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Three new theorems based on the generalizedCarleson operators for the periodicWalsh-typewavelet packets have been established.
An application of these theorems as convergence a.e. for the periodic Walsh-type wavelet packet expansion of block function with
the help of summation by arithmetic means has been studied.

1. Introduction

Wavelet packet expansions have wide applications in engi-
neering and technology. The Walsh-type wavelet packet
expansions play an important role in signal processing,
numerical analysis, and quantum mechanics. A family of
nonstationary wavelet packets considered the smooth gen-
eralization of the Walsh functions having some of the same
nice convergence properties for expansion of 𝐿𝑝-function,
1 < 𝑝 < ∞, as the Walsh-Fourier series. Walsh-type
wavelet packet expansion has been studied by the researchers
Billard [1], Nielsen [2], Sjölin [3] and others. In 1966, at
first, Carleson operator has been introduced by Lennart
Carleson (Carleson [4]). Several important properties of
this operator has been studied by researcher Nielsen [2]. In
this paper, the pointwise convergence almost everywhere by
arithmeticmeans or (𝐶, 1) summability method of the partial
sum operator for Walsh-type wavelet packet expansion of
functions from the block space, B𝑞, 1 < 𝑞 ≤ ∞, 𝑝

−1
+

𝑞
−1
=1 has been studied. Generalized Carleson operators are

introduced and some new properties of generalized Carleson
operators are investigated. Specific convergence properties
of Walsh-type wavelet packet expansions of block functions
using (𝐶, 1)method and generalized Carleson operator have
been obtained.

2. Definitions and Preliminaries

Walsh-Type Wavelet Packets. To every multiresolution analy-
sis {𝑉𝑗}𝑗∈Z for 𝐿2(R), an associated scaling function 𝜑 and a
wavelet 𝜓 are given with the properties that

𝑉𝑗 = span {2𝑗/2𝜑 (2𝑗 ⋅ −𝑘) : 𝑘 ∈ Z} , 𝑗 ∈ Z,

{𝜓𝑗,𝑘 ≡ 2
𝑗/2
𝜓 (2

𝑗
⋅ −𝑘) : 𝑗, 𝑘 ∈ Z}

(1)

is an orthonormal basis for 𝐿2(R).
We write

𝑊𝑗 = span {2𝑗/2𝜓 (2𝑗 ⋅ −𝑘) : 𝑘 ∈ Z} , 𝑗 ∈ Z. (2)

Let N be the set of natural numbers. Let (𝐹(𝑝)
0
, 𝐹

(𝑝)

1
), 𝑝 ∈

N, be a family of bounded operators on 𝑙2(Z) of the form

(𝐹
(𝑝)

𝜖
𝑎)
𝑘
= ∑

𝑛∈Z

𝑎𝑛ℎ
(𝑝)

𝜖
(𝑛 − 2𝑘) , 𝜖 = 0, 1 (3)

with ℎ(𝑝)
1
(𝑛) = (−1)

𝑛
ℎ
(𝑝)

0
(1−𝑛) a real-valued sequence in 𝑙1(Z)

such that

𝐹
(𝑝)∗

0
𝐹
(𝑝)

0
+ 𝐹

(𝑝)∗

1
𝐹
(𝑝)

1
= 1,

𝐹
(𝑝)

0
𝐹
(𝑝)∗

1
= 0.

(4)
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Define the family of functions {𝑤𝑛}
∞

𝑛=0
recursively by

letting 𝑤0 = 𝜑, 𝑤1 = 𝜓 and then for 𝑛 ∈ N,

𝑤2𝑛 (𝑥) =
√2∑

𝑙∈Z

ℎ
(𝑝)

0
(𝑙) 𝑤𝑛 (2𝑥 − 𝑙) ,

𝑤2𝑛+1 (𝑥) =
√2∑

𝑙∈Z

ℎ
(𝑝)

1
(𝑙) 𝑤𝑛 (2𝑥 − 𝑙) ,

(5)

where 2𝑝 ≤ 𝑛 < 2𝑝+1.
The family {𝑤𝑛}

∞

𝑛=0
is basic non stationarywavelet packets.

{𝑤𝑛(⋅ − 𝑘) : 𝑛 ≥ 0, 𝑘 ∈ Z} is an orthonormal basis for 𝐿2(R).
Moreover,

{𝑤𝑛 (⋅ − 𝑘) : 2
𝑗
≤ 𝑛 < 2

𝑗+1
, 𝑘 ∈ Z} (6)

is an orthonormal basis for𝑊𝑗 = span{2𝑗/2𝜓(2𝑗 ⋅−𝑘) : 𝑘 ∈ Z}.
Each pair (𝐹(𝑝)

0
, 𝐹

(𝑝)

1
) can be chosen as a pair of quadrature

mirror filters associated with a multiresolution analysis, but
this is not necessary.

The trigonometric polynomials given by

𝑚
(𝑝)

0
(𝜉) =

1

√2

∑

𝑘∈Z

ℎ
(𝑝)

0
(𝑘) 𝑒

−𝑖𝑘𝜉
,

𝑚
(𝑝)

1
(𝜉) =

1

√2

∑

𝑘∈Z

ℎ
(𝑝)

1
(𝑘) 𝑒

−𝑖𝑘𝜉

(7)

are called the symbols of the filters.
The Fourier transforms of (5) are given by

𝑤2𝑛 (𝜉) = 𝑚
(𝑝)

0
(
𝜉

2
)𝑤𝑛 (

𝜉

2
) ,

𝑤2𝑛+1 (𝜉) = 𝑚
(𝑝)

1
(
𝜉

2
)𝑤𝑛 (

𝜉

2
) .

