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Critical Velocity for Collapse of a Shell of
Circular Cross Section Without Buckling

Many practical devices involve high-speed collapse of shells of circular cross sectim.;.
In all of the devices the stability of the collapse motion is of interest and in some it 1s

essential for successful operation.

In this paper, the buckling motion of shells of circu-

lur cross section during high-speed collapse 3s unalyzed und critical collupse velocities
are determined for which the growth of initial nonuniformities by buckling during col-

lapse is 10 and 100.

Introduction

HIGH-SPEF)]) collapse of shells of eircular cross sec-
tion oceurs in many practical devices. KExamples are explosive
closure devices for obtaining gastight pipe seals in tens of miero-
seconds, magnetic-ficld constriction devices for producing in-
tense transient magnetic fields, shock tubes driven by rapidly
collapsing a cylindrical reservoir to produce transient gas flows
with very high pressures and velocities, and armor-piercing rounds
and oil-well perforating devices using rapidly collapsing conical
shells to produce metallic jets that travel at velocities of the
order of 10,000 fps. In all these examples the stability of the
shell as it collapses is of interest and in some cases it is critical
to successful operation.

As shown in Fig. 1(a), buckling oceurs in shells of circular cross
section projected inward at initial velocities sufficient to produce
moderate permanent deformation (~10 percent). It has been
shown [1, 2]! that this type of buckling develops from nonuni-
formities that grow exponentially with time during the inward
motion. As indicated in Fig. 1(b), the compressive hoop stress
that develops during collapse causes nonuniformities to grow;
i.e., elements that lag the average motion are thrust farther be-
hind, and those that lead are thrust farther ahead. Since growth
to significant magnitudes requires time, and since the shell be-
comes more stable as it becomes thicker, at sufficiently high
collapse velocities the buckling will be negligible. Hence, a
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ORIGINAL DIA. 2.99 in.

780 ft/sec
(WALL 0.076, LENGTH 6)

CYL. NO. 23

Fig. 1(a) Typical buckled shape of circular cylindrical aluminum (2024-
T3) shell subjected to an inward radial impulse

Fig. 1(b) Tendency of imperfections to grow under compressive hoop
stress
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Fig. 2 Stress-sirain curve

critical collapse velocity (constant or nonuniform) can be deter-
mined for which the growth during collapse does not exceed a
specified magnitnde. In the present paper, the analysis of [1]
is extended to determination of the growth of initial nonuni-
formities in shape for constant collapse velocity.

Differential Equation

Since we are concerned with small buckling displacements, we
may take the flexural strain rate to be less than the hoop strain
rate, so the strain in the shell during inward motion always in-
creases. At points A in Fig. 1(b), the flexural strain rate adds
to the compressive hoop strain rate and at points B it subtracts
from it. Then on the stress-strain curve in Fig. 2, points A’ and
B’ corresponding to points A and B in Fig. 1(b), always move in
the direction of increasing compressive strain, with A’ leading B’.
The bending moment corresponding to the stress difference be-
tween A’ and B’ is given approximately by the simple formula
for a bar

M = E(IK (1)

in which Young’s modulus is veplaced by the tangent modulus
E, between A’ and B’, [ is the area moment of inertia of the cross
section (per unit axial length), and « is the increase in curvature.
The inward displacement, of the shell from an initial radius a is
taken as the sum of the uniform displacement we and the buck-
ling displacement w, the latter being small compared to the radius.
Denoting the radius @ — wg by 7, the increase in curvature is

1 1 1 dw
”‘7“E+F<w+5§?> @)

This expression neglects the curvature change due to initial non-
uniformities, an approximation that doesn’t significantly affect
the results of the present investigation.

The equation of motion for an element of a collapsing shell is
readily found with the aid of Fig. 3. Neglecting rotational
inertia, we have for the shear force (per unit axial length)

oM
Q= N (3)

d\ being the arc length corresponding to df and subtending the
angle d¢ at the instantaneous center of curvature. Denoting
compressive hoop stress by o, wall thickness by h, density by p,
and external pressure by P, we find for the radial motion

oQ %9 o e
N + oh N P = ph v (r — w) 4)
The curvature is
Felo) 1
X = o + ki 4« ()

where «; is the curvature due to a small initial departure from

o
}0/ "o
0
|

Fig. 3 Notation

circularity and, as indicated in (2), k is the increase in curvature,
Denoting the initial departure from circularity by w;, we have
for the curvature at any instant due to the initial displacement

1 O%w; .
K5=F<w¢+ 592> (6)

Substituting (6) and (2) into (5) and the result into (4), and elimni-
nating @ using (3) and M using (1) and (2), with I = h3/12 and
d\ = rdf, we obtain for the differential equation for the dis-
placements

B, h [ow o%w 1 1 o7
15;4"(5@7*3(;‘2)””[7% <w+a¢92)

1 0%w; o2
all i — il . P.
~+ 2 <w1 + 50 >:| ph o (r — w) + )

