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Critical Velocity for Collapse of aShell of
Circular Cross Section Without Buckling
Many practual devices involve high-speed collapse of shells of circular cross section.
In all of the devices the stability of the collapse motion is of interest and in some it is
essential for successful operation. In this paper, the buckling motion of shells of circu­
lnr cross section duri.ng high-speed collapse is Imalyzed Imll critical CDll(~pse velocities
are determined for which the growth of initial nonun·iformities by buckling during col­
lapse is 10 and 100.

Introduction
HIGH-sPI;:,;:]) collapse of shells of circular cross sec­

tion occurs in many practical devices. Examples arc explosi ve
closure devices for obtaininll; gastight, pipe seals in tens of micro­
seconds, magnetic-field constriction devices for producing in­
tense transient magnetic fields, shock tuhes driven by rapidly
collapsing a cylindrical reservoir to produce transient gus flows
with very high pressures and velocities, and armor-piercing rounds
and oil-well perforatinll; devices using rapidly collapsing conical
shells to produce metallic jets that travel at velocities of the
order of 10,000 fps. In all these examples the stability of the
shell as it collapses is of interest and in some cases it is critical
to successful operation.

As shown in Fig. l(a), buckling occurs in shells of circular cross
section projected inward at initial velocities sufficient to produce
moderate permanent deformation ("'10 percent). It has been
shown [1, 2J' that this type of buckling develops from nonuni­
formities that grow exponentially with time during the inward
motion. As indicated in Fig. 1(b), the compressive hoop stress
that develops during collapse causes nonuniformities to p;row;
Le., clements that lag the average motion are thrust farther be­
hind, and those that lead are thrust farther ahead. Since growth
to significant magnitudes requires time, and since the shell be­
comes more stable as it becomes thicker, at sufficiently high
collapse velocities the buckling will be negligible. Hence, a
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Fig. 1(a) Typical buckled shape of circular cylindrical aluminum (2024.
T3) shell subjected to an inward radial impulse

B

Fig. 1(") Tendency of imperfections to grow under compressive hoop
stress
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STRAIN 

Fig. 2 Stress-strain curve 

critical collapse velocity (constant or nonuniform) can be deter­
mined for which the growth during collapse does not exceed a 
specified magnitude. In the present paper, the analysis of [1] 
is extended to determination of the growth of initial nonuni-
formities in shape for constant collapse velocity. . 

Differential Equation 
Since we are concerned with small buckling displacements, we 

may take the flexural strain rate to be less than the hoop strain 
rate, so the strain in the shell during inward motion always in­
creases. At points A in Fig. 1(6), the flexural strain rate adds 
to the compressive hoop strain rate and at points B it subtracts 
from it. Then on the stress-strain curve in Fig. 2, points A' and 
B' , corresponding to points A and B in Fig. 1(6), always move in 
the direction of increasing compressive strain, with A' leading B ' . 
The bending moment corresponding to the stress difference be­
tween A' and B ' is given approximately by the simple formula 
for a bar 

M = E,IK (1) 

in which Young's modulus is replaced by the tangent modulus 
Et between A' and B ' , / is the area moment of inertia of the cross 
section (per unit axial length), and K is the increase in curvature. 
The inward displacement of the shell from an initial radius a is 
taken as the sum of the uniform displacement w0 and the buck­
ling displacement w, the latter being small compared to the radius. 
Denoting the radius a — w0 by r, the increase in curvature is 

1 l j _ 
r a 

1 / d2w\ 
(2) 

This expression neglects the curvature change due to initial non-
uniformities, an approximation that doesn't significantly affect 
the results of the present investigation. 

The equation of motion for an element of a collapsing shell is 
readily found with the aid of Fig. 3. Neglecting rotational 
inertia, we have for the shear force (per unit axial length) 

Q = 
dX 

(3) 

d\ being the arc length corresponding to dd and subtending the 
angle d<j> at the instantaneous center of curvature. Denoting 
compressive hoop stress by a, wall thickness by h, density by p, 
and external pressure by P, we find for the radial motion 

dQ d<t> 
—r- + ah — 
d\ dX 

P = ph — (r-w) 

The curvature is 

dr/> 1 
- ^ = - + Ki + K 
dX a 

(4) 

(5) 

where Ki is the curvature due to a small initial departure from 

,w(0) 

Fig. 3 Notation 

circularity and, as indicated in (2), K is the increase in curvature. 
Denoting the initial departure from circularity by wt, we have 
for the curvature at any instant due to the initial displacement 

1 
Ki = (6) 

Substituting (6) and (2) into (5) and the result into (4), and elimi­
nating Q using (3) and M using (1) and (2), with I = h3/l2 and 
d\ = rdd, we obtain for the differential equation for the dis­
placements 

E, V 

12 r4 

/dho dho\ , r 1 .;.• 1 / dhv\ 

, i / , aV\" 
= p f t — ( r - w) + P ; (7) 

at2 

In the absence of initial imperfections and buckling, (7) reduces 

to 

ah d2r 
— = ph —- + P. 
r H U2 

For collapse at constant velocity, (8) becomes simply 

— = P 
r 

(8) 