(8)

The Haar low-pass quadrature mirror filter {ℎ0(𝑘)}𝑘 is
given by ℎ0(0) = ℎ0(1) = 1/√2, ℎ0(𝑘) = 0 otherwise, and
the associated high-pass filter {ℎ1(𝑘)}𝑘 is given by

ℎ1 (𝑘) = (−1)
𝑘
ℎ0 (1 − 𝑘) . (9)

Definition 1. Let {𝑤𝑛}𝑛≥0,𝑘∈Z be a family of non-stationary
wavelet packets constructed by using a family {ℎ(𝑝)

0
(𝑛)}

∞

𝑝=1
of

finite filters for which there is a constant, 𝐾 ∈ Z such that
ℎ
(𝑝)

0
(𝑛) is the Haar filter for every 𝑝 ≥ 𝐾. If 𝑤1 ∈ 𝐶

1
(R) is

compactly supported then {𝑤𝑛}𝑛≥0 is called a family ofWalsh-
type wavelet packets.

Definition 2. Let {𝑤𝑛}
∞

𝑛=0
be a family of Walsh-type basic

wavelet packets. For 𝑛 ∈ N0, define the corresponding
periodic Walsh-type wavelet packets 𝑤𝑛 by

𝑤𝑛 (𝑥) = ∑

𝑘∈Z

𝑤𝑛 (𝑥 − 𝑘) . (10)

From Fubini’s theorem, it follows that {𝑤𝑛}
∞

𝑛=0
is an

orthonormal basis for 𝐿2[0, 1).

Block Spaces. A dyadic 𝑞-block is a function 𝛽 ∈ 𝐿
𝑞
[0, 1)

which is supported on some dyadic interval 𝐼 such that

‖𝛽‖
𝑞
≤ |𝐼|

1/𝑞−1, where ‖𝛽‖
𝑞
= [∫

1

0
|𝛽(𝑡)|

𝑞
𝑑𝑡]

1/𝑞

, 1 < 𝑞 < ∞.
Let B𝑞 denote the space of measurable functions 𝑓 on [0, 1)
which has an expansion

𝑓 =

∞

∑

𝑘=1

𝑐𝑘𝛽𝑘, (11)

where each 𝛽𝑘 is a 𝑞-block and the coefficients 𝑐𝑘, 𝑘 ∈ Z

satisfy

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨{𝑐𝑘}
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 = ∑

𝑘:𝑐𝑘 ̸= 0

󵄨󵄨󵄨󵄨𝑐𝑘
󵄨󵄨󵄨󵄨
[

[

1 + log
∑
∞

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑐𝑘
󵄨󵄨󵄨󵄨

]

]

< ∞. (12)

The quasi norm of 𝑓 ∈ B𝑞 is given as the infimum of ‖| ⋅ |‖
over all possible decompositions of 𝑓 into blocks

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B𝑞
= inf
𝑓=∑ 𝑐𝑘𝛽𝑘

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨{𝑐𝑘}
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 . (13)

Let 𝑓 ∈ B𝑞; then

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1
≤

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑐𝑘
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝛽𝑘
󵄩󵄩󵄩󵄩1
≤

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑐𝑘
󵄨󵄨󵄨󵄨 < ∞, (14)

using (12) and the fact that for each 𝑘, ‖𝛽𝑘‖𝑞 ≤ |𝐼|
1/𝑞−1 which

implies that ‖𝛽𝑘‖1 ≤ 1; that is, B𝑞 ⊂ 𝐿
1
[0, 1). Moreover, for

𝑓 ∈ 𝐿
𝑞
[0, 1) , 1 < 𝑞 < ∞, 𝛽 =

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

−1

𝑞
𝑓 (15)

is a 𝑞-block supported on 𝐼 = [0, 1) so 𝐿𝑞[0, 1) ⊂ B𝑞.
The classical example to show that for each 𝑞 > 1 there

exists 𝑓 ∈ B𝑞 which belongs to none of the 𝐿𝑝[0, 1)-space is
the following.

Let

𝛽𝑘 (𝑥) =

{

{

{

2
𝑘
,
1

2𝑘
< 𝑥 ≤

3

2(𝑘+1)
,

0, otherwise.
(16)

Then 𝑓 = ∑
∞

𝑘=1
𝑘
−2
𝛽𝑘 ∈ B𝑞, but ‖𝑓‖𝑝

𝑝
=

∑
∞

𝑘=1
(1/2)𝑘

−2𝑝
2
𝑘(𝑝−1)

= ∞ for every 𝑝 > 1.

Summation of Series by Arithmetic Means. If a series 𝑢0 +𝑢1 +
𝑢2 + ⋅ ⋅ ⋅ is not convergent, that is, if 𝑠𝑛 = 𝑢0 +𝑢1 +𝑢2 + ⋅ ⋅ ⋅ +𝑢𝑛
does not tend to a limit, it is some time possible to associate
with the series a “sum” in a less direct way. The simplest such
method is “summation by arithmetic means”. Let

𝜎𝑛 =
𝑠0 + 𝑠1 + 𝑠2 + ⋅ ⋅ ⋅ + 𝑠𝑛

𝑛 + 1
(17)

be the arithmetic mean of the partial sums of the given series.
If 𝑠𝑛 → 𝑠, then also 𝜎𝑛 → 𝑠; for if 𝑠𝑛 = 𝑠 + 𝛿𝑛, then

𝜎𝑛 = 𝑠 +
𝛿0 + 𝛿1 + 𝛿2 + 𝛿2 + ⋅ ⋅ ⋅ + 𝛿𝑛

𝑛 + 1
, (18)
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and the last term tends to zero if 𝛿𝑛 → 0. Consider

𝜎𝑛 =
𝑠0 + 𝑠1 + 𝑠2 + ⋅ ⋅ ⋅ + 𝑠𝑛

𝑛 + 1

= (𝑢0 + (𝑢0 + 𝑢1) + ⋅ ⋅ ⋅ + (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑘)

+ ⋅ ⋅ ⋅ + (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑛)) × (𝑛 + 1)
−1

=

𝑛

∑

𝑘=0

(1 −
𝑘

𝑛 + 1
) 𝑢𝑘.

