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Abstract

In this paper, by using fixed point theorem of cone expansion-compression
type and suitable conditions, we present the existence of single positive
solution for the integral boundary value problems. We derive an explicit
interval of λ such that for any λ in this interval, the existence of at least
one positive solution to the boundary value problems is guaranteed.
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1 Introduction

In this paper, we consider the integral boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p(t)u′(t))′ − q(t)u(t) + λf(t, u) = 0, 0 ≤ t ≤ 1,

au(0) − bp(0)u′(0) =
∫R
r α(t)u(t)dt,

cu(1) + dp(1)u′(1) =
∫ R
r β(t)u(t)dt

(1.1)

where a, b, c, d ∈ [0, +∞), 0 < r < R < 1 are given constants, p, q ∈ C([0, 1], (0, +∞)),
α, β ∈ C([0, 1], [0, +∞)).

Integral boundary value problems arise in a variety of different areas of ap-
plied mathematics and physics. Boundary value problems(BVP) (1.1) becomes
a generic multi-point boundary value problem, some special cases of which have
been extensively studied in many papers in recent years. Moreover, boundary
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value problem (1.1)includes the two-point,three-point and multi-point bound-
ary value problems as special cases. So we can see our work naturally extend
and unify some known results both for two-point boundary value problem and
for multi-point boundary value problem in the literature.

The mail tool of this paper is the following well known Krasnoselskii’s fixed
point theorem.

Theorem 1.1(See[10]). Suppose E is a Banach space, K ⊂ E is a cone, let
Ω1, Ω2 be two bounded open sets of E such that θ ∈ Ω1, Ω1 ⊂ Ω2. Let operator
T : K ∩ (Ω2 \ Ω1) −→ K be completely continuous. Suppose that one of the
following two conditions holds

(i) ‖Tx‖ ≤ ‖x‖, ∀ x ∈ K ∩ ∂Ω1, ‖Tx‖ ≥ ‖x‖, ∀ x ∈ K ∩ ∂Ω2; or

(ii) ‖Tx‖ ≥ ‖x‖, ∀ x ∈ K ∩ ∂Ω1, ‖Tx‖ ≤ ‖x‖, ∀ x ∈ K ∩ ∂Ω2.
Then T has at least one fixed point in K ∩ (Ω2 \ Ω1).

2 Preliminaries and Lemmas

In the rest of the paper, we make the following assumptions:

(H1) f ∈ C([0, +∞), [0, +∞));

(H2) h ∈ C([0, 1], [0, +∞)) and there exists x0 ∈ (0, ) such that h(x0) > 0;

(H3) a ∈ C[0, 1],b ∈ C([0, 1], (−∞, 0)).

In this section , we present some lemmas that are important to our main
results .

Lemma 2.1(See[5]). Assume that (H3) holds. Let φ1(t), φ2(t) are the positive
solutions of

⎧⎨
⎩

φ′′
1(t) + a(t)φ′

1(t) + b(t)φ1(t) = 0, 0 ≤ t ≤ 1,

φ1(0) = 0, φ1(1) = 1,

⎧⎨
⎩

φ′′
2(t) + a(t)φ′

2(t) + b(t)φ2(t) = 0, 0 ≤ t ≤ 1,

φ2(0) = 1, φ2(1) = 0.

Then

(i) φ1(t) is strictly increasing on [0,1], andφ1(t) > 0 on (0, 1] ;

(ii) φ2(t) is strictly decreasing on [0,1], andφ1(t) > 0 on [0, 1) .

Set ρ = p(0)

∣∣∣∣∣∣
φ2(0) φ1(0)

φ′
2(0) φ′

1(0)

∣∣∣∣∣∣, Δ =

∣∣∣∣∣∣
− ∫R

r α(t)φ1(t)dt ρ − ∫ R
r α(t)φ2(t)dt

ρ − ∫R
r β(t)φ1(t)dt − ∫ R

r β(t)φ2(t)dt

∣∣∣∣∣∣ .
Lemma 2.2. Assume that (H3) and (H4) hold, Δ �= 0. Let y ∈ C[0, 1], then
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the problems

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p(t)u′(t))′ − q(t)u(t) + y(t) = 0, 0 ≤ t ≤ 1,

au(0) − bp(0)u′(0) =
∫R
r α(t)u(t)dt,

cu(1) + dp(1)u′(1) =
∫R
r β(t)u(t)dt.

