gödel logic the reader is referred
to [26] or [21], while [28], [6] or [22] can be profitably consulted as regards
residuated lattices.

2.1. Pseudo-complemented lattices

A bounded lattice L = (L,∧,∨, 1, 0) is said to be pseudo-complemented if
for all a ∈ L, max{x : a ∧ x = 0} exists. This element is denoted by ¬a and
referred to as the pseudo-complement of a. Pseudo-complemented lattices
need not be distributive, but we will henceforth assume that distributivity
holds for the lattices under consideration. The map ¬ : L → L is a self-
adjoint order-reversing map, while the map sending a to its double pseudo-
complement ¬¬a is a meet-preserving closure operator on L. By a classic

2The homomorphisms that determine these retracts have, in fact, some properties in
common with globalization operations. Over time, these authors proceeded at an increas-
ing level of generality, carrying out their investigation first in the context of BL algebras,
then of MTL algebras, and finally of arbitrary integral, bounded and commutative resid-
uated lattices.
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result due to Glivenko, the image of this closure operator is a Boolean algebra
BL with least element 0 and largest element 1. The complement of a in BL

is precisely ¬a, whereas, for any pair of elements a, b of BL – also referred to
as closed elements of L,

a ∨BL b = ¬
(
¬a ∧L ¬b

)
.

On the other hand, any existing meets in BL coincide with those in L.
A pseudo-complemented lattice L is called a Stone lattice if for all a ∈ L,

¬a ∨ ¬¬a = 1. It can be easily seen that L is a Stone lattice if and only if
BL is a sublattice of L. Thus, in this case BL coincides with the Boolean
algebra of complemented elements of L.

2.2. Gödel algebras

A relatively pseudo-complemented lattice is an algebra A = (A,∧,∨,→, 1)
of signature (2, 2, 2, 0) such that (i) (A,∧,∨, 1) is a distributive lattice with
top element 1; and (ii) for all a, b, c ∈ A, a ∧ b ≤ c iff b ≤ a → c. Thus,
given a, b ∈ A, a → b is the relative pseudo-complement of a with respect
to b, namely, the greatest element x ∈ A such that a ∧ x ≤ b. A Heyting
algebra is an algebra A = (A,∧,∨,→, 1, 0) of signature (2, 2, 2, 0, 0) such
that (A,∧,∨,→, 1) is a relatively pseudo-complemented lattice and 0 is a
bottom element with respect to the lattice ordering of A. Heyting algebras
form a variety, because the aforementioned biconditional can be replaced by
the equations

x→ x ≈ 1;
x ∧ (x→ y) ≈ x ∧ y;
x ∧ (y → x) ≈ x;
x→ (y ∧ z) ≈ (x→ y) ∧ (x→ z) .

Observe that the (∧,∨, 1, 0) reduct of a Heyting algebra is, in particular, a
pseudo-complemented distributive lattice, with ¬a = a→ 0.
A (positive) Gödel algebra is a Heyting algebra (relatively pseudo-complemented
lattice) satisfying the equation (x→ y) ∨ (y → x) ≈ 1. It is important to
recall that the lattice reducts of positive Gödel algebras coincide with relative
Stone lattices, i.e. lattices with a top element such that every interval [b, 1]
is a Stone lattice. The next Lemma provides some arithmetical properties of
Gödel algebras that will prove useful in the following. Observe that item (i)
is nothing but the second equation in the previous display.

Lemma 1. Any Gödel algebra satisfies the following equations:
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(i) x ∧ (x→ y) ≈ x ∧ y;

(ii) ¬x ∨ (¬x→ y) ≈ 1;

(iii) ¬x ∨ ¬¬x ≈ 1 and ¬x ∧ ¬¬x ≈ 0.

Gödel algebras play a prominent role in algebraic logic because they are
the equivalent variety semantics of Gödel logic (also known as Dummett’s
logic, or Dummett’s LC), which is both an intermediate logic (i.e. an ex-
tension of intuitionistic logic) and a fuzzy logic. As an intermediate logic,
it stands out for its being sound and complete with respect to linearly or-
dered Kripke models, and as such it received considerable attention. LC has
been widely investigated also within the community of mathematical fuzzy
logic — it was observed early on that the variety of Gödel algebras is gen-
erated by the algebra ([0, 1] ,∧,∨,→, 1, 0), where ∧ and ∨ are the minimum
T-norm and the maximum T-conorm respectively, while →, the residual3 of
∧, behaves as follows for all a, b ∈ [0, 1]:

a→ b =

{
1 if a ≤ b
b otherwise.

Remark 2. Observe that every bounded chain admits a unique Gödel im-
plication, given by the above case-splitting definition. In particular, in every
linearly ordered Gödel algebra a→ b is 1 if a ≤ b, and is b if a > b.

2.3. Residuated lattices

A binary operation · on a partially ordered set (A,≤) is said to be resid-
uated provided there exist binary operations \ and / on A such that for all
a, b, c ∈ A,

(Res) a · b ≤ c iff a ≤ c/b iff b ≤ a\c.

We refer to the operations \ and / as the left residual and right residual of ·,
respectively. When no danger of confusion is impending, we write xy for x ·y,
x2 for xx and adopt the convention that, in the absence of parentheses, · is
performed first, followed by \ and /, and finally by ∧ and ∨. The residuals
may be viewed as generalized division operations, with x/y being read as “x
over y” and y\x as “y under x”. In either case, x is considered the numerator
and y is the denominator. They can also be viewed as generalized implication

3For a definition of residual, see below, § 2.3.
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operators, with x/y being read as “x if y” and y\x as “if y then x”. In either
case, x is considered the consequent and y is the antecedent. We tend to
favor \ in calculations, but any statement about residuated structures has a
“mirror image” obtained by reading terms backwards (i.e., replacing xy by
yx and interchanging x/y with y\x).

We are primarily interested in the situation where · is a monoid opera-
tion with unit element 1 and the partial order ≤ is a lattice order. In this
case, we add the monoid unit and the lattice operations to the signature
and refer to the resulting structure A = (A,∧,∨, ·, \, /, 1) as a residuated
lattice. A pointed residuated lattice (also called FL-algebra) is an algebra
A = (A,∧,∨, ·, \, /, 1, 0) such that the reduct (A,∧,∨, ·, \, /, 1) is a resid-
uated lattice; in other words, we impose no additional restrictions on the
second constant 0. The class of residuated lattices will be denoted by RL
and that of pointed residuated lattices by PRL. We adopt the convention
that when a class is denoted by a string of calligraphic letters, then the mem-
bers of that class will be referred to by the corresponding string of Roman
letters. Thus an RL is a residuated lattice, and a PRL is a pointed residuated
lattice.