(19)

If 𝜎𝑛 → 𝑠 as 𝑛 → ∞,∑
∞

𝑛=0
𝑢𝑛 is said to be summable to

𝑠 by Cesàro’s means of order 1. We write
∞

∑

𝑛=0

𝑢𝑛 = 𝑠 (𝐶, 1) . (20)

But 𝜎𝑛 may tend to a limit even though 𝑠𝑛 does not, for
example, the series

1 − 1 + 1 − 1 + ⋅ ⋅ ⋅ . (21)

Here the partial sums 𝑠𝑛 are alternately 1 and 0, and it is
easily seen that 𝜎𝑛 → 1/2.

2.1. Generalized Carleson Operators. Let {𝑤𝑛} be a periodic
Walsh-type wavelet packet basis. For any function 𝑓 ∈

𝐿
1
[0, 1), define

(𝑆𝑁𝑓) (𝑥) =

𝑁

∑

𝑛=0

⟨𝑓, 𝑤𝑛⟩𝑤𝑛 (𝑥) . (22)

The Carleson operator G is defined by

G𝑓 (𝑥) = sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑛=0

⟨𝑓, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑁≥0

󵄨󵄨󵄨󵄨(𝑆𝑁𝑓) (𝑥)
󵄨󵄨󵄨󵄨 .

(23)

The generalized Carleson operator G𝑐 is defined by

G𝑐𝑓 (𝑥) = sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑆0𝑓) (𝑥) + (𝑆1𝑓) (𝑥) + ⋅ ⋅ ⋅ + (𝑆𝑁𝑓) (𝑥)

𝑁 + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑁 + 1

𝑁

∑

]=0

]

∑

𝑛=0

⟨𝑓, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝑓,𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(24)

The weak Carleson operator 𝐺 is defined by

𝐺𝑓 (𝑥) = lim sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑛=0

⟨𝑓, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

= lim sup
𝑁≥0

󵄨󵄨󵄨󵄨(𝑆𝑁𝑓) (𝑥)
󵄨󵄨󵄨󵄨 .

(25)

The generalized weak Carleson operator 𝐺𝑐 is define by

𝐺𝑐𝑓 (𝑥) = lim sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑆0𝑓) (𝑥) + (𝑆1𝑓) (𝑥) + ⋅ ⋅ ⋅ + (𝑆𝑁𝑓) (𝑥)

𝑁 + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑁 + 1

𝑁

∑

]=0

]

∑

𝑛=0

⟨𝑓, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝑓,𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(26)

The dyadic Carleson operator G𝑑 is defined by

G
𝑑
𝑓 (𝑥) = sup

𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑁
−1

∑

𝑛=0

⟨𝑓, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑁≥0

󵄨󵄨󵄨󵄨(𝑆2𝑁𝑓) (𝑥)
󵄨󵄨󵄨󵄨 .

(27)

The generalized dyadic Carleson operator G𝑑
𝑐
is define by

G
𝑑

𝑐
𝑓 (𝑥) = sup

𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑆0𝑓) (𝑥) + (𝑆1𝑓) (𝑥) + ⋅ ⋅ ⋅ + (S2𝑁−1𝑓) (𝑥)
2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2𝑁

2
𝑁
−1

∑

]=0

]

∑

𝑛=0

⟨𝑓, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑁≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑁
−1

∑

𝑛=0

(1 −
𝑛

2𝑁
) ⟨𝑓,𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(28)

It is easy to prove that G𝑐, 𝐺𝑐 and G𝑑
𝑐
are sublinear

operators.

Walsh Functions and Their Properties. The Walsh system
{𝑊𝑛}

∞

𝑛=0
is defined recursively on [0, 1) by letting

𝑊0 (𝑥) = {
1, 0 ≤ 𝑥 < 1;

0, otherwise,

𝑊2𝑛 (𝑥) = 𝑊𝑛 (2𝑥) + 𝑊𝑛 (2𝑥 − 1) ,

𝑊2𝑛+1 (𝑥) = 𝑊𝑛 (2𝑥) − 𝑊𝑛 (2𝑥 − 1) .

(29)

Observe that the Walsh system is the family of wavelet
packets obtained by considering 𝜑 = 𝑊0,

𝜓 (𝑥) =

{{{{

{{{{

{

1, 0 ≤ 𝑥 <
1

2
;

−1,
1

2
≤ 𝑥 < 1;

0, otherwise

(30)

and using the Haar filters in the definition of the nonstation-
ary wavelet packets.

The Walsh system is closed under pointwise multiplica-
tion. Define the binary operator ⊕ : N0 × N0 → N0 by

𝑚 ⊕ 𝑛 =

∞

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑚𝑖 − 𝑛𝑖
󵄨󵄨󵄨󵄨 2
𝑖
, (31)
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where𝑚 = ∑∞
𝑖=0
𝑚𝑖2

𝑖 and 𝑛 = ∑∞
𝑖=0
𝑛𝑖2

𝑖. Then

𝑊𝑚 (𝑥)𝑊𝑛 (𝑥) = 𝑊𝑚⊕𝑛 (𝑥) , (32)

(see Schipp et al. [5]).
We can carry over the operator ⊕ to the interval [0, 1]

by identifying those 𝑥 ∈ [0, 1] with a unique expansion
𝑥 = ∑

∞

𝑗=0
𝑥𝑗2

−𝑗−1 (almost all 𝑥 ∈ [0, 1] has such a unique
expansion) by their associated binary sequence {𝑥𝑖}. For two
such points 𝑥, 𝑦 ∈ [0, 1], define

𝑥 ⊕ 𝑦 =

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗 − 𝑦𝑗

󵄨󵄨󵄨󵄨󵄨
2
−𝑗−1
. (33)

The operation ⊕ is defined for almost all 𝑥, 𝑦 ∈ [0, 1].
With this definition, we have

𝑊𝑛 (𝑥 ⊕ 𝑦) = 𝑊𝑛 (𝑥)𝑊𝑛 (𝑦) (34)

for every pair 𝑥, 𝑦 for which 𝑥 ⊕ 𝑦 is defined, (Golubov et al.
[6], page 11).