(2.1)

is equivalent to the integral equation

u(t) =
∫ 1

0
G(t, s)y(s)ds + A(y)φ1(t) + B(y)φ2(t), (2.2)

where

G(t, s) =
1

ρ

⎧⎨
⎩

φ1(t)φ2(s), t ≤ s,

φ1(s)φ2(t), s ≤ t,
(2.3)

A(y) =
1

Δ

∣∣∣∣∣∣
∫R
r α(t)

∫ 1
0 G(t, s)y(s)dsdt ρ − ∫ R

r α(t)φ2(t)dt∫R
r β(t)

∫ 1
0 G(t, s)y(s)dsdt − ∫ R

r β(t)φ2(t)dt

∣∣∣∣∣∣ , (2.4)

B(y) =
1

Δ

∣∣∣∣∣∣
− ∫R

r α(t)φ1(t)
∫ R
r α(t)

∫ 1
0 G(t, s)y(s)dsdt

ρ − ∫R
r β(t)φ1(t)dt

∫ R
r β(t)

∫ 1
0 G(t, s)y(s)dsdt

∣∣∣∣∣∣ . (2.5)

Moreover, u(t) ≥ 0 on [0,1] provided y(t) ≥ 0.
Set

q(t) = min

(
φ1(t)

‖φ1‖ ,
φ2(t)

‖φ2‖
)

,

where ‖.‖ denote the supernum norm. From (2.3) we have

G(s, s) ≥ G(t, s) ≥ q(t)G(s, s), for t ∈ [0, 1].

Choose δ ∈ (0, 1
2
) such that there exists x0 ∈ (δ, 1 − δ), take

γ = min{q(t)|t ∈ [δ, 1 − δ]}.

It follows from Lemma 2.1 that 0 < γ < 1
Lemma 2.3. Let (H2), (H3) and (H4) hold. Assume Δ < 0, ρ−∫R

r α(t)φ2(t)dt >
0, ρ − ∫R

r β(t)φ1(t)dt > 0. Then y ∈ C[0, 1] with y ≥ 0, the unique solution of
the problem (2.1) satisfies u(t) ≥ 0 and

u(t) ≥ γ‖u‖, t ∈ [δ, 1 − δ].

Proof. By

0 ≤ G(t, s) ≤ G(s, s), for t ∈ [0, 1],
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which implies

u(t) ≤
∫ 1

0
G(s, s)p(s)y(s)ds + Aφ1(t) + Bφ2(t).

By

G(t, s) ≥ q(t)G(s, s), for t ∈ [0, 1],

we have that for t ∈ [δ, 1 − δ],

G(t, s) ≥ γG(s, s).

Thus for t ∈ [δ, 1 − δ],

u(t) =
∫ 1

0
G(t, s)p(s)y(s)ds + Aφ1(t) + Bφ2(t)

=
∫ 1

0

G(t, s)

G(s, s)
G(s, s)p(s)y(s)ds + Aφ1(t) + Bφ2(t)

≥ γ
∫ 1

0
G(s, s)p(s)y(s)ds + Aφ1(t) + Bφ2(t)

≥ γ(
∫ 1

0
G(s, s)p(s)y(s)ds + Aφ1(t) + Bφ2(t))

≥ γ‖u‖.

3 The Main Results

Let

f0 = lim
x−→0+

min
t∈[0,1]

f(t, x)

x
, f∞ = lim

x−→∞ min
t∈[0,1]

f(t, x)

x
,

f 0 = lim
x−→0+

max
t∈[0,1]

f(t, x)

x
, f∞ = lim

x−→∞ max
t∈[0,1]

f(t, x)

x
,

f0 = lim
x−→0+

inf max
t∈[0,1]

f(t, x)

x
, f∞ = lim

x−→∞ inf max
t∈[0,1]

f(t, x)

x
,

f 0 = lim
x−→0+

sup min
t∈[0,1]

f(t, x)

x
, f∞ = lim

x−→∞ sup min
t∈[0,1]

f(t, x)

x
,

A1 =
∫ 1

0
G(s, s)ds + A0φ1(1) + B0φ2(0), A2 = max

t∈[0,1]

(∫ 1−δ

δ
G(t, s)ds

)
,

where
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A0 =
1

Δ

∣∣∣∣∣∣
∫R
r α(t)

∫ 1
0 G(s, s)dsdt ρ − ∫R

r α(t)φ2(t)dt∫ R
r β(t)

∫ 1
0 G(s, s)dsdt − ∫R

r β(t)φ2(t)dt

∣∣∣∣∣∣ ,

B0 =
1

Δ

∣∣∣∣∣∣
− ∫R

r α(t)φ1(t)
∫ R
r α(t)

∫ 1
0 G(s, s)dsdt

ρ − ∫R
r β(t)φ1(t)dt

∫ R
r β(t)

∫ 1
0 G(s, s)dsdt

∣∣∣∣∣∣ .
Let E = C[0, 1], then E is Banach space, with respect to the norm ‖u‖ =

supt∈[0,1] |u(t)|.
Now BVP(1.1) has a solution u = u(t) if and only if u is a solution of the

operator equation

(Tu)(t) = λ
(∫ 1

0
G(t, s)f(s, u(s))ds + A(f(s, u(s)))φ1(t) + B(f(s, u(s)))φ2(t)

)
,

where p and G are defined in Lemma2.1.
We define a cone in E by

P = {u ∈ E|u ≥ 0, min u(t)t∈[δ,1−δ] ≥ γ‖u‖}.
It is easy to check T (P ) ⊂ P and T is completely continuous.