Proposition 3. RL and PRL are finitely based varieties in their respec-
tive signatures, for the residuation conditions (Res) can be replaced by the
following equations (and their mirror images):

(i) y ≤ x\ (xy ∨ z)
(ii) x (y ∨ z) ≈ xy ∨ xz

(iii) y (y\x) ≤ x

Given an RL A = (A,∧,∨, ·, \, /, 1) or a PRL A = (A,∧,∨, ·, \, /, 1, 0),
an element a ∈ A is said to be integral if 1/a = 1 = a\1, and A itself is
said to be integral if every member of A is integral. A pointed integral RL is
bounded as a lattice, with 1 as a top and 0 as a bottom element, exactly when
it satisfies the equation 0\x ≈ 1. Given a PRL A = (A,∧,∨, ·, \, /, 1, 0), an
element a ∈ A is said to be dualizing if 0/ (a\0) = a = (0/a) \0, and A
itself is said to be involutive if every member of A is dualizing. Moreover,
given a ∈ A, we define the polynomials ρa (x) = ax/a ∧ 1(right conjugation
by a) and λa (x) = a\xa ∧ 1 (left conjugation by a). We use the term semi-
linear for a variety that is generated by its linearly ordered members. This
is equivalent, see [6] or [28], to the variety satisfying the equation

λz (x/ (x ∨ y)) ∨ ρw (y/ (x ∨ y)) ≈ 1.
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Several varieties of crucial importance in algebra and logic are term equiv-
alent to varieties of (pointed) residuated lattices. Lattice-ordered groups, for
one, can be identified as those RLs that satisfy the equation x (x\1) ≈ 1.
Modulo term equivalence, pseudo-MV algebras (abbreviated, ΨMV alge-
bras), are axiomatized with respect to bounded integral PRLs by the equa-
tions x/ (y\x) ≈ x ∨ y ≈ (x/y)\x, whence MV algebras are obtained by
adding the commutativity equation xy ≈ yx. If one rereads carefully the defi-
nition of Heyting algebra given in § 2.2, it is not at all surprising that Heyting
algebras make instances of PRLs; more precisely, they are those bounded in-
tegral PRLs satisfying the identity xy ≈ x ∧ y, whence Gödel algebras can
be identified as bounded integral PRLs for which product equals meet and
the semi-linearity equation (whose form, in this commutative setting, can be
duly simplified to the more familiar prelinearity law x\y ∨ y\x ≈ 1), is satis-
fied. If one adds on top the involutivity equation, one obtains an equational
basis for Boolean algebras in the signature of PRLs. Both (the 0-free reducts
of) MV algebras and negative cones of `-groups are examples of integral RLs
satisfying the equations x/ (y\x) ≈ x ∨ y ≈ (x/y)\x. Such integral RLs are
called integral GMV algebras.

Throughout the rest of this paper, in the interests of brevity, by an RL
we will mean an integral and distributive residuated lattice, and by a PRL
we will mean an integral, distributive and bounded pointed residuated lattice.
Every exception to this policy, for example in § 4.3, will be explicitly noted.
We will not recap the arithmetical properties of (P)RLs; see [28] or [22] for
extensive lists.

2.3.1. Filters in residuated lattices

Let A be a (P)RL. A multiplicative filter F of A is a filter of its lattice
reduct that is closed under multiplication. We say that F is normal provided
that for all b ∈ F and a ∈ A, ρa (b) and λa (b) are in F . If X ⊆ A, we denote,
respectively, by L[X], M [X], and N [X] the lattice filter, multiplicative filter,
and normal multiplicative filter in A generated by X; braces will be dropped
if X = {a} is a singleton. F(A), MF(A), NF(A) will respectively refer to the
algebraic closure families of lattice filters, multiplicative filters and normal
multiplicative filters (hereafter shortened to normal filters) of A. With a
mild abuse of notation, the same labels will sometimes be employed for the
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universes of such lattices. We set:

F ∨L G = L(F ∪G);

F ∨M G = M(F ∪G); and

F ∨N G = N(F ∪G).

If F is a normal filter of A, then θF = {(a, b) ∈ A2 : a\b ∧ b\a ∈ F} is a
congruence on A. Conversely, given a congruence θ on A, the equivalence
class Fθ = 1/θ of 1 is a normal filter. Moreover, we have the following result
from [6]:

Lemma 4. The lattice NF(A) of normal filters of A is isomorphic to its
congruence lattice Con(A). The isomorphism is implemented by the mutually
inverse maps F 7−→ θF and θ 7−→ Fθ.

Upon writing X̂ for the submonoid of the corresponding reduct of A
generated by X ⊆ A, we also recall that:

Lemma 5. M [X] =
{
a : y ≤ a, for some y ∈ X̂

}
.

An iterated conjugation map is a composition γ = γ1 ◦ ... ◦ γn, where each
γi is a right conjugation or a left conjugation by an element ai ∈ A. We
denote by Γ the set of all iterated conjugation maps on A. If X ⊆ A, we
write Γ[X] for the set {γ (a) : a ∈ X, γ ∈ Γ}, and, as above, we denote by

Γ̂[X] the submonoid of A generated by Γ[X]. With this notation at hand,
we recall the following result from [6]:

Lemma 6. N [X] =
{
a : b ≤ a, for some b ∈ Γ̂[X]

}
.

Lemma 7. F(A), MF(A), and NF(A) are algebraic distributive lattices, and
hence relatively pseudo-complemented.

Proof. All three are algebraic closure families, and hence algebraic lattices
[4, Thm. I.5.5]. Our standing hypothesis is that A is an integral distributive
RL. Hence, by a standard lattice-theoretic result, the filter lattice F(A) is
distributive [2, Thm. II.9.3]. We note for future reference the compact –
that is, finitely generated elements of F(A) – are the principal filters L[a] =
↑a = {x : x ∈ A, a ≤ x}. With regard to NF(A), note next that Con(A)
is a distributive lattice, since A has an underlying lattice reduct [2, Thm.
II.9.15]. Hence, by Lemma 4, so is NF(A).The proof of the distributivity of
MF(A) is slightly more complicated and proceeds as follows:
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(i) The compact multiplicative filters of MF(A) are of the form M [a], a ∈
A. Indeed, it is easy to check that if X is a finite subset of A, then
M [X] = M [

∧
X].

(ii) If a, b ∈ A, then (a ∨ b)mn ≤ am ∨ bn.

(iii) If a, b ∈ A, thenM [a]∩M [b] = M [a∨b]. Indeed, the inclusionM [a∨b] ⊆
M [a]∩M [b] is clear. To prove the reverse inclusion, let x ∈M [a]∩M [b].
In view of Lemma 5, there exist m,n ∈ N such that am ≤ x and bn ≤ x.
It follows that (a ∨ b)mn ≤ am ∨ bn ≤ x. Thus, x ∈M [a ∨ b].

(iv) Items (i) and (iii) above imply that the join semi-lattice K(MF(A))
of compact multiplicative filters consists of the principal multiplicative
filters. Moreover, it is a sublattice of MF(A).

(v) Taking into account the distributivity of A, (i) and (iii) above imply the
distributivity of K(MF(A)): Given a, b, c ∈ A,M [a]∨ (M [b]∩M [c]) =
M [a]∨M [b∨c] = M [a∧(b∨c)] = M [(a∧b)∨(a∧c)] = M [a∧b]∩M [a∧c] =
(M [a] ∨M [b]) ∩ (M [a] ∨M [c]).

(vi) Let L be an algebraic distributive lattice whose compact elements form
a sublattice K(L) of L. L is a frame, that is, the following distributive
law holds for all S ∪ {a} ⊆ L:

a ∧
∨
S =

∨
{a ∧ s : s ∈ S} .

Therefore, L is relatively pseudo-complemented, the relative pseudo-
complement of a with respect to b being given by

a→ b =
∨
{x ∈ L : a ∧ x ≤ b} .

This applies, in particular, to the lattices under consideration.

In view of the preceding lemma, F(A), MF(A), and NF(A) are pseudo-
complemented lattices. The pseudo-complements in the first two lattices can
be described in terms of polars: Given X ⊆ A, the polar X⊥ of X is the set4

{y ∈ A : x ∨ y = 1 for every x ∈ X} .

