Int. Journal of Math. Analysis, Vol. 3, 2009, no. 31, 1529-1537

# The Existence of Positive Solutions for an Integral Boundary Value Problems 

Hongling Geng and Fuyi Xu<br>School of Science<br>Shandong University of Technology, Zibo, Shandong<br>255049, People's Republic of China


#### Abstract

In this paper, by using fixed point theorem of cone expansion-compression type and suitable conditions, we present the existence of single positive solution for the integral boundary value problems. We derive an explicit interval of $\lambda$ such that for any $\lambda$ in this interval, the existence of at least one positive solution to the boundary value problems is guaranteed.


Mathematics Subject Classification: 34B16
Keywords: Integral boundary value problem; Positive solutions; Fixedpoint theorem; Cone

## 1 Introduction

In this paper, we consider the integral boundary value problem

$$
\left\{\begin{array}{l}
\left(p(t) u^{\prime}(t)\right)^{\prime}-q(t) u(t)+\lambda f(t, u)=0, \quad 0 \leq t \leq 1  \tag{1.1}\\
a u(0)-b p(0) u^{\prime}(0)=\int_{r}^{R} \alpha(t) u(t) d t \\
c u(1)+d p(1) u^{\prime}(1)=\int_{r}^{R} \beta(t) u(t) d t
\end{array}\right.
$$

where $a, b, c, d \in[0,+\infty), 0<r<R<1$ are given constants, $p, q \in C([0,1],(0,+\infty))$, $\alpha, \beta \in C([0,1],[0,+\infty))$.

Integral boundary value problems arise in a variety of different areas of applied mathematics and physics. Boundary value problems(BVP) (1.1) becomes a generic multi-point boundary value problem, some special cases of which have been extensively studied in many papers in recent years. Moreover, boundary

[^0]value problem (1.1)includes the two-point, three-point and multi-point boundary value problems as special cases. So we can see our work naturally extend and unify some known results both for two-point boundary value problem and for multi-point boundary value problem in the literature.

The mail tool of this paper is the following well known Krasnoselskii's fixed point theorem.
Theorem 1.1(See[10]). Suppose $E$ is a Banach space, $K \subset E$ is a cone, let $\Omega_{1}, \Omega_{2}$ be two bounded open sets of $E$ such that $\theta \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$. Let operator $T: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \longrightarrow K$ be completely continuous. Suppose that one of the following two conditions holds
(i) $\|T x\| \leq\|x\|, \quad \forall x \in K \cap \partial \Omega_{1}, \quad\|T x\| \geq\|x\|, \quad \forall x \in K \cap \partial \Omega_{2}$; or
(ii) $\|T x\| \geq\|x\|, \quad \forall x \in K \cap \partial \Omega_{1}, \quad\|T x\| \leq\|x\|, \quad \forall x \in K \cap \partial \Omega_{2}$.

Then $T$ has at least one fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

## 2 Preliminaries and Lemmas

In the rest of the paper, we make the following assumptions:
$\left(H_{1}\right) \quad f \in C([0,+\infty),[0,+\infty))$;
$\left(H_{2}\right) \quad h \in C([0,1],[0,+\infty))$ and there exists $x_{0} \in(0$,$) such that h\left(x_{0}\right)>0 ;$
$\left(H_{3}\right) \quad a \in C[0,1], b \in C([0,1],(-\infty, 0))$.
In this section, we present some lemmas that are important to our main results.
Lemma 2.1(See[5]). Assume that $\left(H_{3}\right)$ holds. Let $\phi_{1}(t), \phi_{2}(t)$ are the positive solutions of

$$
\begin{aligned}
& \left\{\begin{array}{l}
\phi_{1}^{\prime \prime}(t)+a(t) \phi_{1}^{\prime}(t)+b(t) \phi_{1}(t)=0, \quad 0 \leq t \leq 1, \\
\phi_{1}(0)=0, \quad \phi_{1}(1)=1,
\end{array}\right. \\
& \left\{\begin{array}{l}
\phi_{2}^{\prime \prime}(t)+a(t) \phi_{2}^{\prime}(t)+b(t) \phi_{2}(t)=0, \quad 0 \leq t \leq 1, \\
\phi_{2}(0)=1, \quad \phi_{2}(1)=0
\end{array}\right.
\end{aligned}
$$