3. Main Results

In this paper, three new theorems for the generalized Car-
leson operators on the periodic Walsh-type wavelet packets
have been determined in the following form.

Theorem 3. Let {𝑤𝑛} be a periodic Walsh-type wavelet packet
basis. Then for every 𝑞-block 𝛽, 1 < 𝑞 ≤ ∞,

󵄨󵄨󵄨󵄨󵄨
{G

𝑑

𝑐
𝛽 > 𝛼}

󵄨󵄨󵄨󵄨󵄨
≤

𝐶𝑞

𝛼
, 𝛼 > 0, (35)

where G𝑑
𝑐
is the generalized dyadic Carleson operator defined

by (28) and 𝐶𝑞 is a positive finite constant.

Theorem 4. Let {𝑤𝑛} be a periodic Walsh-type wavelet packet
basis. Then for every 𝑞-block 𝛽, 1 < 𝑞 ≤ ∞,

󵄨󵄨󵄨󵄨{𝐺𝑐𝛽 > 𝛼}
󵄨󵄨󵄨󵄨 ≤

𝐶𝑞

𝛼
, 𝛼 > 0, (36)

where 𝐺𝑐 is the generalized weak Carleson operator defined by
(26) and 𝐶𝑞 is a positive finite constant.

Theorem 5. If a function 𝑓 belongs to B𝑞-class, 1 < 𝑞 ≤ ∞,
then

󵄨󵄨󵄨󵄨{𝐺𝑐𝑓 > 𝛼}
󵄨󵄨󵄨󵄨 = 𝑂 (

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B𝑞
) , for 𝛼 > 0, (37)

where 𝐺𝑐 is the generalized weak Carleson operator.

4. Lemmas

For the proof of our theorems, the following lemmas are
required.

Lemma 6 (Nielsen [7]). Let 𝑓1 ∈ 𝐿2(R), and define {𝑓𝑛}𝑛≥2
recursively by

𝑓2𝑛 (𝑥) = 𝑓𝑛 (2𝑥) + 𝑓𝑛 (2𝑥 − 1) ,

𝑓2𝑛+1 (𝑥) = 𝑓𝑛 (2𝑥) − 𝑓𝑛 (2𝑥 − 1) .

(38)

Then

𝑓𝑛 (𝑥) =

2
𝐽
−1

∑

𝑠=0

𝑊𝑛−2𝐽 (𝑠2
−𝐽
) 𝑓1 (2

𝐽
𝑥 − 𝑠) , (39)

where 𝑛, 𝐽 ∈ N, 2𝐽 ≤ 𝑛 < 2𝐽+1.

Lemma 7 (Zygmund [8], page 3). Consider
𝑛

∑

]=1

𝑢]V] =
𝑛−1

∑

]=1

(V] − V]+1) 𝑈] + 𝑈𝑛V𝑛, (40)

where𝑈𝑘 = 𝑢1 +𝑢2 + ⋅ ⋅ ⋅ +𝑢𝑘 for 𝑘 = 1, 2, . . . , 𝑛; it is also called
Abel’s transformation.

Lemma 8. Let {𝑊𝑛}
∞

𝑛=0
be the Walsh system. Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐾

(1 −
𝑛

𝑚 − 2𝑘 + 1
)𝑊𝑛−2𝐾 ([2

𝐾
𝑥] 2

−𝐾
)

×𝑊𝑛−2𝐾 ([2
𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶

𝑥 ⊕ 𝑦
,

(41)

where 𝐶 is a finite positive constant, 𝐾 ≥ 1, 2𝐾 ≤ 𝑛 < 2𝐾+1,
and for all pairs 𝑥, 𝑦 ∈ [0, 1) for which 𝑥 ⊕ 𝑦 is defined.

Proof. The Dirichlet kernel, 𝐷𝑛(𝑥) = ∑
𝑛−1

𝑘=0
𝑊𝑘(𝑥), for the

Walsh system satisfies
󵄨󵄨󵄨󵄨𝐷𝑛 (𝑥 ⊕ 𝑦)

󵄨󵄨󵄨󵄨 ≤
1

𝑥 ⊕ 𝑦
(42)

(see Golubov et al. [6], page 21).
Hence,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐾

(1 −
𝑛

𝑚 − 2𝑘 + 1
)𝑊𝑛−2𝐾 ([2

𝐾
𝑥] 2

−𝐾
)

×𝑊𝑛−2𝐾 ([2
𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐾

(1 −
𝑛

𝑚 − 2𝑘 + 1
)𝑊𝑛−2𝐾

× ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−2
𝐾

∑

𝑛=0

(1 −
𝑛

𝑚 − 2𝑘 + 1
)𝑊𝑛

× ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−2
𝐾
−1

∑

𝑛=0

{(1 −
𝑛

𝑚 − 2𝐾 + 1
) − (1 −

𝑛 + 1

𝑚 − 2𝐾 + 1
)}

×

𝑛

∑

𝑟=0

𝑊𝑟 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

+ (1 −
𝑚 − 2

𝐾

𝑚 − 2𝐾 + 1
)