Whenever X = {a} is a singleton, we will shorten {a}⊥ to a⊥, consistently
with the notation employed at the beginning of this section, and call the latter
set a principal polar. We observe that:

4This is sometimes called the co-annihilator of X: see e.g., [34] or [35].
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Lemma 8. For all X ⊆ A, X⊥ ∈ MF(A).

Proof. Since A is distributive, X⊥ ∈ F (A). If a, b ∈ X⊥ and x ∈ X, then
1 = (a ∨ x) (b ∨ x) = ab ∨ ax ∨ xb ∨ x2 ≤ ab ∨ x. Therefore, X⊥ is closed
under multiplication.

This yields the following result:

Corollary 9. For all X ⊆ A, X⊥ is the pseudo-complement of L[X] in
F(A), and the pseudo-complement of M [X] in MF(A).

On the other hand, given an arbitrary X ⊆ A, X⊥ need not be a normal
filter of A; if it is — in case, for example, A is semi-linear (see below)
— then it is the pseudo-complement of M(X) in NF(A). Otherwise, the
pseudo-complement of M(X) in NF(A) is N [X⊥].

Lemma 10. (L[a])⊥ = (M [a])⊥ = a⊥.

Proof. Use Lemmas 5 and 6 above.

3. Projectable residuated lattices

As recalled in the introduction, an `-group A is projectable whenever for
all a ∈ A, A =a⊥�a⊥⊥,5 where in the present context a⊥ = {b ∈ A : |a| ∧ |b| = 1}
and |a| = a∨ a−1. Projectable `-groups can be characterized purely in terms
of their lattice structure, because, as proved in [36] and [39], they coincide
with `-groups in which all closed intervals form a Stone lattice, which is
equivalent to all these intervals admitting a Gödel implication. As this result
highlights, projectability is a property of `-groups that is entirely determined
by their order structure. To get further insight into this, recall indeed that,
given an `-group A: 1) principal polars are convex `-subgroups of A; 2) pro-
jectability is equivalent to the property that for all a ∈ A, A =a⊥ ∨ a⊥⊥ in
the lattice of convex `-subgroups of A; 3) the lattice of convex `-subgroups
of A is isomorphic to the lattice of convex submonoids of its negative cone
A−, and in particular a⊥∩ A− = {b ∈ A : a ∨ b = 1} for a ∈ A−; the crucial
observation here is that 4) for all a ∈ A−, A =a⊥ ∨ a⊥⊥, where the join
is taken in the lattice of filters of the negative cone of A; this makes clear

5Here a⊥�a⊥⊥ does not denote simply the direct sum of a⊥ and a⊥⊥, but their cardinal
product : the order in a⊥ � a⊥⊥ is the Cartesian product of the orders in the summands.
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that projectability is an order-theoretic property. (See [40] for a lengthier
discussion of these aspects.)

As already observed, negative cones of `-groups make instances of RLs,
with a\b = a−1b∧ 1 and b/a = ba−1 ∧ 1. If we view them in such a guise, the
notation a⊥ used in Section 2.3.1 is fully consistent with the different use of
the same symbol mentioned in the preceding paragraph. Moreover, negative
cones satisfy the quasi-equation

x ∨ y ≈ 1 =⇒ xy ≈ x ∧ y. (1)

It is therefore of interest to ascertain whether the above lattice-theoretic
characterization of projectable `-groups and their negative cones extends to
the class A of RLs satisfying that quasi-equation, which also includes all
Heyting algebras and semi-linear RLs. By confining ourselves to integral
residuated lattices we do not lose much generality, since congruences of any
residuated lattice are determined by their negative cones.

Definition 11. A is called projectable if it can be written as an internal
direct sum A =a⊥ � a⊥⊥, for all a ∈ A.

The next lemma shows that projectability for the members of the envis-
aged class is a lattice-theoretic property, in the sense that it can be “cap-
tured” by the filter lattice of the underlying lattice-structure.

Lemma 12. If A satisfies quasi-equation (1) and is projectable, then

A =a⊥ ∨L a⊥⊥ = a⊥ ∨M a⊥⊥,

for all a ∈ A.

Proof. Suppose A is projectable. Invoking the quasi-equation

x ∨ y ≈ 1 =⇒ xy ≈ x ∧ y,

for all b ∈ A there exist unique b1 ∈ a⊥ and b2 ∈ a⊥⊥ such that b = b1b2 =
b1 ∧ b2. In particular, A =a⊥ ∨L a⊥⊥ = a⊥ ∨M a⊥⊥.

Lemma 13. If A satisfies quasi-equation (1) and is projectable, then a⊥ ∈
NF (A).
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Proof. Observe first that, if b1 ∈ a⊥ and b2 ∈ a⊥⊥, then λb2 (b1) and
ρb2 (b1) ∈ a⊥. In fact, as b1∨ b2 = 1, b1b2 = b1∧ b2 = b2b1 and so b1 ≤ λb2 (b1),
whence the first part of our claim follows. Similarly, ρb2 (b1) ∈ a⊥. Now, let
b = b1b2, with b1 ∈ a⊥ and b2 ∈ a⊥⊥. We have:

λb (x) = b1b2\xb1b2
= b2\ (b1\xb1b2)
≥ b2\ (b1\xb1) b2
= λb2 (λb1 (x))

whence λb (x) ∈ a⊥ by our previous claim. Right conjugates are handled
analogously.

The next important result, which aptly generalizes a corresponding result
for `-groups, is an immediate consequence of the previous lemma:

Theorem 14. If A satisfies quasi-equation (1), prelinearity, and is pro-
jectable, then it is semi-linear.

Proof. By Lemma 13, under the projectability assumption, principal polars
are closed under conjugates. This means that A satisfies the quasi-equation

x ∨ y ≈ 1 =⇒ λw (x) ∨ ρz (y) ≈ 1.

By results in [6], every prelinear RL satisfying the preceding quasi-equation
is semi-linear.

Example 15. We take note of the fact that the prelinearity assumption
is essential in this result. The following subdirectly irreducible, non-totally
ordered Heyting algebra is a Stone lattice, whence, a fortiori, it is projectable.
Observe that b\c ∨ c\b = a < 1.
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We will now momentarily transfer the context of our discussion to a purely
lattice-theoretic framework. We already recalled that an algebraic distribu-
tive lattice L whose compact elements form a sublattice K(L) is relatively
pseudo-complemented, with

a→ b =
∨
{x ∈ L : a ∧ x ≤ b} .

As a matter of fact, L has a bottom element and so it can be expanded
to a Heyting algebra. The proof of the next lemma, which appears in [2,
Chapter IX, Section 2, Theorem 8], is briefly sketched here for the reader’s
convenience.

Lemma 16. If L is an algebraic distributive lattice, every interval [b, a] in
L, with b ≤ a, is pseudo-complemented and, for all c ∈ [b, a], the pseudo-
complement and the double pseudo-complement of c are respectively given
by:

¬c = (c→ b) ∧ a;

¬¬c = ((c→ b)→ b) ∧ a.

Proof. Given c in [b, a], observe that b ≤ ¬c ≤ a, whence c ∧ ¬c ≥ b. On
the other hand, c∧¬c = c∧ (c→ b)∧ a ≤ b∧ a = b. So c∧¬c = b. Let now
b ≤ d ≤ a and c ∧ d = b. In particular, then, c ∧ d ≤ b, which amounts to
d ≤ c→ b. It follows that d = d ∧ a ≤ (c→ b) ∧ a.
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Further,

¬¬c = ¬ ((c→ b) ∧ a)

= (((c→ b) ∧ a)→ b) ∧ a
= a ∧ ((c→ b)→ b) .