Then
(i) $\phi_{1}(t)$ is strictly increasing on $[0,1]$, and $\phi_{1}(t)>0$ on $(0,1]$;
(ii) $\phi_{2}(t)$ is strictly decreasing on $[0,1]$, and $\phi_{1}(t)>0$ on $[0,1)$.

$$
\text { Set } \rho=p(0)\left|\begin{array}{cc}
\phi_{2}(0) & \phi_{1}(0) \\
\phi_{2}^{\prime}(0) & \phi_{1}^{\prime}(0)
\end{array}\right|, \Delta=\left|\begin{array}{cc}
-\int_{r}^{R} \alpha(t) \phi_{1}(t) d t & \rho-\int_{r}^{R} \alpha(t) \phi_{2}(t) d t \\
\rho-\int_{r}^{R} \beta(t) \phi_{1}(t) d t & -\int_{r}^{R} \beta(t) \phi_{2}(t) d t
\end{array}\right|
$$

Lemma 2.2. Assume that $\left(H_{3}\right)$ and $\left(H_{4}\right)$ hold, $\Delta \neq 0$. Let $y \in C[0,1]$, then
the problems

$$
\left\{\begin{array}{l}
\left(p(t) u^{\prime}(t)\right)^{\prime}-q(t) u(t)+y(t)=0, \quad 0 \leq t \leq 1  \tag{2.1}\\
a u(0)-b p(0) u^{\prime}(0)=\int_{r}^{R} \alpha(t) u(t) d t \\
c u(1)+d p(1) u^{\prime}(1)=\int_{r}^{R} \beta(t) u(t) d t
\end{array}\right.
$$

is equivalent to the integral equation

$$
\begin{equation*}
u(t)=\int_{0}^{1} G(t, s) y(s) d s+A(y) \phi_{1}(t)+B(y) \phi_{2}(t) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{gather*}
G(t, s)=\frac{1}{\rho}\left\{\begin{array}{cc}
\phi_{1}(t) \phi_{2}(s), & t \leq s \\
\phi_{1}(s) \phi_{2}(t), & s \leq t
\end{array}\right.  \tag{2.3}\\
A(y)=\frac{1}{\Delta}\left|\begin{array}{cc}
\int_{r}^{R} \alpha(t) \int_{0}^{1} G(t, s) y(s) d s d t & \rho-\int_{r}^{R} \alpha(t) \phi_{2}(t) d t \\
\int_{r}^{R} \beta(t) \int_{0}^{1} G(t, s) y(s) d s d t & -\int_{r}^{R} \beta(t) \phi_{2}(t) d t
\end{array}\right|,  \tag{2.4}\\
B(y)=\frac{1}{\Delta}\left|\begin{array}{cc}
-\int_{r}^{R} \alpha(t) \phi_{1}(t) & \int_{r}^{R} \alpha(t) \int_{0}^{1} G(t, s) y(s) d s d t \\
\rho-\int_{r}^{R} \beta(t) \phi_{1}(t) d t & \int_{r}^{R} \beta(t) \int_{0}^{1} G(t, s) y(s) d s d t
\end{array}\right| \tag{2.5}
\end{gather*}
$$