(9) 

as expected. Hence, for collapse at constant velocity (7) be­
comes 

Et 

12 

', h2 /dho d2w\ a VI dhv\ I bhuAl 

= - p ^ ? . (10) H dt2 

Denoting the initial wall thickness by ho, from continuity we have 
the approximate relation 

h — ho 

Also, letting 

Eo 
a 

•y = -
(To 

(11) 

(12) 

where E0 and <ro are reference values, introducing the dimen-
sionless quantities 

12 ^ (±)\ 
E0 \hoJ 

a4 p 
T2 = 12 — — 

h2 Eo 
(13) 
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and putting a = r/a, r = t/T, equation (10) becomes 

/3(w"" + w") + 8*yal[(w + w") + (va + w/ ' ) l = - a 6 * 

(14) 

where 

( )' = d( )/&6and V) = b\ )/dr2 . 

Finally, writing u — 10/a and rearranging terms, (14) becomes 

a6il + s'ya4u + ((3 + S27O:4)M" + Pu"" 

= -s27«»(Mi + Ui") (15) 

For o: = 1, /3 = 1, and 7 = 1 , (15) corresponds to equation (10) 
of [1], except that a term ~ s 2 is missing from the right-hand 
side due to the constant collapse velocity used in the present 
analysis. 

Critical Collapse Velocity 
Since the differential equation (15) is linear, we may take for 

the buckling displacement 

1000 

u = ]T) [ F „ ( T ) COS nd + 6„(T"I sin nd] 

71 = 2 

and for the initial departure from circularity 

CO 

iii = ~%2 [A„ cos nd + Bn sin nd] 
n = 1 

(16) 

(17) 

the terms for n = 1 being omitted because they do not contribute 
to the buckling motion. Substituting (16) and (17) into (15) 
yields 

a6F„ + [s27«4 - n2((3 + s2Ya4) + /3n4]F„ 

= - s 2 7 « 4 ( l - n*)A„ (18) 

and a similar equation for (?„. Dividing by A„ and putt ing/„ = 
Fn/An, (18) becomes 

a% + (rc2 - l)(/3n2 - s27a4)/„ = s27a4(n2 - 1) (19) 

The nature of the buckling motion is apparent from (19). For 
negative values of the coefficient of/„, the solutions are hyperbolic 
functions and the magnitude of /„ grows exponentially with 
time. Taking /3 = 1 and 7 = 1 initially, and noting that a = 1 
at the beginning of the motion, we see that modes with ?i2 < s2 

are initially unstable. As collapse proceeds, a. decreases; hence 
at some point the coefficient of/„ becomes positive and the modes 
that were initially unstable become stable, i.e., they become 
oscillatory. However, while a decreases during collapse, in 
general 7 increases and (3 decreases. Thus the growth during 
the period of instability depends not only on the rate of collapse, 
but also on the shape of the stress-strain curve. 

To integrate (19) we must know a as a function of r, and we 
must know /3 and 7 as functions of strain and hence of a. In­
stead of solving (19) for any particular material, in this papeT we 
obtain the critical collapse velocity for /3 = 1 and 7 = 1. This 
corresponds to a hypothetical rigid linear-strain-hardening 
material (/3 = 1) with a small hardening modulus (7 = 1). 

For a constant collapse velocity V, 

Vt 

a 

(20) 

r a — Wo 
a = — = = 1 

a a 

In terms of r this may be written 

a = 1 -

where 

V ' a 
q= T- = V l 2 — 

a ho 

wo V 

a 

qr 

V V 

Ip fP 

(21) 
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Fig. 4 Final magnitude of f„ for s = 30; critical mode is n — 10 

Using (20) and the initial conditions /„ = /,, = 0, (19) was 
integrated numerically for values of n < s. The final magnitude 
of/„ was taken as the magnitude just prior to the change in sign 
of the coefficient of/„ in (19). 

The final magnitude of/„ as a function of n and 9, for s = 30, is 
shown in Fig. 4. For any particular n, fn decreases with in­
creasing q, as expected. The value of n for which /„ is maximum 
is n = 10. The value of a at the instant the mode n = 10 be­
comes stable is found from the coefficient of /„ in (19) and, with 
P = 7 = 1, is given by 

^ 
(22) 

For 8 = 30 and n = 10, a = 0.577. 
Curves such as those in Fig. 4 were calculated for 15 < s < 

200. From these curves, the values of q for/„ = 10 and /„ = 100 
were determined and are shown in Fig. 5 along with the critical 
mode numbers. For a particular value of s, the critical velocity 
q is greater for /„ = 10 than for/„ = 100, as expected. Also, for 
thinner shells, i.e., larger values of s, the critical velocity in­
creases. The critical mode numbers increase with s, but are 
nearly the same for both curves for the same value of s. 