In this section, we discuss the existence conditions of at least one positive
solution for BVP(1.1). We obtain the following existence results.
Theorem 3.1. Suppose conditions (H1)-(H4) hold. In addition,

(1) If A1f0 < γA2f∞, then for each λ ∈ ( 1
γA2f∞ , 1

A1f0
), the BVP(1.1) has at

least one positive solution.
(2) If f0 = 0 and f∞ = ∞, then for any λ ∈ (0,∞), the BVP(1.1) has at

least one positive solution.
(3) If f∞ = ∞, 0 < f0 < ∞, then for each λ ∈ (0, 1

A1f0
), the BVP(1.1) has

at least one positive solution.
(4) If f0 = 0, 0 < f∞ < ∞, then for each λ ∈ ( 1

γA2f∞ ,∞), the BVP(1.1)
has at least one positive solution.
Proof. We only prove the case (1). We construct the set ΩR1 , ΩR∗

2
in order to

apply Theorem1.1. Let λ ∈ ( 1
γA2f∞ , 1

A1f0
), and choose ε > 0 such that

1

γA2(f∞ − ε)
≤ λ ≤ 1

A1(f 0 + ε)
.

By the definition of f 0, we choose R1 > 0 such that f(t, u) ≤ (f 0 + ε)u, for
(t, u) ∈ [0, 1] × [0, R1]. Thus for u ∈ P and ‖u‖ = R1, we have

(Tu)(t) = λ
(∫ 1

0 G(t, s)f(s, u(s))ds + A(f(s, u(s)))φ1(t) + B(f(s, u(s)))φ2(t)
)

≤ λ
(∫ 1

0 G(s, s)f(s, u(s))ds + A(f(s, u(s)))φ1(1) + B(f(s, u(s)))φ2(0)
)

≤ λA1(f0 + ε)‖u‖ ≤ ‖u‖.
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Let ΩR1 = {u ∈ E|‖u‖ < R1}, it follows that

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂ΩR1 . (3.1)

Considering the definition of f∞, there exists R2 > R1 such that f(t, u) ≥
(f∞−ε)u for (t, u) ∈ [0, 1]× [R2,∞). Let R∗

2 = max{2R1,
R2

γ
} and ΩR∗

2
= {u ∈

E|‖u‖ < R∗
2}, then u ∈ P and ‖u‖ = R∗

2 implies

min
t∈[δ,1−δ]

u(t) ≥ γ‖u‖ ≥ R2.

So we have

||(Tu)|| = maxt∈[0,1] λ
(∫ 1

0 G(t, s)f(s, u(s))ds + A(f(s, u(s)))φ1(t) + B(f(s, u(s)))φ2(t)
)

≥ maxt∈[0,1] λ
(∫ 1

0 G(t, s)f(s, u(s))ds
)

≥ maxt∈[0,1] λ
(∫ 1−δ

δ G(t, s)f(s, u(s))ds
)

≥ λ(f∞ − ε)γA2‖u‖ ≥ ‖u‖.
Hence

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂ΩR∗
2
. (3.2)

From (3.1) and (3.2) and Theorem1.1[10], thus T has a fixed point in u ∈
P ∩ (ΩR∗

2
\ ΩR1), which is a positive solution of BVP(1.1).

Theorem 3.2. Suppose condition (H1)-(H4) hold. In addition,
(1) If A1f∞ < γA2f0, then for each λ ∈ ( 1

γA2f0
, 1

A1f∞ ), the BVP(1.1) has at
least one positive solution.

(2) If f0 = ∞ and f∞ = 0, then for any λ ∈ (0,∞), the BVP(1.1) has at
least one positive solution.

(3) If f∞ = ∞, 0 < f0 < ∞, then for each λ ∈ (0, 1
A1f0

), the BVP(1.1) has
at least one positive solution.

(4) If f0 = 0, 0 < f∞ < ∞, then for each λ ∈ ( 1
γA2f∞ ,∞), the BVP(1.1)

has at least one positive solution..
Proof. We only prove the case(1). Let λ ∈ ( 1

γA2f0
, 1

A1f∞ ), and choose ε > 0
such that

1

γA2(f0 − ε)
≤ λ ≤ 1

A1(f∞ + ε)
.