Moreover, $u(t) \geq 0$ on $[0,1]$ provided $y(t) \geq 0$.
Set

$$
q(t)=\min \left(\frac{\phi_{1}(t)}{\left\|\phi_{1}\right\|}, \frac{\phi_{2}(t)}{\left\|\phi_{2}\right\|}\right)
$$

where $\|$.$\| denote the supernum norm. From (2.3) we have$

$$
G(s, s) \geq G(t, s) \geq q(t) G(s, s), \text { for } t \in[0,1]
$$

Choose $\delta \in\left(0, \frac{1}{2}\right)$ such that there exists $x_{0} \in(\delta, 1-\delta)$, take

$$
\gamma=\min \{q(t) \mid t \in[\delta, 1-\delta]\} .
$$

It follows from Lemma 2.1 that $0<\gamma<1$
Lemma 2.3. Let $\left(H_{2}\right),\left(H_{3}\right)$ and $\left(H_{4}\right)$ hold. Assume $\Delta<0, \rho-\int_{r}^{R} \alpha(t) \phi_{2}(t) d t>$ $0, \rho-\int_{r}^{R} \beta(t) \phi_{1}(t) d t>0$. Then $y \in C[0,1]$ with $y \geq 0$, the unique solution of the problem (2.1) satisfies $u(t) \geq 0$ and

$$
u(t) \geq \gamma\|u\|, t \in[\delta, 1-\delta] .
$$

Proof. By

$$
0 \leq G(t, s) \leq G(s, s), \text { for } t \in[0,1]
$$

which implies

$$
u(t) \leq \int_{0}^{1} G(s, s) p(s) y(s) d s+A \phi_{1}(t)+B \phi_{2}(t)
$$

By

$$
G(t, s) \geq q(t) G(s, s), \text { for } t \in[0,1]
$$

we have that for $t \in[\delta, 1-\delta]$,

$$
G(t, s) \geq \gamma G(s, s)
$$

Thus for $t \in[\delta, 1-\delta]$,

$$
\begin{aligned}
u(t) & =\int_{0}^{1} G(t, s) p(s) y(s) d s+A \phi_{1}(t)+B \phi_{2}(t) \\
& =\int_{0}^{1} \frac{G(t, s)}{G(s, s)} G(s, s) p(s) y(s) d s+A \phi_{1}(t)+B \phi_{2}(t) \\
& \geq \gamma \int_{0}^{1} G(s, s) p(s) y(s) d s+A \phi_{1}(t)+B \phi_{2}(t) \\
& \geq \gamma\left(\int_{0}^{1} G(s, s) p(s) y(s) d s+A \phi_{1}(t)+B \phi_{2}(t)\right) \\
& \geq \gamma\|u\|
\end{aligned}
$$

## 3 The Main Results

Let

$$
\begin{array}{rlrl}
f_{0} & =\lim _{x \longrightarrow 0^{+}} \min _{t \in[0,1]} \frac{f(t, x)}{x}, & f_{\infty} & =\lim _{x \longrightarrow \infty} \min _{t \in[0,1]} \frac{f(t, x)}{x} \\
f^{0} & =\lim _{x \longrightarrow 0^{+}} \max _{t \in[0,1]} \frac{f(t, x)}{x}, & f^{\infty} & =\lim _{x \longrightarrow \infty} \max _{t \in[0,1]} \frac{f(t, x)}{x}, \\
\underline{f}^{0} & =\lim _{x \longrightarrow 0^{+}} \inf \max _{t \in[0,1]} \frac{f(t, x)}{x}, & \underline{f}^{\infty} & =\lim _{x \longrightarrow \infty} \inf \max _{t \in[0,1]} \frac{f(t, x)}{x}, \\
\bar{f}_{0} & =\lim _{x \longrightarrow 0^{+}} \sup _{\min _{t \in[0,1]}} \frac{f(t, x)}{x}, & \bar{f}_{\infty} & =\lim _{x \longrightarrow \infty} \sup _{\min _{t \in[0,1]} \frac{f(t, x)}{x}}^{x} \\
A_{1}=\int_{0}^{1} G(s, s) d s+A_{0} \phi_{1}(1)+B_{0} \phi_{2}(0), A_{2}=\max _{t \in[0,1]}\left(\int_{\delta}^{1-\delta} G(t, s) d s\right),
\end{array}
$$