×

𝑚−2
𝐾

∑

𝑛=0

𝑊𝑛 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

by Lemma 7,

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−2
𝐾
−1

∑

𝑛=0

1

𝑚 − 2𝐾 + 1

×

𝑛

∑

𝑟=0

𝑊𝑟 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
) +

1

𝑚 − 2𝐾 + 1

×

𝑚−2
𝐾

∑

𝑛=0

𝑊𝑛 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−2
𝐾
−1

∑

𝑛=0

𝑊𝑛 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
) +

1

𝑚 − 2𝐾 + 1

×

𝑚−2
𝐾

∑

𝑛=0

𝑊𝑛 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−1

∑

𝑛=2𝐾

𝑊𝑛−2𝐾 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
) +

1

𝑚 − 2𝐾 + 1

×

𝑚

∑

𝑛=2𝐾

𝑊𝑛−2𝐾 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−1

∑

𝑛=2𝐾

𝑊𝑛−2𝐾 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

𝑚 − 2𝐾 + 1

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐾

𝑊𝑛−2𝐾 ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑊2𝐾 ([2

𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)𝐷𝑚−2𝐾

× ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)
󵄨󵄨󵄨󵄨󵄨
+

1

𝑚 − 2𝐾 + 1

×
󵄨󵄨󵄨󵄨󵄨
𝑊2𝐾 ([2

𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)𝐷𝑚−2𝐾+1

× ([2
𝐾
𝑥] 2

−𝐾
⊕ [2

𝐾
𝑦] 2

−𝐾
)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝐷𝑚−2𝐾 (𝑥 ⊕ 𝑦)

󵄨󵄨󵄨󵄨

+
1

𝑚 − 2𝐾 + 1

󵄨󵄨󵄨󵄨𝐷𝑚−2𝐾+1 (𝑥 ⊕ 𝑦)
󵄨󵄨󵄨󵄨

≤
1

(𝑥 ⊕ 𝑦)
+

1

𝑚 − 2𝑘 + 1

1

(𝑥 ⊕ 𝑦)
, 𝑥 ⊕ 𝑦 ̸= 0

= (1 +
1

𝑚 − 2𝑘 + 1
)

1

(𝑥 ⊕ 𝑦)

≤
𝐶

(𝑥 ⊕ 𝑦)
,

(43)

where (32), (34), and the fact that 𝐷]+1−2𝐾 is a constant on
dyadic intervals of the form [𝑙2−𝐾, (𝑙 + 1)2−𝐾) are used. This
completes the proof of Lemma 8.

Lemma 9. If

𝐾
(𝜎)

𝐽,𝑚
(𝑥, 𝑦) =

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
)𝑤𝑛 (𝑥)𝑤𝑛 (𝑦) ,

for 2𝐽 ≤ 𝑚 < 2𝐽+1,
(44)

then

󵄨󵄨󵄨󵄨󵄨
𝐾
(𝜎)

𝐽,𝑚
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤

2𝑁

∑

𝑙=−2𝑁

𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦 + 2
𝐾−𝐽𝑙

󵄨󵄨󵄨󵄨

, (45)

where 𝐶 is an arbitrary constant.

Proof. The kernel can be expanded as

𝐾
(𝜎)

𝐽,𝑚
(𝑥, 𝑦)

=

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
)𝑤𝑛 (𝑥)𝑤𝑛 (𝑦)

=

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
)

× (

2
𝐽−𝐾

−1

∑

𝑙=0

𝑊𝑛−2𝐽−𝐾 (𝑙2
−(𝐽−𝐾)

)𝑤2𝐾 (2
𝐽−𝐾
𝑥 − 𝑙)

×

2
𝐽−𝐾

−1

∑

𝑘=0

𝑊𝑛−2𝐽−𝐾 (𝑘2
−(𝐽−𝐾)

)

× 𝑤2𝐾 (2
𝐽−𝐾
𝑦 − 𝑘)) ,
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by Lemma 6,

=

2
𝐽−𝐾

−1

∑

𝑙=0

2
𝐽−𝐾

−1

∑

𝑘=0

{

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
)

× (𝑊𝑛−2𝐽−𝐾 (𝑙2
−(𝐽−𝐾)

)

×𝑊𝑛−2𝐽−𝐾 (𝑘2
−(𝐽−𝐾)

))

× 𝑤2𝐾 (2
𝐽−𝐾
𝑥 − 𝑙)

× 𝑤2𝐾 (2
𝐽−𝐾
𝑦 − 𝑘)} .

(46)
Therefore, using Lemma 8,

󵄨󵄨󵄨󵄨󵄨
𝐾
(𝜎)

𝐽,𝑚
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

≤

𝑁

∑

𝑙=−𝑁

󸀠
𝑁

∑

𝑘=−𝑁

󸀠 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
)

×𝑊𝑛−2𝐽−𝐾 ([2
𝐽−𝐾
(𝑥 + 2

𝐾−𝐽
𝑙)] 2

−(𝐽−𝐾)
)

×𝑊𝑛−2𝐽−𝐾 ([2
𝐽−𝐾
(𝑦 + 2

𝐾−𝐽
𝑘)] 2

−(𝐽−𝐾)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝑤2𝐾

󵄩󵄩󵄩󵄩

2

∞

≤

𝑁

∑

𝑙=−𝑁

󸀠
𝑁

∑

𝑘=−𝑁

󸀠

𝐶

(𝑥 + 2𝐾−𝐽𝑙) ⊕ (𝑦 + 2𝐾−𝐽𝑘)
,

(47)

where ∑󸀠 indicates that only the terms for which 𝑥 + 2𝐾−𝐽𝑙 ∈
[0, 1) and 𝑦 + 2𝐾−𝐽𝑘 ∈ [0, 1), respectively, should be included
in the sum. This implies the estimate

󵄨󵄨󵄨󵄨󵄨
𝐾
(𝜎)

𝐽,𝑚
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤

𝑁

∑

𝑙=−𝑁

𝑁

∑

𝑘=−𝑁

𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦 + 2
𝐾−𝐽
(𝑙 − 𝑘)

󵄨󵄨󵄨󵄨

, (48)

since 𝑎 ⊕ 𝑏 ≥ 2−log2[|𝑎−𝑏|] ≥ |𝑎 − 𝑏|/2. This completes the proof
of Lemma 9.