To determine the critical collapse velocity for a particular ex­
ample, we proceed as follows. From (13) and (21), we have 

= Vl2 V: Eo ho 
q = V l 2 — -j=-

ho Eo s ,Vf 
(23) 

We see that geometry enters both of these expressions only 
through the radius-to-thickness ratio. However, material prop­
erties affect s through the ratio of the flow stress do to the slope 
Eo of the stress-strain curve, and they affect q through the ve­
locity {Eo/pf/2. A reasonable value for (ao/Eo)1^ is 0.5, and a 
reasonable value for (E0/p^1/2 is 5 X 104 cm/sec. Then, taking 
a/ho = 30, we find 

s = \ / l2 (0 .5 )30 = 52. 
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Fig. 5 Critical collapse velocity curves for fn = 10 and 100 

From the curve for/„ = 10 in Fig. 5, we find q = 130 for s = 52. 
Then, from (23), we have for V 

V 
hi 

• ^ = 130 -
V l 2 30 

1 5 X 104 

Vl2 

V = 6.2 X 104 cm/sec = 0.6 mm/^sec = 1800 fps. 

Direct experimental evidence is lacking to check the results of 
the preceding analysis. However, collapse velocities for copper 
shaped-charge liners are in the range of 1 mm/fisee (3300 fps), 
in qualitative agreement with the foregoing result. To make a 
quantitative verification of the theory, actual stress-strain curves 
should be used in the numerical integration of (19). 

Discussion 
In the foregoing analysis, we used a simple uniaxial stress-

strain law, Fig. 2. Here we discuss the bending resistance of a 
collapsing shell using a biaxial law. 

We take the radial stress through the shell thickness to be zero. 
Then the von Mises yield condition in terms of the principal 
stresses <re (hoop stress) and ux (axial stress) is as shown in Fig. 
6(a). Taking the principal axes of the plastic strain increment 
to be parallel to the axes of the principal stresses (Reuss flow 
rule), the axes in Fig. 6(a) are also the axes of the principal plastic 
strain increments Aee and Aex. For a shell projected radially 
inward with no axial strain, are is compressive and Atx = 0. 
Thus the corresponding point on the yield ellipse is point 0 in 
Fig. 6(a), at which ere is compressive and the normal to the yield 
ellipse (which gives the direction cf the plastic strain increment 
vector) is parallel to the Aej-axis. 

For a material tha t strain hardens isotropically, the yield 
ellipse expands as the strain increases. If buckling occurs as 
shown in Fig. 1(b), the hoop strain at A will be greater than that 

Fig. 6 Biaxial stress states of collapsing shells on the von Mises yield 
ellipse 

at B. Hence, as shown in Fig. 6(6), the corresponding stresses 
will lie on expanding yield ellipses on either side of the expanding 
yield ellipse corresponding to the average hoop strain. The 
difference in as between A' and B ' implies a bending moment that 
resists the buckling motion. Since this moment is due to strain 
hardening, it is called the strain-hardening moment. The fore­
going analysis is based on bending resistance due to the strain-
hardening moment. 

Strain-rate effects can also give rise to bending moments that 
resist the buckling motion. From Fig. 1(6) it is apparent that 
the hoop strain rate at A exceeds that at B. Hence, if the yield 
stress of the material increases with strain rate, the stresses cor­
responding to A and B will lie on yield ellipses on either side of 
the yield ellipse corresponding to the average hoop strain rate, 
analogous to the situation with strain hardening, Fig. 6(6). 
Florence [3] has analyzed the buckling of strain-rate sensitive 
mild steel cylinders. 

For a material for which strain hardening is independent of 
strain rate, the critical collapse velocity based on strain harden­
ing alone is an upper bound. However, for a material for which 
strain hardening decreases with increasing strain rate, a more 
complete analysis than that given in this paper is required to de­
termine a critical collapse velocity. 

If instead of Ae^ = 0 we have <jx = 0 (as for a ring), the corre­
sponding point on the yield ellipse for a shell that collapses with­
out buckling is 0' in Fig. 6(c). If buckling occurs, the hoop 
strain at A, Fig. 1(6) will be greater than the average and that 
at B will be less, but the axial strain will be the same at A and B. 
Thus the strain increment vectors corresponding to points A 
and B have the same axial component but different hoop com­
ponents. Hence, the direction of the strain increment vectors 
for A and B will not be parallel to that at 0' in Fig. 6(c), but will 
be shifted slightly. Since the strain increment vectors must be 
normal to the yield ellipse, the difference in the direction of the 
strain increment vectors implies a stress difference at A and B as 
indicated in Fig. 6(d). The bending moment due to this stress 
difference Goodier has termed the directional moment. I t is 
interesting to note that directional moments do not arise for Ae^ 
= 0, since all strain increment vectors are in the same direction. 
Florence and Goodier [4] analyzed the axisymmetric buckling 
of thick-walled tubes including the effects of directional moments. 

In high-speed collapse of. cylindrical shells, the resistance to 
buckling must come initially from strain-hardening and strain-
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rate moments, since the axial flow required for the development 
of directional moments can occur only in the material that has 
been reached by relief waves from the ends of the shell. Since 
shells become thicker and hence more stable as they collapse, the 
most important part of the buckling occurs in the initial stages 
of collapse. Hence, in many problems, directional moments may 
be unimportant. Moreover, the increased bending resistance 
due to directional moments tends to decrease the critical collapse 
velocity. Hence, a critical collapse velocity calculated without 
regard to directional moments is an upper bound. 
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