where

$$
\begin{aligned}
& A_{0}=\frac{1}{\Delta}\left|\begin{array}{cc}
\int_{r}^{R} \alpha(t) \int_{0}^{1} G(s, s) d s d t & \rho-\int_{r}^{R} \alpha(t) \phi_{2}(t) d t \\
\int_{r}^{R} \beta(t) \int_{0}^{1} G(s, s) d s d t & -\int_{r}^{R} \beta(t) \phi_{2}(t) d t
\end{array}\right|, \\
& B_{0}=\frac{1}{\Delta}\left|\begin{array}{cc}
-\int_{r}^{R} \alpha(t) \phi_{1}(t) & \int_{r}^{R} \alpha(t) \int_{0}^{1} G(s, s) d s d t \\
\rho-\int_{r}^{R} \beta(t) \phi_{1}(t) d t & \int_{r}^{R} \beta(t) \int_{0}^{1} G(s, s) d s d t
\end{array}\right| .
\end{aligned}
$$

Let $E=C[0,1]$, then $E$ is Banach space, with respect to the norm $\|u\|=$ $\sup _{t \in[0,1]}|u(t)|$.

Now BVP $(1.1)$ has a solution $u=u(t)$ if and only if $u$ is a solution of the operator equation
$(T u)(t)=\lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(t)+B(f(s, u(s))) \phi_{2}(t)\right)$,
where $p$ and $G$ are defined in Lemma2.1.
We define a cone in $E$ by

$$
P=\left\{u \in E \mid u \geq 0, \min u(t)_{t \in[\delta, 1-\delta]} \geq \gamma\|u\|\right\}
$$

It is easy to check $T(P) \subset P$ and $T$ is completely continuous.
In this section, we discuss the existence conditions of at least one positive solution for $\operatorname{BVP}(1.1)$. We obtain the following existence results.
Theorem 3.1. Suppose conditions $\left(H_{1}\right)-\left(H_{4}\right)$ hold. In addition,
(1) If $A_{1} f_{0}<\gamma A_{2} f_{\infty}$, then for each $\lambda \in\left(\frac{1}{\gamma A_{2} f_{\infty}}, \frac{1}{A_{1} f_{0}}\right)$, the $\operatorname{BVP}(1.1)$ has at least one positive solution.
(2) If $f_{0}=0$ and $f_{\infty}=\infty$, then for any $\lambda \in(0, \infty)$, the $\operatorname{BVP}(1.1)$ has at least one positive solution.
(3) If $f_{\infty}=\infty, 0<f_{0}<\infty$, then for each $\lambda \in\left(0, \frac{1}{A_{1} f_{0}}\right)$, the $\operatorname{BVP}(1.1)$ has at least one positive solution.
(4) If $f_{0}=0,0<f_{\infty}<\infty$, then for each $\lambda \in\left(\frac{1}{\gamma A_{2} f_{\infty}}, \infty\right)$, the $\operatorname{BVP}(1.1)$ has at least one positive solution.
Proof. We only prove the case (1). We construct the set $\Omega_{R_{1}}, \Omega_{R_{2}^{*}}$ in order to apply Theorem1.1. Let $\lambda \in\left(\frac{1}{\gamma A_{2} f_{\infty}}, \frac{1}{A_{1} f_{0}}\right)$, and choose $\varepsilon>0$ such that

$$
\frac{1}{\gamma A_{2}\left(f_{\infty}-\varepsilon\right)} \leq \lambda \leq \frac{1}{A_{1}\left(f^{0}+\varepsilon\right)}
$$

By the definition of $f^{0}$, we choose $R_{1}>0$ such that $f(t, u) \leq\left(f^{0}+\varepsilon\right) u$, for $(t, u) \in[0,1] \times\left[0, R_{1}\right]$. Thus for $u \in P$ and $\|u\|=R_{1}$, we have

$$
\begin{aligned}
(T u)(t) & =\lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(t)+B(f(s, u(s))) \phi_{2}(t)\right) \\
& \leq \lambda\left(\int_{0}^{1} G(s, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(1)+B(f(s, u(s))) \phi_{2}(0)\right) \\
& \leq \lambda A_{1}\left(f_{0}+\varepsilon\right)\|u\| \leq\|u\| .
\end{aligned}
$$