5. Proof of Theorem 3

Thedyadic arithmeticmean of partial sums for the expansion
of a measurable (integrable) function 𝑓 in the periodic
Walsh-type wavelet packets,

(𝜎2𝑁𝑓) (𝑥) =
1

2𝑁

2
𝑁
−1

∑

𝑛=0

(𝑆𝑛𝑓) (𝑥)

=
1

2𝑁

2
𝑁
−1

∑

𝑛=0

(

𝑛

∑

𝑘=0

⟨𝑓, 𝑤𝑘⟩𝑤𝑘 (𝑥)) , by (22) ,

=

2
𝑁
−1

∑

𝑛=0

(1 −
𝑛

2𝑁
) ⟨𝑓,𝑤𝑛⟩𝑤𝑛 (𝑥) ,

(49)

holds everywhere with the arithmetic mean of the projection
onto the (periodized) scaling space 𝑉̃𝑁 associated with the
underlyingmultiresolution analysis (Hess-Nielsen andWick-
erhauser [9]). Therefore, it suffices to consider the arithmetic
mean of the projection operators 𝑃

𝑉̃𝑁
on to the space 𝑉̃𝑁.

Suppose that the 𝑞-block 𝛽 is associated with the dyadic
interval 𝐼 ⊂ [0, 1). If 1 < 𝛼|𝐼|, then |𝐼|1−𝑞/𝛼𝑞 ≤ 1/𝛼, and
using the fact that the operator 𝑓 → sup

𝑁
∑
𝑁

𝑛=0
(1 − 𝑛/(𝑁 +

1))𝑃
𝑉̃𝑛
𝑓(𝑥) (and thus 𝑓 → G𝑑

𝑐
𝑓(𝑥)) is of strong type (𝑞, 𝑞).

We have

󵄨󵄨󵄨󵄨󵄨
{G

𝑑

𝑐
𝑓 (𝑥) > 𝛼}

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑞(

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩𝑞

𝛼
)

𝑞

≤ 𝐶𝑞

|𝐼|
1−𝑞

𝛼𝑞
≤

𝐶𝑞

𝛼
.

(50)

Now suppose that 1 ≥ 𝛼|𝐼| with 𝐼 = [𝑎, 𝑏). Put 𝐼 = [(3𝑎 −
𝑏)/2, (3𝑏 − 𝑎)/2] ∩ [0, 1), and define 𝐼 = [0, 1) − 𝐼. We have

󵄨󵄨󵄨󵄨󵄨
{G

𝑑

𝑐
𝑓 (𝑥) > 𝛼}

󵄨󵄨󵄨󵄨󵄨
≤2 |𝐼| +

󵄨󵄨󵄨󵄨󵄨
𝐼 ∩ {G

𝑑

𝑐
𝑓 (𝑥) > 𝛼}

󵄨󵄨󵄨󵄨󵄨

≤
2

𝛼
+
󵄨󵄨󵄨󵄨󵄨
𝐼 ∩ {G

𝑑

𝑐
𝑓 (𝑥) > 𝛼}

󵄨󵄨󵄨󵄨󵄨
.

(51)

Fix 𝑥 ∈ 𝐼, and let 𝐾𝑁(𝑥, 𝑦) denote the operator kernel
associated with the projection operators 𝑃

𝑉̃𝑁
. Then there

exists a finite constant 𝐶 (independent of𝑁) such that

󵄨󵄨󵄨󵄨𝐾𝑁 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

(52)

(see Terence [10]).
Using the estimate (52) on the kernel𝐾𝑁, we obtain

󵄨󵄨󵄨󵄨(𝜎2𝑁𝛽) (𝑥)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑁
−1

∑

𝑛=0

(1 −
𝑛

2𝑁
) ⟨𝛽, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑁
−2

∑

𝑛=0

{(1 −
𝑛

2𝑁
) − (1 −

𝑛 + 1

2𝑁
)}

×

𝑛

∑

𝑟=0

⟨𝛽, 𝑤𝑟⟩𝑤𝑟 (𝑥)

+(1 −
2
𝑁
− 1

2𝑁
)

2
𝑁
−1

∑

𝑛=0

⟨𝛽, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,
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by Lemma 7,

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑁
−2

∑

𝑛=0

1

2𝑁

𝑛

∑

𝑟=0

⟨𝛽, 𝑤𝑟⟩𝑤𝑟 (𝑥)

+
1

2𝑁

2
𝑁
−1

∑

𝑟=0

⟨𝛽, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑁
−2

∑

𝑛=0

1

2𝑁
(𝑆𝑛𝛽) (𝑥) +

1

2𝑁
(𝑆2𝑁𝛽) (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

2
𝑁
−2

∑

𝑛=0

1

2𝑁

󵄨󵄨󵄨󵄨(𝑆𝑛𝛽) (𝑥)
󵄨󵄨󵄨󵄨 +

1

2𝑁

󵄨󵄨󵄨󵄨(𝑆2𝑁𝛽) (𝑥)
󵄨󵄨󵄨󵄨

≤

2
𝑁
−2

∑

𝑛=0

1

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐼

𝐾𝑛 (𝑥, 𝑦) 𝛽 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐼

𝐾2𝑁 (𝑥, 𝑦) 𝛽 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

2
𝑁
−2

∑

𝑛=0

1

2𝑁
(

𝐶

|𝑥 − 𝑎|
+

𝐶

|𝑥 − 𝑏|
)
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1

+
1

2𝑁
(

𝐶

|𝑥 − 𝑎|
+

𝐶

|𝑥 − 𝑏|
)
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1

= (
2
𝑁
− 1

2𝑁
+
1

2𝑁
)(

𝐶

|𝑥 − 𝑎|
+

𝐶

|𝑥 − 𝑏|
)
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1

= (
𝐶

|𝑥 − 𝑎|
+

𝐶

|𝑥 − 𝑏|
)
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1
.

(53)

Since ‖𝛽‖
1
≤ 1 and𝑥 ∈ 𝐼 implies that |𝑥−𝑎|, |𝑥−𝑏| ≥ |𝐼|/2,

therefore,

󵄨󵄨󵄨󵄨(𝜎2𝑁𝛽) (𝑥)
󵄨󵄨󵄨󵄨 ≤ {

2𝐶

|𝐼|
+
2𝐶

|𝐼|
}

=
4𝐶

|𝐼|
≤
𝐶

𝛼
.