In particular, if a = 1, ↑b is itself an algebraic distributive lattice and
K(↑b) = {b ∨ c : c ∈ K(L)}.

Definition 17. L is called compactly Stonean if it satisfies ¬c∨¬¬c = 1, for
all c ∈ K(L). It is called hyper-archimedean if for all c ∈ K(L), c ∨ ¬c = 1
(i.e., if every compact element is complemented).

It is immediate that hyper-archimedean lattices, which arise naturally as
congruence lattices of hyper-archimedean RLs (see [17] for a proof in the
`-group case), are compactly Stonean. Actually, more is true:

Proposition 18. If L is a hyper-archimedean distributive algebraic lattice
and b ∈ L, then ↑b is compactly Stonean.

Proof. Let c ∈ K(L) and b ∈ L. We first show that c→ b = ¬c∨ b. Since L
is distributive, c∧ (¬c ∨ b) ≤ b. Conversely, let d ≤ c→ b, whence c∧ d ≤ b.
Then (c ∧ d) ∨ ¬c ≤ b ∨ ¬c, whence by the hyper-archimedean property

d ≤ d ∨ ¬c = (c ∨ ¬c) ∧ (d ∨ ¬c) ≤ b ∨ ¬c
(observe that we did not use the fact that c is compact, but only that it

is complemented). Therefore,

(c→ b)→ b = (¬c ∨ b)→ b

= ¬c→ b

= ¬¬c ∨ b
= c ∨ b

Summing up, (c→ b) ∨ ((c→ b)→ b) = ¬c ∨ b ∨ c ∨ b = 1 and therefore
↑b is compactly Stonean.

Moreover, there are examples of compactly Stonean lattices that are not
hyper-archimedean, e.g. Example 15. Observe that a compactly Stonean
lattice need not be a Stone lattice. In view of Lemma 16, ↑b is compactly
Stonean iff, for all c ∈ K(L), (c→ b) ∨ ((c→ b)→ b) = 1.
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Proposition 19. Let L be an algebraic distributive lattice whose compact
elements form a sublattice K (L) of L. The conditions below are equivalent:

(1) for all b ∈ L, ↑b is compactly Stonean;

(2) for all b ∈ L and for all c ∈ K(L), (c→ b) ∨ ((c→ b)→ b) = 1

and imply the mutually equivalent conditions

(3) for all c, b ∈ K(L), (c→ b) ∨ ((c→ b)→ b) = 1

(4) for all a, b ∈ K(L), with b ≤ a, [b, a]∩ K(L) is a Stone lattice.

Proof. We have already established the equivalence of (1) and (2), while
clearly (2) implies (3). All we need to prove, therefore, is the equivalence
of (3) and (4). In one direction, let a, b ∈ K(L), with b ≤ a. Notice that
[b, a]∩K(L) is the lattice of compact elements of [b, a]. For c ∈ [b, a]∩K(L),
(3) implies

((c→ b) ∧ a) ∨ (((c→ b)→ b) ∧ a) = a;

((c→ b) ∧ a) ∧ (((c→ b)→ b) ∧ a) = b.

We note that in an algebraic distributive lattice whose compact elements
form a sublattice, if the join and meet of two elements are compact, then
the elements themselves are compact (see, for example, [24], p. 71). So
[b, a] ∩K(L) is a Stone lattice by Lemma 16. Conversely, if (4) is satisfied,
let c, b ∈ K(L). Then, by assumption, for all a ∈ K(L), a ≥ b ∨ c, we have
that ((c→ b) ∧ a)∨(((c→ b)→ b) ∧ a) = a, i.e. a ≤ (c→ b)∨((c→ b)→ b).
This proves the desired conclusion.

We now put to good use the preceding results by applying them to the
lattice F(A) of lattice filters of A.

Theorem 20. Suppose that an RL A satisfies the quasi-equation (1):

x ∨ y ≈ 1 =⇒ xy ≈ x ∧ y,

Then A is projectable iff the order dual of each interval [a, 1], for a ∈ A, is
a Stone lattice.

Proof. By Lemma 12, if A is projectable then the lattice F(A) of the
lattice filters of A is compactly Stonean, since principal filters correspond
to compact elements of such a lattice. Therefore, by Proposition 19 each
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interval [{1} , ↑a] in the sublattice of principal lattice filters of A is a Stone
lattice. The desired conclusion now follows in the light of the order reversing
isomorphism between the lattice reduct of A and the sublattice of principal
filters in F(A).

In particular, if A is bounded or if it is an integral GMV algebra (we
remark that this class satisfies Quasi-equation 1 by [23, Thm. 3.12], and it
contains MV algebras and negative cones of `-groups alike), we get something
more:

Corollary 21. If A is an integral GMV algebra, then A is projectable iff its
lattice reduct can be expanded to a positive Gödel algebra; if A is a bounded
integral GMV algebra (that is, a ΨMV algebra), then A is projectable iff its
bounded lattice reduct can be expanded to a Gödel algebra.

Proof. Since every interval [a, 1] of A is an involutive lattice under the
mapping that sends x to x\a, the order dual of an interval [a, 1] is a Stone
lattice iff [a, 1] itself is a Stone lattice. This means that the lattice reduct
of A is a relative Stone lattice [2, Theorem 8.13], and this in turn implies
that it can be expanded to a positive Gödel algebra. The second claim is
straightforward from the first one.

Example 15 shows that the left-to-right direction of the equivalence in
the first claim of Corollary 21 may fail for RLs that are not integral GMV
algebras.

At this point, it is relevant to mention Mureşan’s work [34], [35], in which
she defines and studies the so called co-Stone residuated lattices. They are
defined as those bounded RLs (in the sense of this paper) in which each
principal polar is the principal lattice filter of a complemented element of
the underlying lattice reduct. These RLs are clearly projectable in our sense,
but the converse is not true in general, as the next example shows:

Example 22. Consider the integral residuated lattice A, whose lattice struc-
ture and multiplication are specified below.
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1

a b

c

0

· 0 c a b 1
0 0 0 0 0 0
c 0 0 0 c c
a 0 c a c a
b 0 0 0 b b
1 0 c a b 1

Note that A is projectable, but not co-Stone in Mureşan’s sense.

This example can also be used to demonstrate the importance of the
quasi-equation (1). When an RL A satisfies (1), the projectability of A
implies that the filter lattice of A is compactly Stonean. In the absence of
(1), this conclusion is not guaranteed. In the preceding example, note that
↑b ∨M ↑c = A, but ↑b ∨L ↑c = ↑a.

4. Gödel residuated lattices

Let us now take stock of the situation so far. Abstracting away from well-
trodden topics in the literature on individual classes of residuated lattices,
such as `-groups or MV algebras, we singled out two interesting properties
of (P)RLs, namely, that of being projectable and that of admitting a posi-
tive Gödel implication (or, in the bounded case, a Gödel implication). Both
properties are purely lattice-theoretical, and they are mutually equivalent
for integral GMV algebras. Projectable integral GMV algebras, or even pro-
jectable MV algebras, do not form a variety. However, Theorem 20 strongly
suggests adding the definable Gödel implication to the signature in order to
obtain an equational characterization thereof and to avail ourselves of the
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powerful universal algebraic methods that such a move renders viable. The
most natural way to do so is to consider the variety in the expanded sig-
nature that is axiomatized by, say, the MV algebra axioms plus the Gödel
algebra axioms. Obvious as it is, this strategy does not in principle guaran-
tee that the resulting variety is generated by its linearly ordered members,
because further axioms might be needed that govern the interplay between
the MV component and the Gödel component. We will prove that this is
not the case, and we will do so under the general hypothesis that, instead of
an MV algebra, we have an arbitrary involutive PRL6. In this exploratory
paper, the additional involutivity assumption is made since the problem of
describing congruence filters is, as we will presently see, considerably simpli-
fied. The present section provides the foundations of the structure theory of
this variety, as well as a proof that it is a discriminator variety.