In the absence of initial imperfections and buckling, (7) reduces
to
ah o

7=Ph52;+1’. (8)

For collapse at constant velocity, (8) becomes simply

Lh:P 9)

T

as expected. Hence, for collapse at constant velocity (7) be-
comes

Ey b fow  dWw o %w O%w;
12 (567 + 592> t o [(w + 662> + <w‘ + 062>]
ot
= —p-— (10
pop (O

Denoting the initial wall thickness by ko, from continuity we have
the approximate relation

b= b (1)
Also, letting
L, o
L -2 12)
# Eo, Y a0 (

where E, and o, are reference values, introducing the dimen-
sionless quartities

g a \? at p 13
2= 12 (- =12 — & 13)
’ Eo<ho)’ he* Bo
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and putting « = r/a, 7 = ¢/T, equation (10) becomes

B + w'') + styatl(w + w'') + (we + wi'')] = —at
(14)

where

()Y =203( )oband (") =22 )/or%

Finally, writing v = w/a and rearranging terms, (14) becomes
oty + s”’ya"u + (B + s”’ya“)u” + ﬁu””
= —g¥yai(u; + w’’) (15)

Fora = 1,8 = 1, and v = 1, (15) corresponds to equation (10)
of [1], except that a term —s? is missing from the right-hand
side due to the constant collapse velocity used in the present
analysis.

Critical Gollapse Velocity

Since the differential equation (15) is linear, we may take for
the buckling displacement

Y = Z [Fo(r) cos nf + Go(7) sin nb) (16)
n=2
and for the initial departure from circularity
u; = Z [4, cos nf + B, sin nf) (17)
n=2

the terms for n = 1 being omitted because they do not contribute
to the buckling motion. Substituting (16) and (17) into (15)
yields

asi, 4 [styat — n¥(B + styat) 4 BniF,

= —s2yat(l — n?A, (18)

and a similar equation for G,. Dividing by 4. and putting f,, =
F./Ax, (18) becomes

afu + (2 = 1)(Bn2 — sryat)f, = styai(nt — 1)

The nature of the buckling motion is apparent from (19). For
negative values of the coeflicient of fn, the solutions are hyperbolic
functions and the magnitude of f. grows exponentially with
time. Taking 8 = 1 and ¥ = I initially, and noting that o = |
at the beginning of the motion, we see that modes with #? < s?
are initially unstable. As collapse proceeds, « decreases; hence
at. some point the coeflicient of f, becomes positive and the modes
that were initially unstable become stable, i.e., they become
oscillatory. [However, while a decreases during collapse, in
general v increases and B decrcases. Thus the growth during
the period of instability depends not only on the rate of collapse,
but also on the shape of the stress-strain curve.

To integrate (19) we must know « as a function of 7, and we
must know B and ¥ as functions of strain and hence of a. In-
stead of sclving (19) for any particular material, in this paper we
obtain the eritical collapse velocity for 8 = { and ¥ = 1. This
corvesponds to a hypothetical rigid linear-strain-hardening
material (8 = 1) with a small hardening modulus (y = 1).

For a constant collapse veloeity V,

(19)

In terms of 7 this may be written

a=1—gqr (20)
where
14 — 14 14
g=T =18 % = g— 21)
a ho EO ‘%@
p p
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Fig. 4 Final magnitude of £, for s = 30; critical mode isn = 10

Using (20) and the initial conditions f, = f. = 0, (19) was
integrated numerically for values of n < s.  The final magnitude
of fu was taken as the magnitude just prior to the change in sign
of the coeflicient of f, in (19).

The final magnitude of f as 2 funetion of n and ¢, for s = 30, is
shown in IMig. 4. For any particular n, f. decreases with in-
creasing g, as expected.  The value of » for which f, is maximum
is n = 10. The value of @ at the instant the mode » = 10 be-
comes stable is found from the coeflicient of f, in (19) and, with
B = v = 1,is given by

n (22)

Fors = 30 and n = 10, @ = 0.577.

Curves such as those in Fig. 4 were caleulated for 15 < 5 <
200.  From these curves, the values of g for fu = 10 and f, = 100
were determined and are shown in Fig. 5 along with the critical
mode numbers.  For a particular value of s, the critical velocity
q is greater for f, = 10 than for f, = 100, as expected. Also, for
thinner shells, ie., larger values of s, the critical velocity in-
creases. The critical mode nwmbers increase with s, but are
nearly the same for hoth curves for the same value of s.