Let $\Omega_{R_{1}}=\left\{u \in E \mid\|u\|<R_{1}\right\}$, it follows that

$$
\begin{equation*}
\|T u\| \leq\|u\|, \text { for } \quad u \in P \cap \partial \Omega_{R_{1}} . \tag{3.1}
\end{equation*}
$$

Considering the definition of $f_{\infty}$, there exists $R_{2}>R_{1}$ such that $f(t, u) \geq$ $\left(f_{\infty}-\varepsilon\right) u$ for $(t, u) \in[0,1] \times\left[R_{2}, \infty\right)$. Let $R_{2}^{*}=\max \left\{2 R_{1}, \frac{R_{2}}{\gamma}\right\}$ and $\Omega_{R_{2}^{*}}=\{u \in$ $\left.E \mid\|u\|<R_{2}^{*}\right\}$, then $u \in P$ and $\|u\|=R_{2}^{*}$ implies

$$
\min _{t \in[\delta, 1-\delta]} u(t) \geq \gamma\|u\| \geq R_{2} .
$$

So we have

$$
\begin{aligned}
\|(T u)\| & =\max _{t \in[0,1]} \lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(t)+B(f(s, u(s))) \phi_{2}(t)\right) \\
& \geq \max _{t \in[0,1]} \lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s\right) \\
& \geq \max _{t \in[0,1]} \lambda\left(\int_{\delta}^{1-\delta} G(t, s) f(s, u(s)) d s\right) \\
& \geq \lambda\left(f_{\infty}-\varepsilon\right) \gamma A_{2}\|u\| \geq\|u\| .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|T u\| \geq\|u\|, \text { for } \quad u \in P \cap \partial \Omega_{R_{2}^{*}} . \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2) and Theorem1.1[10], thus $T$ has a fixed point in $u \in$ $P \cap\left(\bar{\Omega}_{R_{2}^{*}} \backslash \Omega_{R_{1}}\right)$, which is a positive solution of $\operatorname{BVP}(1.1)$.
Theorem 3.2. Suppose condition $\left(H_{1}\right)-\left(H_{4}\right)$ hold. In addition,
(1) If $A_{1} f_{\infty}<\gamma A_{2} f_{0}$, then for each $\lambda \in\left(\frac{1}{\gamma A_{2} f_{0}}, \frac{1}{A_{1} f_{\infty}}\right)$, the BVP(1.1) has at least one positive solution.
(2) If $f_{0}=\infty$ and $f_{\infty}=0$, then for any $\lambda \in(0, \infty)$, the $\operatorname{BVP}(1.1)$ has at least one positive solution.
(3) If $f_{\infty}=\infty, 0<f_{0}<\infty$, then for each $\lambda \in\left(0, \frac{1}{A_{1} f_{0}}\right)$, the $\operatorname{BVP}(1.1)$ has at least one positive solution.
(4) If $f_{0}=0,0<f_{\infty}<\infty$, then for each $\lambda \in\left(\frac{1}{\gamma A_{2} f_{\infty}}, \infty\right)$, the $\operatorname{BVP}(1.1)$ has at least one positive solution..
Proof. We only prove the case(1). Let $\lambda \in\left(\frac{1}{\gamma A_{2} f_{0}}, \frac{1}{A_{1} f^{\infty}}\right)$, and choose $\varepsilon>0$ such that

$$
\frac{1}{\gamma A_{2}\left(f_{0}-\varepsilon\right)} \leq \lambda \leq \frac{1}{A_{1}\left(f^{\infty}+\varepsilon\right)}
$$