4.1. Definition and basic properties

Definition 23. We use the term Gödel residuated lattice for an algebra
A = (A,∧,∨, ·, \, /,→, 1, 0) of signature (2, 2, 2, 2, 2, 2, 0, 0) such that:

• the reduct (A,∧,∨, ·, \, /, 1, 0) is an involutive PRL; and

• the reduct (A,∧,∨,→, 1, 0) is a Gödel algebra.

The variety of Gödel residuated lattices will be denoted by GRL.

Some pieces of notation will prove extremely convenient in what follows.
We introduce three negations by putting ¬x = x → 0, ∼x = x\0 and
−x = 0/x ; the symbol δ (x) will be used as shorthand for ¬∼x.

Next, we list a representative example of the class of algebras we have
just defined.

6Theorem 20 would also suggest considering a wider class, namely that of involutive
PRLs with an additional Stonean negation. Although most of the structure theory that
follows would carry over to this more general case, we did not investigate these algebras,
for two main reasons: 1) unlike Gödel residuated lattices, hereafter defined, these alge-
bras fail to be generalizations of Heyting-Wajsberg algebras; 2) the semi-linearity of their
PRL reducts has to be explicitly postulated, whereas it follows from the axioms of Gödel
residuated lattices. Involutive PRLs with an additional Stonean negation, on the other
hand, are very similar to the symmetric Stonean residuated lattices of [13]: both have an
involutive negation ∼ and a Stonean negation ¬, but for Cignoli and Esteva a\0 = ¬a,
while in the present case a\0 = ∼a.
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Example 24. The algebra S = ([0, 1] ,∧,∨, ·, \, /,→, 1, 0) over the real closed
unit interval, where:

• the operation · is the  Lukasiewicz T-norm and \ = / its residual;

• ([0, 1] ,∧,∨,→, 1, 0) is the standard Gödel algebra over [0, 1] (cf. § 2.2),

is a GRL (actually, a commutative one). This algebra generates the variety
of Heyting-Wajsberg algebras [8], mentioned in the Introduction.

Our first goal is describing how the PRL reduct and the Gödel algebra
reduct of a GRL interact with each other. The next two lemmas provide
some basic information concerning this mutual interplay.

Lemma 25. In every A ∈GRL, for all a, b, c ∈ A:

(i) a→ b ≤ a\b, b/a; (vi) δ (δ (a)) = δ (a);
(ii) δ (a) ≤ a; (vii) δ (a) ∨ ¬δ (a) = 1;
(iii) δ (a ∨ b) = δ (a) ∨ δ (b); (viii) δ (a) δ (a) = δ (a);
(iv) δ (a ∧ b) = δ (a) ∧ δ (b); (ix) if a ≤ b, then δ (a) ≤ δ (b);
(v) δ (¬a) = ¬a; (x) δ (ab) = δ (a) δ (b) = δ (a) ∧ δ (b).

Proof.

(i) We have that a · (a→ b) ≤ a∧ (a→ b) ≤ b, so by residuation a→ b ≤
a\b. a→ b ≤ b/a is established similarly.

(ii) By (i), ¬∼a ≤ −∼a = a.
(iii)-(iv) By De Morgan laws.
(v) By Lemma 1.(iii), ¬a∨¬¬a = 1 and ¬a∧¬¬a = 0, whence, applying

items (iii)-(iv), δ (¬a) ∨ δ (¬¬a) = 1 and δ (¬a) ∧ δ (¬¬a) = 0. Taking
into account item (ii), δ (¬a) ∨ ¬¬a = 1 and δ (¬a) ∧ ¬¬a = 0, whence
δ (¬a) = ¬¬¬a = ¬a.

(vi) By item (v), ¬∼¬∼a = ¬∼a.
(vii) By the preceding item, δ fixes every element of the Boolean algebra

whose universe is {¬a : a ∈ A}, whence our conclusion.
(viii) By item (vii), δ (a) ∨ δ (¬a) = 1. Multiplying both sides by δ (a),

δ (a) δ (a) ∨ δ (a) δ (¬a) = δ (a). However, δ (a) δ (¬a) ≤ δ (a) ∧ δ (¬a) = 0,
whence our conclusion follows.

(ix) If a ≤ b, then a ∧ b = a, whence δ (a ∧ b) = δ (a) ∧ δ (b) = δ (a).
(x) By items (iv) and (viii), δ (a) ∧ δ (b) = (δ (a) ∧ δ (b))2 ≤ δ (a) δ (b),

while the reverse inequality holds in every PRL. In view of this and of the
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preceding item, therefore, it will suffice to show that δ (a)∧ δ (b) ≤ δ (ab). In
fact, δ (a) ∧ δ (b) = δ (δ (a) ∧ δ (b)) = δ (δ (a) δ (b)) ≤ δ (ab).

Recall, see for example [22, p. 179], that a conucleus on an RL or PRL
A is an interior operator η such that for all a, b ∈ A, η (a) η (b) ≤ η (ab) and
η (1) η (a) = η (a) = η (a) η (1). In view of items (ii), (vi), (ix) and (x) in
Lemma 25, we observe that δ is a conucleus on the PRL reduct of any GRL.

Lemma 26. In every A ∈GRL, the following conditions and their mirror
images hold, for all a, b, c ∈ A:

(i) a\ (a→ b) = a\b; (v) δ(b/a) ≤ a→ b;
(ii) ¬a\b = ¬a→ b; (vi) δ (b/a) = δ (a→ b).
(iii) a\b = ∼(−b · a); (vii) δ (a) b = δ (a) ∧ b = bδ (a).
(iv) δ(b/a) = ¬(a · ∼b);

Proof.

(i) By Lemma 1.(i), a∧(a→ b) = a∧b. Dividing by a, a\ (a ∧ (a→ b)) =
a\ (a ∧ b). Thus,

a\ (a→ b) = a\a ∧ a\ (a→ b) = a\a ∧ a\b = a\b.

(ii) The inequality ¬a → b ≤ ¬a\b holds by Lemma 25.(i). Regarding the
converse,

¬a\b = ¬a\ (¬a→ b) item (i)
= 1 · (¬a\ (¬a→ b))
= (¬a ∨ (¬a→ b)) (¬a\ (¬a→ b)) Lemma 1.(ii)
≤ ¬a→ b

(iii) Taking into account that (0/b)\0 = b, we have: ∼ (−b · a) = (−b ·
a)\0 = ((0/b) · a)\0 = a\[(0/b)\0] = a\b.

(iv) By the mirror image of (iii), b/a = −(a · ∼b). So, ∼ (b/a) = ∼− (a ·
∼b) = a · ∼b. It follows that δ(b/a) = ¬ ∼ (b/a) = ¬(a · ∼b).