To determine the eritical collapse velocity for a particular ex-
ample, we proceed as follows.  From (13) and (21), we have

as —a V
- —, = VI2— —=
B {TVRY ‘/Eo

P
We see that geometry enters both of these expressions only
through the radius-to-thickness ratio. However, material prop-
erties affect s through the ratio of the flow stress go to the slope
Fy of the stress-strain curve, and they affect ¢ through the ve-
locity (Eo/p)'/2 A reasonable value for (ao/Fo)'/* is 0.5, and a
reasonable value for (Eo/p)/*is 5 X 10% em/sec. Then, tuking
a/he = 30, we find

(23)

s = /12

s = 4/12(0.5)30 = 52.
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Fig. 5 Critical collapse velocity curves for f, = 10 and 100
From the curve for f, = 10 1in Fig. 5, we find ¢ = 130 for s = 52,
Then, from (23), we have for V'
_h \/Eo/p 15 X 10¢
T 12 30 V12
V = 6.2 X 10t em/sec = 0.6 mm/usec = 1800 fps.

Direct experimental evidence is lacking to check the results of
the preceding analysis. However, collapse velocities for copper
shaped-charge liners are in the range of 1 mm/usec (3300 fps),
in qualitative agreement with the foregoing result. To make a
quantitative verification of the theory, actual stress-strain curves
should be used in the numerical integration of (19).

Discussion

In the foregoing analysis, we used a simple uniaxial stress-
strain law, Fig. 2. Here we discuss the bending resistance of a
collapsing shell using a biaxial law.

We take the radial stress through the shell thickness to be zero.
Then the von Mises yield condition in terms of the principal
stresses og (hoop stress) and o, (axial stress) is as shown in Fig.
6(ez). Taking the principal axes of the plastic strain increment
to be parallel to the axes of the principal stresses (Reuss flow
rule), the axes in Fig. 6(a) are also the axes of the principal plastic
strain increments Aep and Ae,. For a shell projected radially
inward with no axial strain, og is compressive and Ae, = 0.
Thus the corresponding point on the yield ellipse is point 0 in
Fig. 6(a), at which oy is compressive and the normal to the yield
ellipse (which gives the direction cf the plastic strain increment
vector) is parallel to the Aeg-axis.

For a material that strain hardens isotrvopically, the yield
ellipse expands as the strain increases. If buckling occurs as
shown in Fig. 1(b), the hoop strain at A will be greater than that

(a) (b)
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&
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Fig. 6 Biaxial stress states of collapsing shells on the von Mises yield
ellipse

+<

at B. Hence, as shown in Fig. 6(b), the corresponding stresses
will lie on expanding yield ellipses on either side of the expanding
yicld ellipse corresponding to the average hoop strain. The
difference in gg between A’ and B’ implies a bending moment that
resists the buckling motion.  Since this moment is due to strain
hardening, it is called the strain-hardening moment. The fore-
going analysis is based on bending resistance due to the strain-
hardening moment.

Strain-rate effects can also give rise to bending moments that
resist the buckling motion.  From ¥ig. 1(b) it is apparent that
the hoop strain rate at A exceeds that at B.  Hence, if the yield
stress of the material increases with strain rate, the stresses cor-
responding to A and B will lie on yield ellipses on cither side of
the yield ellipse corresponding to the average hoop strain rate,
analogous to the situation with strain hardening, Fig. 6(b).
Florence [3] has analyzed the buckling of strain-rate sensitive
mild steel cylinders.

For a material for which strain hardening is independent of
strain rate, the critical collapse velocity based on strain harden-
ing alone is an upper bound. However, for a material for which
strain hardening decreases with increasing strain rate, a more
complete analysis than that given in this paper is required to de-
termine a critical collapse velocity.

If instead of Ae; = 0 we have o, = 0 (as for a ring), the corre-
sponding point on the yield ellipse for a shell that collapses with-
out buckling is 0’ in Fig. 6(c). If buckling occurs, the hoop
strain at A, Fig. 1(b) will be greater than the average and that
at B will be less, but the axial strain will be the same at A and B.
Thus the strain increment vectors corresponding to points A
and B have the same axial component but different hoop com-
ponents. Ience, the direction of the strain increment vectlors
for A and B will not be parallel to that at 0’ in Fig. 6(c), but will
be shifted slightly. Since the strain increment vectors must be
normal to the yield ellipse, the difference in the direction of the
strain increment vectors implies a stress difference at A and B as
indicated in Fig. 6(¢). The bending moment due to this stress
difference Goodier has termed the directional moment. It is
interesting to note that directional moments do not arise for Ae:
= (), since all strain increment vectors are in the same direction.
Florence and Goodier {4] analyzed the axisymmetric buckling
of thick-walled tubes ineluding the effects of directional moments.

In high-speed collapse of cylindrical shells, the resistance to
buckling must come initially fromn strain-hardening and strain-
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rate moments, since the axial flow required for the development
of directional moments can occur only in the material that has
been reached by relief waves from the ends of the shell. Since
shells become thicker and hence more stable as they collapse, the
most important part of the buckling occurs in the initial stages
of collapse. ence, in many problems, directional moments may
be unimportant. Moreover, the increased bending resistance
due to directional moments tends to decrease the critical collapse
velocity. Hence, a critical collapse velocity calculated without
regurd to directional moments is an upper bound.
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