(54)

Finally we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 ∈ 𝐼 : sup
𝑁

󵄨󵄨󵄨󵄨(𝜎2𝑁𝛽) (𝑥)
󵄨󵄨󵄨󵄨 > 𝛼}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶

𝛼
, (55)

where 𝐶 is independent of 𝐼 and 𝛽 and hence Theorem 3
follows.

6. Proof of Theorem 4

Fix 𝛼 > 0 and a 𝑞-block 𝛽 supported on the dyadic interval
𝐼 ⊂ [0, 1); two cases are considered.

Case I. If 1 < 𝛼|𝐼|, then |𝐼|1−𝑞/𝛼𝑞 ≤ 1/𝛼. Therefore, using
Theorem 5.1. [7], page 275, we have

󵄨󵄨󵄨󵄨{𝐺𝑐𝛽 > 𝛼}
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑞(

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩𝑞

𝛼
)

𝑞

≤ 𝐶𝑞

(|𝐼|
1/𝑞−1

)
𝑞

𝛼𝑞

= 𝐶𝑞

|𝐼|
1−𝑞

𝛼𝑞

≤

𝐶𝑞

𝛼
.

(56)

Case II. Let 1 ≥ 𝛼|𝐼| with 𝐼 = [𝑎, 𝑏). Let

𝐼 = (∪
1

𝑗=−1
(𝑗 + [

3𝑎 − 𝑏

2
,
3𝑏 − 𝑎

2
))) ∩ [0, 1) , (57)

and define 𝐼 = [0, 1) \ 𝐼. Then

󵄨󵄨󵄨󵄨{𝐺𝑐𝛽 > 𝛼}
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨
𝐼
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐼 ∩ {𝐺𝑐𝛽 > 𝛼}

󵄨󵄨󵄨󵄨󵄨

≤ 3 |𝐼| +
󵄨󵄨󵄨󵄨󵄨
𝐼 ∩ {𝐺𝑐𝛽 > 𝛼}

󵄨󵄨󵄨󵄨󵄨

≤
6

𝛼
+
󵄨󵄨󵄨󵄨󵄨
𝐼 ∩ {𝐺𝑐𝛽 > 𝛼}

󵄨󵄨󵄨󵄨󵄨
.

(58)

Notice that

󵄨󵄨󵄨󵄨󵄨
𝐼 ∩ {𝐺𝑐𝛽 > 𝛼}

󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐼 ∩ {𝐺

𝑑

𝑐
𝛽 >

𝛼

2
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐼 ∩ {lim sup
𝐽

𝑀𝐽𝛽 >
𝛼

2
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(59)

with

𝑀𝐽𝛽 (𝑥) = max
2𝐽≤𝑚<2𝐽+1−1

𝑀
𝑚

𝐽
𝛽 (𝑥) ,

𝑀
𝑚

𝐽
𝛽 (𝑥) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
) ⟨𝛽, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(60)
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For 𝑥 ∈ [0, 1), we have

lim sup
𝐽,𝑚

𝑀
𝑚

𝐽
𝛽 (𝑥)

= lim sup
𝐽,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
) ⟨𝛽, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= lim sup
𝐽,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑙1=−𝑁

𝑁

∑

𝑙2=−𝑁

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
)

× ⟨𝛽, 𝑤𝑛 (⋅ − 𝑙1)⟩𝑤 (𝑥 − 𝑙2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑁

∑

𝑙1=−𝑁

𝑁

∑

𝑙2=−𝑁

lim sup
𝐽,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
)

× ⟨𝛽, 𝑤𝑛 (⋅ −𝑙1)⟩𝑤 (𝑥−𝑙2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(61)

Hence, it suffices to estimate |𝐸𝑙1,𝑙2
𝛼
| with

𝐸
𝑙1,𝑙2
𝛼

= {𝑥 ∈ 𝐼 : lim sup
𝐽,𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑛=2𝐽

(1 −
𝑛

𝑚 − 2𝐽 + 1
)

× ⟨𝛽, 𝑤𝑛 (⋅−𝑙1)⟩𝑤 (𝑥−𝑙2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝛼} .

(62)

Fix 𝑥 ∈ R \ 𝐼; then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

∞

−∞

𝐾
𝜎

𝐽,𝑚
(𝑥 − 𝑙1, 𝑦 − 𝑙2) 𝛽 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶

2𝑁

∑

𝑙=−2𝑁

∫

∞

−∞

𝛽 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨𝑥 − 𝑦 + 𝑙2 − 𝑙1 + 2
𝐾−𝐽𝑙

󵄨󵄨󵄨󵄨

,

(63)

which implies that whenever 𝑥 ∈ 𝐸𝑙1,𝑙2
𝛼

, there is an increasing
sequence 𝐽𝑘 → ∞ for which

(
1

󵄨󵄨󵄨󵄨𝑥 − 𝑎 + 𝑙2 − 𝑙1 + 2
𝐾−𝐽𝑘 𝑙

󵄨󵄨󵄨󵄨

+
1

󵄨󵄨󵄨󵄨𝑥 − 𝑏 + 𝑙2 − 𝑙1 + 2
𝐾−𝐽𝑘 𝑙

󵄨󵄨󵄨󵄨

) > 𝐶𝛼,

(64)

for some fixed 𝐶 > 0 and for 𝑘 = 1, 2, . . .. Since 𝐽𝑘 → ∞,
therefore

(
1

󵄨󵄨󵄨󵄨𝑥 − 𝑎 + 𝑙2 − 𝑙1
󵄨󵄨󵄨󵄨

+
1

󵄨󵄨󵄨󵄨𝑥 − 𝑏 + 𝑙2 − 𝑙1
󵄨󵄨󵄨󵄨

) > 𝐶𝛼. (65)

Using that 𝐼 = [0, 1) \ 𝐼 and the same technique as in the
proof of Lemma 9, we complete the proof to conclude that
|𝐸
𝑙1 ,𝑙2
𝛼
| ≤ 1/𝛼 and consequently

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐼 ∩ {lim sup
𝐽

𝑀𝐽𝛽 >
𝛼

2
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶

𝛼
, (66)

which completes the proof of Theorem 4.