(v) Note first that a ≤∼ (−b · −(a · ∼b)). Indeed, by using (iii) and its
mirror image, we get: a ≤ (b/a)\b = ∼(−b · (b/a)) =∼ (−b · −(a · ∼b)).
Further, it is easy to see that ∼ (−b ·− (a · ∼b)) ≤∼ (−b ·¬ (a · ∼b)). Indeed,
by (i), ¬ (a · ∼b) ≤ − (a · ∼b), whence multiplying by −b, −b · ¬ (a · ∼b) ≤
−b·− (a · ∼b). By applying∼ to both sides, we obtain the required inequality.
Hence, by applying transitivity, (ii), (iii) and (iv) above, we have a ≤∼
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(−b · ¬(a · ∼b)) = ¬(a · ∼b)\b = ¬(a · ∼b)→ b = δ(b/a)→ b. In conclusion,
a ≤ δ(b/a)→ b, and δ(b/a) ≤ a→ b.

(vi) Condition (v) and the monotonicity and idempotency of δ imply
that δ(b/a) ≤ δ(a → b). The same properties of δ and (i) imply the reverse
inequality.

(vii) The only nontrivial claim is δ (a) ∧ b ≤ δ (a) b. We must therefore
show that for all c, δ (a) b ≤ c implies that δ (a)∧b ≤ c. However, if δ (a) b ≤ c,
then b ≤ δ (a) \c = δ (a)→ c by item (ii), whence δ (a) ∧ b ≤ c.

4.2. Structure theory

The main aim of this subsection is proving that GRL is, as expected,
generated by its linearly ordered members. In particular, it will follow from
this result that axioms HW7 and HW8 in [8, p. 348] are not needed to
prove the standard completeness of Heyting-Wajsberg algebras. To that
effect, we will show that the congruences of any A ∈GRL are in bijective
correspondence with a special subclass of the normal filters of its PRL reduct.

Definition 27. Let A ∈GRL. F ⊆ A is a congruence filter of A iff it is a
multiplicative filter of the PRL reduct of A closed under δ, that is, δ [F ] ⊆ F .

Lemma 28. Let A ∈GRL, and let F ⊆ A be a congruence filter of A. Then,
for all a, b ∈ A:

(i) a, a→ b ∈ F imply b ∈ F ;

(ii) δ (a) ∈ F iff a ∈ F ;

(iii) a→ b ∈ F iff a\b ∈ F ;

(iv) F is normal.

Proof.

(i) Suppose a, a → b ∈ F . Since a → b ≤ a\b, it follows that a\b ∈ F .
But then, a · (a\b) ≤ b yields b ∈ F .

(ii) One direction follows from the definition of congruence filter, the other
from Lemma 25.(ii) and the fact that F is a lattice filter.

(iii) By Lemma 26.(vi) and item (ii), a→ b ∈ F iff δ (a→ b) = δ (a\b) ∈
F iff a\b ∈ F .

(iv) It will suffice to show that, for every a ∈ A and for every b ∈ F ,
λa (b) = a\ba ∈ F . In fact, aδ (b) ≤ δ (b) a ≤ ba by Lemma 25.(ii) and
Lemma 26.(vii), whence δ (b) ≤ a\ba; since δ (b) ∈ F , this is enough for our
purposes.
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Lemma 29. Let A ∈GRL. The congruence filter 〈X〉 generated by X ⊆ A
is

{b : ∃ a1, . . . , an ∈ X s.t. δ (a1) . . . δ (an) ≤ b} .

Proof. To begin with, observe that, by virtue of Lemma 25.(x),

〈X〉 = {b : ∃ a1 . . . an ∈ X s.t. δ (a1) ∧ · · · ∧ δ (an) ≤ b} .

We will freely use this fact without further mention in the sequel. Clearly,
〈X〉 is a multiplicative order filter and, by Lemma 25.(iv)-(ix), it is closed
with respect to δ. Thus 〈X〉 is a congruence filter and it contains X by
Lemma 25.(ii). Now, suppose that F is a filter, X ⊆ F and b ∈ 〈X〉,
meaning δ (a1) ∧ · · · ∧ δ (an) ≤ b for some a1, ..., an ∈ X. Then, for all i ≤ n,
δ (ai) ∈ F and thus b ∈ F .

The next observation is crucial for our purposes. As it is easy to prove,
its proof is left to the reader.

Lemma 30. Let A ∈GRL. For a, b ∈ A, (i) 〈a〉 ∩ 〈b〉 = 〈a ∨ b〉; (ii) 〈a〉 ∨
〈b〉 = 〈a ∧ b〉.

We now proceed to establish the correspondence between congruence fil-
ters and congruences.

Theorem 31. There is a lattice isomorphism between the lattice Fil (A) of
congruence filters of any A ∈GRL and its lattice of congruences Con (A).

Proof. If F is a congruence filter of A, define θF = {(a, b) ∈ A2 : a\b ∧ b\a ∈ F}.
We show that the maps F 7−→ θF and θ 7−→ Fθ = 1/θ are mutually inverse
and induce such an isomorphism.

(i) θF is a congruence on A. In light of Lemmas 4 and 28, θF is a
congruence on its PRL reduct; what we must show is that it preserves →.
Suppose (a, b) ∈ θF , i.e. a\b ∧ b\a ∈ F , whence by definition of congruence
filter a\b, b\a ∈ F . By virtue of Lemma 28.(iii), a→ b, b→ a ∈ F . Observe
that

(a→ b)→ ((b→ a)→ ((b→ c)→ (a→ c))) = 1 ∈ F,

whence by Lemma 28.(i), (b→ c)→ (a→ c) ∈ F . Since (b→ c)→ (a→ c) ≤
(b→ c) \ (a→ c), also (b→ c) \ (a→ c) ∈ F . Similarly, (a→ c) \ (b→ c) ∈
F , whereby

(b→ c) \ (a→ c) ∧ (a→ c) \ (b→ c) ∈ F .
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(ii) Fθ is a filter of A. Clearly, it is a normal filter of the PRL reduct,
and it is easy to see that it is closed with respect to δ.

(iii) θ1/θ = θ. We have that

θ1/θ =
{

(a, b) ∈ A2 : (a\b ∧ b\a) θ1
}

.

If aθb, then a\b, b\aθ1, whence a\b ∧ b\aθ1. On the other hand, if
(a\b ∧ b\a) θ1, by absorption a\bθ1θb\a. Thus in A/θ, a/θ = b/θ, i.e. aθb.

(iv) FθF = F . Immediate.

Theorem 32. GRL is a semi-linear variety.

Proof. It will suffice to prove that every subdirectly irreducible member
of GRL is totally ordered. To this end, let A be a subdirectly irreducible
member of GRL, and let a, b ∈ A. We have that (a→ b) ∨ (b→ a) = 1,
whence 〈a→ b〉 ∩ 〈b→ a〉 = {1} by Lemma 30. Combining Theorem 31
with the assumption that A is subdirectly irreducible, we obtain that either
〈a→ b〉 = {1} or 〈b→ a〉 = {1}, that is, either a ≤ b or b ≤ a.

Corollary 33. If A is a subdirectly irreducible member of GRL, then δ [A] =
{0, 1}.

Proof. By Lemma 25.(vii), δ (a) ∨ ¬δ (a) = 1, whereby, by Theorem 32,
either δ (a) = 1 or ¬δ (a) = 1, and thus δ (a) = 0.

More generally, δ [A] is easily checked to be a Boolean algebra. Further-
more,

Lemma 34. Let A be a member of GRL. Then there is a bijective corre-
spondence between the congruence filters of A and the filters of the Boolean
algebra δ [A].