By the definition of $f_{0}$, there exists $\rho_{0} \in(0, \infty)$ such that $f(t, u) \geq\left(f_{0}-\varepsilon\right) u$ for $(t, u) \in[0,1] \times\left[0, \rho_{0}\right]$. Let $\Omega_{\rho_{0}}=\left\{u \in E \mid \quad\|u\|<\rho_{0}\right\}$, then $u \in P$ and $\|u\|=\rho_{0}$, we have

$$
\begin{aligned}
\|(T u)\| & =\max _{t \in[0,1]} \lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(t)+B\left(f(s, u(s)) \phi_{2}(t)\right)\right. \\
& \geq \max _{t \in[0,1]} \lambda\left(\int_{\delta}^{1-\delta} G(t, s) f(s, u(s)) d s\right) \\
& \geq \lambda\left(f_{0}-\varepsilon\right) \gamma A_{2}\|u\| \geq\|u\|
\end{aligned}
$$

So

$$
\begin{equation*}
\|T u\| \geq\|u\|, \text { for } u \in P \cap \partial \Omega_{\rho_{0}} . \tag{3.3}
\end{equation*}
$$

By the definition of $f^{\infty}$, there exists $\rho_{1}$ such that $f(t, u) \leq\left(f_{\infty}+\varepsilon\right) u$ for $(t, u) \in[0,1] \times\left[\rho_{1}, \infty\right)$.

We consider the following two cases:
Case(i) If $f$ is unbounded, there exists $\rho_{2}^{*}>\max \left\{2 \rho_{0}, \gamma^{-1} \rho_{1}\right\}$ such that $f(t, u) \leq f\left(t, \rho_{2}^{*}\right)$ for $(t, u) \in[0,1] \times\left[0, \rho_{2}^{*}\right]$. Then, for $u \in P$ and $\|u\|=\rho_{2}^{*}$, we have

$$
\begin{aligned}
(T u)(t) & =\lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s+A(f s,(u(s))) \phi_{1}(t)+B(f(s, u(s))) \phi_{2}(t)\right) \\
& \leq \lambda\left(\int_{0}^{1} G(s, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(1)+B(f(s, u(s))) \phi_{2}(0)\right) \\
& \leq \lambda\left(f_{\infty}+\varepsilon\right) A_{1}\|u\| \leq\|u\| .
\end{aligned}
$$

Case(ii) If $f$ is bounded, say $f(t, u) \leq N_{1}$ for all $(t, u) \in[0,1] \times[0,+\infty)$, taking $\rho_{2}^{*} \geq\left\{2 \rho_{0}, \lambda N_{1} A_{1}\right\}$ for $u \in P$ and $\|u\|=\rho_{2}^{*}$, we have

$$
\begin{aligned}
(T u)(t) & =\lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(t)+B(f(s, u(s))) \phi_{2}(t)\right) \\
& \leq \lambda\left(\int_{0}^{1} G(s, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(1)+B(f(s, u(s))) \phi_{1}(0)\right) \\
& \leq \lambda N_{1} A_{1} \leq \rho_{2}^{*} \leq\|u\| .
\end{aligned}
$$

Hence, in either case, we may put $\Omega_{\rho_{2}^{*}}=\left\{u \in E \mid\|u\|<\rho_{2}^{*}\right\}$ such that

$$
\begin{equation*}
\|T u\| \leq\|u\|, \text { for } \quad u \in P \cap \partial \Omega_{\rho_{2}}^{*} . \tag{3.4}
\end{equation*}
$$

From(3.3),(3.4) and Theorem1.1[10], thus $T$ has a fixed point in $u \in P \cap\left(\bar{\Omega}_{\rho_{2}^{*}} \backslash\right.$ $\Omega_{\rho_{0}}$ ), which is a positive solution of $\operatorname{BVP}(1.1)$.
Theorem 3.3. Suppose condition $\left(H_{1}\right)-\left(H_{4}\right)$ hold. In addition, assume there exist two positive constants $R_{1} \neq R_{2}$ such that
(1) $f(t, u) \leq \frac{R_{1}}{\lambda A_{1}}, \forall(t, u) \in[0,1] \times\left[0, R_{1}\right]$;
(2) $f(t, u) \geq \frac{R_{2}}{\lambda A_{2}}, \forall(t, u) \in[0,1] \times\left[\gamma R_{2}, R_{2}\right]$. Then the $\operatorname{BVP}(1.1)$ has at least one positive solution $u$ such that $\|u\|$ between $R_{1}$ and $R_{2}$.
Proof. We only consider the case $R_{1}<R_{2}$, the case $R_{1}>R_{2}$ follows in a similar way. Let $\Omega_{R_{1}}=\left\{u \in E \mid\|u\|<R_{1}\right\}, \Omega_{R_{2}}=\left\{u \in E \mid\|u\|<R_{2}\right\}$. It follows from (1) for any $u \in P \cap \Omega_{R_{1}}$,