7. Proof of Theorem 5

Let 𝑓 = ∑∞
𝑘=1
𝑐𝑘𝛽𝑘 be a function of B𝑞. Then

𝜎𝑁𝑓 =

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝑓,𝑤𝑛⟩𝑤𝑛

=

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
)⟨

∞

∑

𝑘=1

𝑐𝑘𝛽𝑘, 𝑤𝑛⟩𝑤𝑛

=

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
)

∞

∑

𝑘=1

𝑐𝑘 ⟨𝛽𝑘, 𝑤𝑛⟩𝑤𝑛

=

∞

∑

𝑘=1

𝑐𝑘(

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝛽𝑘, 𝑤𝑛⟩𝑤𝑛)

=

∞

∑

𝑘=1

𝑐𝑘 (𝜎𝑁𝛽𝑘) ,

(67)

due to the 𝐿1 convergence of the average sum defining 𝑓.
Since

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝑓,𝑤𝑛⟩𝑤𝑛

=

∞

∑

𝑘=1

𝑐𝑘

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝛽𝑘, 𝑤𝑛⟩𝑤𝑛,

lim sup
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝑓,𝑤𝑛⟩𝑤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑐𝑘
󵄨󵄨󵄨󵄨 lim sup

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝛽𝑘, 𝑤𝑛⟩𝑤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐺𝑐𝑓 ≤

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑐𝑘
󵄨󵄨󵄨󵄨 𝐺𝑐𝛽𝑘

(68)



The Scientific World Journal 9

therefore

󵄨󵄨󵄨󵄨{𝐺𝑐𝑓 > 𝛼}
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑐𝑘
󵄨󵄨󵄨󵄨 𝐺𝑐𝛽𝑘 > 𝛼}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝐶𝑞

𝛼

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑐𝑘
󵄨󵄨󵄨󵄨 , by Theorem 4,

≤

𝐶𝑞

𝛼

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B𝑞
, by (12) ,

= 𝑂 (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B𝑞
) .

(69)

This completes the proof of Theorem 5.

8. Applications

Following corollary can be deduced from our theorems.

Corollary 10. Let {𝑤𝑛} be a periodic Walsh-type wavelet
packet basis. Then the Fourier expansion of any function 𝑓 ∈
B𝑞, 1 < 𝑞 < ∞, in {𝑤𝑛} is summable by arithmetic means
pointwise a.e.

Proof. Let us write (𝑆𝑁𝑓)(𝑥) = ∑
𝑁

𝑛=0
⟨𝑓, 𝑤𝑛⟩𝑤𝑛(𝑥) and

(𝜎𝑁𝑓) (𝑥) =
1

𝑁 + 1

𝑁

∑

𝑛=0

(𝑆𝑛𝑓) (𝑥)

=

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
) ⟨𝑓,𝑤𝑛⟩𝑤𝑛 (𝑥) .

(70)

With 𝑓 = ∑
∞

𝑘=1
𝑐𝑘𝛽𝑘 ∈ B𝑞, let 𝑔𝐾 = ∑

𝐾

𝑘=1
𝑐𝑘𝛽𝑘, and

observe that ‖𝑓 − 𝑔𝐾‖B𝑞 → 0. For each 𝑥 ∈ [0, 1), write

𝑓 − 𝜎𝑁𝑓 = (𝑓 − 𝑔𝐾)

+ (𝑔𝐾 − 𝜎𝑁𝑔𝐾) + (𝜎𝑁𝑔𝐾 − 𝜎𝑁𝑓) .

(71)

Thus

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − (𝜎𝑁𝑓) (𝑥)
󵄨󵄨󵄨󵄨 > 𝛼}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔𝐾 (𝑥)
󵄨󵄨󵄨󵄨 >
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨𝑔𝐾 (𝑥) − (𝜎𝑁𝑔𝐾) (𝑥)
󵄨󵄨󵄨󵄨 >
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑛→∞

󵄨󵄨󵄨󵄨(𝜎𝑁𝑔𝐾) (𝑥) − (𝜎𝑁𝑓) (𝑥)
󵄨󵄨󵄨󵄨 >
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔𝐾 (𝑥)
󵄨󵄨󵄨󵄨 >
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝐾 (𝑥)

−

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
)

× ⟨𝑔𝐾, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑛=0

(1 −
𝑛

𝑁 + 1
)

× ⟨𝑔𝐾 − 𝑓,𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔𝐾 (𝑥)
󵄨󵄨󵄨󵄨 >
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝐾 (𝑥) −

𝑁

∑

𝑛=0

⟨𝑔𝐾, 𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑛=0

⟨𝑔𝐾 − 𝑓,𝑤𝑛⟩𝑤𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔𝐾 (𝑥)
󵄨󵄨󵄨󵄨 >
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨𝑔𝐾 (𝑥) − (𝑆𝑁𝑔𝐾) (𝑥)
󵄨󵄨󵄨󵄨 >
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑁→∞

󵄨󵄨󵄨󵄨(𝑆𝑁𝑔𝐾) (𝑥) − (𝑆𝑁𝑓) (𝑥)
󵄨󵄨󵄨󵄨 >
𝛼

3
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
3

𝛼

󵄩󵄩󵄩󵄩𝑓 − 𝑔𝐾
󵄩󵄩󵄩󵄩B𝑞
+ 0 +

3

𝛼
𝐶𝑞
󵄩󵄩󵄩󵄩𝑓 − 𝑔𝐾

󵄩󵄩󵄩󵄩B𝑞
, by Theorem 5.

(72)

From this it follows that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{𝑥 : lim sup
𝑛→∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − (𝜎𝑁𝑓) (𝑥)
󵄨󵄨󵄨󵄨 > 𝛼}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (73)

This completes the proof of the corollary.
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