Proof. For a congruence filter F of A, let g (F ) = F ∩ δ [A]. It is clear that
g (F ) is a Boolean filter of δ [A]. Now, suppose that F 6= G are congruence
filters of A, whence without loss of generality there is a ∈ F such that a /∈ G.
By Lemma 28.(ii), δ (a) ∈ F and δ (a) /∈ G, whence g (F ) = F ∩ δ [A] 6=
G ∩ δ [A] = g (G).

It remains to be shown that every Boolean filter of δ [A] is of the form
F ∩ δ [A], for some congruence filter F of A. Thus, let H be a Boolean filter
of δ [A], and consider δ−1 [H] .
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(i) δ−1 [H] is upward closed. In fact, if δ (a) ∈ H and a ≤ b, by Lemma
25.(ix) δ (a) ≤ δ (b), whence δ (b) ∈ H.

(ii) δ−1 [H] is closed with respect to products. In fact, if δ (a) , δ (b) ∈ H,
then by Lemma 25.(x),

δ (a · b) = δ (a) · δ (b) = δ (a) ∧ δ (b) ∈ H.

(iii) δ−1 [H] is closed with respect to conjugates. In fact, ba ≤ ba, whence
b ≤ ba/a. Therefore, using Lemma 26.(vi),

δ(b) ≤ δ(ba/a) = δ(a→ ba) = δ(a\ba),

which means that λa (b) ∈ δ−1 [H] whenever b ∈ δ−1 [H] . Right conju-
gates are dealt with similarly.

(iv) δ−1 [H] is closed with respect to δ, because δ (a) = δ (δ (a)).
It follows that δ−1 [H] is actually a congruence filter, and clearly g (δ−1 [H]) =
H.

The variety HW of Heyting-Wajsberg algebras is clearly term equivalent
to a subvariety of GRL [8, p. 348], whose members are those GRLs having an
MV algebra for a PRL reduct. It was shown in [9] that HW is generated by
the standard algebra S over the [0, 1] interval from Example 24. However, the
proof originally given in that paper is strongly derivative in that it relies on
the term equivalence between Heyting-Wajsberg algebras and MV algebras
with globalization, known to be standard complete from Hájek’s book [26]. A
much more elegant proof of such a result was subsequently offered by Konig,
mimicking Chang’s original standard completeness proof for MV algebras
[29]. Putting to good use the results in this paper, however, we can further
simplify the extant proofs. In fact:

Theorem 35. HW is standard complete.

Proof. Let S be as in Example 24, and let A be a subdirectly irreducible
Heyting-Wajsberg algebra. By Theorem 32, we can assume that A is a chain.
Then the MV reduct AMV of A is in SPu(SMV ), where SMV stands for the
MV reduct of S [12, Section 9.5]. Since every chain (in particular, every
MV subchain of a chain in Pu(SMV )) admits a unique Gödel implication (see
Remark 2), A is in SPu(S), whence our claim follows.
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4.3. Congruence filters and open filters

Subtractive varieties were introduced by Gumm and Ursini [25] in an
attempt to isolate the common relevant properties of varieties with a “good”
theory of ideals. A variety V with (at least) a constant 1 in its signature is
1-subtractive (or simply subtractive when no ambiguity is possible) if there
is a binary term, denoted by → and written in infix notation, such that V
satisfies the equations x→ x ≈ 1 and 1→ x ≈ x. Gumm and Ursini observe
that a variety V with 1 is 1-subtractive just in case it is 1-permutable —
i.e. for any algebra A ∈V and for any congruences θ, ϕ of A, 1A/θ ◦ ϕ =
1A/ϕ ◦ θ. For these varieties one can establish a satisfactory theory of ideals
(more precisely, a manageable concept of ideal generation); in particular,
1-ideal determined varieties (that is, 1-subtractive and 1-regular varieties)
are especially well-behaved because in any of their members the lattice of
congruences is isomorphic to the lattice of such “abstract” ideals [5, 20].

As a matter of fact, however, several results along the same lines abound
in the literature that are not corollaries of the above-mentioned result and
do not fit into this framework. A case in point is the variety RL of (not
necessarily integral, bounded or distributive) residuated lattices. This variety
is 1-ideal determined and, in fact, it is well-known that in every RL the
lattice of congruences is isomorphic to the lattice of Gumm-Ursini ideals,
which in turn coincide with convex normal subalgebras of such. The lattice
of congruences of an RL, however, is also isomorphic to the lattice of its
deductive filters (in the sense of [22]), and this correspondence does not arise
as a special case of the general theorems we referred to earlier.

With an eye to widening the scope of these results, the following gener-
alization of subtractive varieties was introduced in [30]:

Definition 36. A variety V whose signature ν includes a nullary term 1 and
a unary term � is called quasi-subtractive with respect to 1 and � iff there
is a binary term  of signature ν such that V satisfies the equations

Q1 �x x ≈ 1

Q2 1 x ≈ �x
Q3 � (x y) ≈ x y

Q4 � (x y) (�x �y) ≈ 1

Subtractive varieties are, in particular, quasi-subtractive if we let our �
above be the identity. But it is possible for a variety to be subtractive and, at
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the same time, properly quasi-subtractive with a different choice of witness
terms: for example, RLs are quasi-subtractive with x  y = (x\y) ∧ 1 and
�x = x ∧ 1.

The role played by ideals in the theory of Gumm and Ursini is taken up
here by open filters, hereafter defined:

Definition 37. Let V be a variety whose signature is as above. A V-open
filter term in the variables −→x is an n+m-ary term p (−→x ,−→y ) of signature ν
such that

{�xi ≈ 1 : i ≤ n} �V �p (−→x ,−→y ) ≈ 1.

A V-open filter of A ∈ V is a subset F ⊆ A that is closed with respect to all

V-open filter terms p (whenever a1, ..., an ∈ F, b1, ..., bm ∈ A, p
(−→a ,−→b ) ∈ F )

and such that for every a ∈ A, a ∈ F iff �a ∈ F .

For example, RL-open filters of RLs coincide with deductive filters of
such. It can be proved more generally that, if V is quasi-subtractive and
(�x, 1)-regular (a stronger property than 1-regularity), then in any A ∈ V
there is a lattice isomorphism between the lattice of congruences on A and
the lattice of V-open filters on A.

We have that:

Lemma 38. Any GRL is quasi-subtractive with �x = δ(x), and x  y =
δ(x→ y).

Proof. Let a, b ∈ A. Q1) �a  a = δ(δ(a) → a) = δ(1) = 1. Q2)
1  a = δ(1 → a) = δ(a) = �a. Q3) �(a  b) = δ (δ(a→ b)) = δ(a →
b) = a  b. Q4) In view of Q3, this is a consequence of the fact that
δ(a→ b) ≤ δ(a)→ δ(b).

Theorem 39. In any GRL, the set of GRL-open filters coincides with the
set of congruence filters.