$$
\begin{aligned}
(T u)(t) & =\lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(t)+B(f(s, u(s))) \phi_{2}(t)\right) \\
& \leq \lambda\left(\int_{0}^{1} G(s, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(1)+B(f(s, u(s))) \phi_{2}(0)\right) \\
& \leq \lambda A_{1} \frac{R_{1}}{\lambda A_{1}}=\|u\| .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\|T u\| \leq\|u\|, \text { for } u \in P \cap \Omega_{R_{1}} \text {. } \tag{3.5}
\end{equation*}
$$

On the other hand, for any $u \in P \cap \Omega_{R_{2}}$, we have $\gamma R_{2} \leq|u(t)| \leq R_{2}$, for $t \in$ $[\delta, 1-\delta]$. It follows that for any $u \in P \cap \Omega_{R_{2}}$,

$$
\begin{aligned}
\|T u\| & =\max _{t \in[0,1]} \lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s+A(f(s, u(s))) \phi_{1}(t)+B(f(s, u(s))) \phi_{2}(t)\right) \\
& \geq \max _{t \in[0,1]} \lambda\left(\int_{0}^{1} G(t, s) f(s, u(s)) d s\right) \\
& \geq \max _{t \in[0,1]} \lambda\left(\int_{\delta}^{1-\delta} G(t, s) f(s, u(s)) d s\right) \\
& \geq R_{2}=\|u\| .
\end{aligned}
$$

So

$$
\begin{equation*}
\|T u\| \geq\|u\|, \quad \text { for } \quad u \in P \cap \partial \Omega_{R_{2}} . \tag{3.6}
\end{equation*}
$$

From(3.5),(3.6) and Theorem1.1[10], thus $T$ has a fixed point in $u \in P \cap\left(\bar{\Omega}_{R_{2}} \backslash\right.$ $\Omega_{R_{1}}$ ), which is a positive solution of $\operatorname{BVP}(1.1)$ between $R_{1}$ and $R_{2}$.

## References

[1] V.A. Il'in, E.I.Moviseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Diff .Eqnt.23(1987) 979-987.
[2] V.A. Il'in, E.I. Moviseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Diff .Eqnt.23(1987) 803-810.
[3] C.P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168 (1992) 540-551.
[4] C.P. Gupta, A generalized multi-point boundary value problem for second order ordinary differential equations, Appl.Math.Comput. 89 (1998) 133146.
[5] R.Y. Ma, H.Y. Wang, Positive solutions for a nonlinear three-point boundary value problems, J. Math. Anal. Appl. 279 (2003) 216-227.
[6] R.Y. Ma, Positive solutions for a nonlinear m-point boundary value problems, Comput. Math.Appl.42(2001) 775-765.
[7] M.Moshinsky ,Sobre los problems de condiciones a la frontiera en una dimension de caracteristicas discontinuas,Bol.Soc.Mat.Mexicana 7(1950) 1-25.
[8] S. Timoshenko, Theory of Elastic Stability, Mc.Graw, New York,1961.
[9] M,A,Krasnoselskii, Positive solution of operator equations.Noordhoof,Gronignen,1964.
[10] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cone. Academic Press, Sandiego, 1988.

Received: February, 2009


[^0]:    ${ }^{1}$ E-mail addresses: ghl1102@163.com(H.Geng), xfy_02@163.com(F.Xu).