Proof. Let A be a GRL, F ⊆ A a congruence filter, a1, . . . , an ∈ F , and ~b ∈
A. By Theorem 31, a1θF1, . . . , anθF1. Therefore, δ (a1) θF1, . . . , δ (an) θF1.
Let p(~x, ~y) be an open filter term in ~x. Applying the definition of open filter

to A/θF , δ
(
p(a1, . . . , an,~b)

)
θF1. But δ

(
p(a1, . . . , an,~b)

)
≤ p(a1, . . . , an,~b),

whence p(a1, . . . , an,~b)θF1, and then p(a1, . . . , an,~b) ∈ F . So, every congru-
ence filter is a GRL-open filter. The converse follows from the fact that
every quasi-subtractive variety has normal open filters [30, Theorem 23] and
Theorem 31.
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4.4. GRL is a discriminator variety

A discriminator algebra [41] is an algebra A on which the ternary dis-
criminator operation

t (a, b, c) =

{
c if a = b
a, otherwise

is realized by a ternary term t(x, y, z) of the signature of A; a discrimi-
nator variety is a variety whose subdirectly irreducible members are dis-
criminator algebras. In their influential textbook on universal algebra [7,
p. 186], Burris and Sankappanavar call discriminator varieties “the most
successful generalization of Boolean algebras to date”. This remark of Bur-
ris and Sankappanavar can be justified in at least two ways. On the one
hand, many important classes of algebras arising in algebra and logic form
discriminator varieties, including the varieties of Boolean algebras, monadic
algebras, n-dimensional cylindric algebras, Post algebras, and n-valued MV
algebras. On the other hand, discriminator varieties turn out to be very easy
and tractable to work with in general. In particular, algebras in discriminator
varieties admit an extremely useful Boolean product representation, which
typically gives a deep insight into the algebraic and logical properties of the
class in question. Furthermore, they are congruence permutable with equa-
tionally definable principal congruences (hence, in particular, arithmetical)
and semisimple.

Recall from our introduction that a globalization operation on a PRL A
is an operation δ such that, for all a ∈ A, δ (a) = 0 if a < 1 and δ (a) = 1
otherwise. Chajda and Vychodil [10] showed that every commutative RL
with globalization is a discriminator algebra. A slight variant of their proof,
which essentially constitutes the final part of Theorem 40 below, guarantees
that the same also holds in the noncommutative case. The rest of the ar-
gument needed to establish that GRL is a discriminator variety amounts to
checking that our δ, as defined immediately after Definition 23, is actually a
globalization operation on any subdirectly irreducible GRL.

Theorem 40. GRL is a discriminator variety.

Proof. Our proof proceeds through a number of claims. Let A be a subdi-
rectly irreducible member of GRL. Theorem 32 will be used throughout this
proof without any special notice. We first claim that, for all a ∈ A, δ (a) = 0
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if a < 1, δ (a) = 1 otherwise. The latter half of our claim being obvious,
simply observe that if a < 1, then ∼a > 0 and thus ¬∼a = 0.

We next define

x↔δ y = δ (x→ y) ∧ δ (y → x)

and claim that, for all a, b ∈ A, a ↔δ b = 1 if a = b, a ↔δ b = 0 otherwise.
Again, one half of our claim (this time the former half) is trivial. Suppose
then that a 6= b, whence w.l.g. a � b and thus a > b. By definition of Gödel
implication, then, a→ b = b; on the other hand, necessarily b < 1. Summing
up, δ (a→ b) = δ (b) = 0, whence a↔δ b = 0.

Having established these claims, it is easy to check that

t (x, y, z) = (x↔δ y) \z ∧ ((x↔δ y) ∨ x)

realizes the ternary discriminator on A.
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[1] Baaz M., “Infinite-valued Gödel logics with 0-1 projections and rela-
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Springer, Berlin, 1977.

[4] Birkhoff G., Lattice Theory, 3rd edition, Amer. Math. Soc. Coll. Publ.
25, 1968.

[5] Blok W.J., Raftery J.G., “Ideals in quasivarieties of algebras”, in X.
Caicedo and C.H. Montenegro (Eds.), Models, Algebras and Proofs,
Dekker, New York, 1999, pp. 167-186.

30



[6] Blount K., Tsinakis C., “The structure of residuated lattices”, Interna-
tional Journal of Algebra and Computation, 13, 4, 2003, pp. 437-461.

[7] Burris S., Sankappanavar H. P., A Course in Universal Alge-
bra, Graduate Text in Mathematics, Vol. 78. Springer Verlag,
Berlin, 1981. Available online at http://www.math.uwaterloo.ca/ snbur-
ris/htdocs/ualg.html

[8] Cattaneo G., Ciucci D., Giuntini R., Konig M., “Algebraic structures
related to many-valued logical systems. Part I: Heyting-Wajsberg alge-
bras”, Fundamenta Informaticae, 63, 2004, pp. 331-355.

[9] Cattaneo G., Ciucci D., Giuntini R., Konig M., “Algebraic structures
related to many-valued logical systems. Part II: Equivalence among some
widespread structures”, Fundamenta Informaticae, 63, 2004, pp. 357-
373.

[10] Chajda I., Vychodil V., “A note on residuated lattices with globaliza-
tion”, International Journal of Pure and Applied Mathematics, 27, 3,
2006, pp. 299-303.

[11] Chambless D.A., “Representation of the projectable and strongly pro-
jectable hulls of a lattice-ordered group”, Proceedings of the American
Mathematical Society, 34, 2, 1972, pp. 346-350.

[12] Cignoli R., D’Ottaviano I.M.L., Mundici D., Algebraic Foundations of
Many-Valued Reasoning, Kluwer, Dordrecht, 1999.

[13] Cignoli R., Esteva F., “Commutative, integral bounded residuated lat-
tices with an added involution”, Annals of Pure and Applied Logic, 161,
2, 2009, pp.150-160.

[14] Cignoli R., Torrens, A., “Free algebras in varieties of BL-algebras with
a Boolean retract”, Algebra Universalis, 48, 2002, pp. 55-79.

[15] Cignoli R., Torrens, A., “Free Algebras in varieties of Glivenko MTL-
algebras satisfying the equation 2(x2) = (2x)2, Studia Logica, 83, 2006,
pp. 157-181.

[16] Cignoli R., Torrens, A., “Varieties of commutative integral bounded
residuated lattices admitting a Boolean retraction term”, Studia Logica,
100, 2012, pp. 1107-1136.

31



[17] Conrad P.F., “Epi-archimedean groups”, Czechoslovak Mathematical
Journal, 24, 99, 1974, pp. 192-218.

[18] Conrad P.F., “A characterization of lattice-ordered groups by their con-
vex `-subgroups”, Journal of the Australian Mathematical Society, 7,
1967, pp 145-159.

[19] Conrad P.F., Darnel M.R., “Lattice-ordered groups whose lattices de-
termine their additions”, Transactions of the American Mathematical
Society, 330, 2, 1992, pp. 575-598.

[20] Czelakowski, J., “Equivalential logics I”, Studia Logica, 45, 1981, pp.
227-236.

[21] van Dalen D., “Intuitionistic logic”, in D.M. Gabbay and F. Guenth-
ner (Eds.), Handbook of Philosophical Logic, vol. 5, 2nd ed., Kluwer,
Dordrecht, pp. 1-114.

[22] Galatos N., Jipsen P., Kowalski T., Ono H., Residuated Lattices: An
Algebraic Glimpse on Substructural Logics, Elsevier, Amsterdam, 2007.

[23] Galatos, N., Tsinakis, C., “Generalized MV-algebras”, Journal of Alge-
bra, 283, 2005, pp. 254–291.

[24] Grätzer, George, Lattice Theory, First Concept and Distributive Lat-
tices, Freeman, San Francisco, 1971

[25] Gumm, H.P., Ursini, A., “Ideals in universal algebra”, Algebra Univer-
salis, 19, 1984, pp. 45-54.

[26] Hájek P., Metamathematics of Fuzzy Logic, Kluwer, Dordrect, 1998.
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