By the definition of f0, there exists ρ0 ∈ (0,∞) such that f(t, u) ≥ (f0 − ε)u
for (t, u) ∈ [0, 1] × [0, ρ0]. Let Ωρ0 = {u ∈ E| ‖u‖ < ρ0}, then u ∈ P and
‖u‖ = ρ0, we have

||(Tu)|| = maxt∈[0,1] λ
(∫ 1

0 G(t, s)f(s, u(s))ds + A(f(s, u(s)))φ1(t) + B(f(s, u(s))φ2(t)
)

≥ maxt∈[0,1] λ
(∫ 1−δ

δ G(t, s)f(s, u(s))ds
)

≥ λ(f0 − ε)γA2‖u‖ ≥ ‖u‖.
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So

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ωρ0 . (3.3)

By the definition of f∞, there exists ρ1 such that f(t, u) ≤ (f∞ + ε)u for
(t, u) ∈ [0, 1] × [ρ1,∞).

We consider the following two cases:
Case(i) If f is unbounded, there exists ρ∗

2 > max{2ρ0, γ
−1ρ1} such that

f(t, u) ≤ f(t, ρ∗
2) for (t, u) ∈ [0, 1] × [0, ρ∗

2]. Then, for u ∈ P and ‖u‖ = ρ∗
2, we

have

(Tu)(t) = λ
(∫ 1

0 G(t, s)f(s, u(s))ds + A(fs, (u(s)))φ1(t) + B(f(s, u(s)))φ2(t)
)

≤ λ
(∫ 1

0 G(s, s)f(s, u(s))ds + A(f(s, u(s)))φ1(1) + B(f(s, u(s)))φ2(0)
)

≤ λ(f∞ + ε)A1‖u‖ ≤ ‖u‖.

Case(ii) If f is bounded, say f(t, u) ≤ N1 for all (t, u) ∈ [0, 1] × [0, +∞),
taking ρ∗

2 ≥ {2ρ0, λN1A1} for u ∈ P and ‖u‖ = ρ∗
2, we have

(Tu)(t) = λ
(∫ 1

0 G(t, s)f(s, u(s))ds + A(f(s, u(s)))φ1(t) + B(f(s, u(s)))φ2(t)
)

≤ λ
(∫ 1

0 G(s, s)f(s, u(s))ds + A(f(s, u(s)))φ1(1) + B(f(s, u(s)))φ1(0)
)

≤ λN1A1 ≤ ρ∗
2 ≤ ‖u‖.

Hence, in either case, we may put Ωρ∗2 = {u ∈ E|‖u‖ < ρ∗
2} such that

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω∗
ρ2

. (3.4)

From(3.3),(3.4) and Theorem1.1[10], thus T has a fixed point in u ∈ P ∩ (Ωρ∗2 \
Ωρ0), which is a positive solution of BVP(1.1).
Theorem 3.3. Suppose condition (H1)-(H4)hold. In addition, assume there
exist two positive constants R1 �= R2 such that

(1) f(t, u) ≤ R1

λA1
, ∀(t, u) ∈ [0, 1] × [0, R1];

(2) f(t, u) ≥ R2

λA2
, ∀(t, u) ∈ [0, 1] × [γR2, R2]. Then the BVP(1.1) has at

least one positive solution u such that ‖u‖ between R1 and R2.
Proof. We only consider the case R1 < R2, the case R1 > R2 follows in a
similar way. Let ΩR1 = {u ∈ E|‖u‖ < R1}, ΩR2 = {u ∈ E|‖u‖ < R2}. It
follows from (1) for any u ∈ P ∩ ΩR1 ,

(Tu)(t) = λ
(∫ 1

0 G(t, s)f(s, u(s))ds + A(f(s, u(s)))φ1(t) + B(f(s, u(s)))φ2(t)
)

≤ λ
(∫ 1

0 G(s, s)f(s, u(s))ds + A(f(s, u(s)))φ1(1) + B(f(s, u(s)))φ2(0)
)

≤ λA1
R1

λA1
= ‖u‖.
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Therefore,
||Tu|| ≤ ||u||, for u ∈ P ∩ ΩR1 . (3.5)

On the other hand, for any u ∈ P∩ΩR2 , we have γR2 ≤ |u(t)| ≤ R2, for t ∈
[δ, 1 − δ]. It follows that for any u ∈ P ∩ ΩR2 ,

||Tu|| = maxt∈[0,1] λ
(∫ 1

0 G(t, s)f(s, u(s))ds + A(f(s, u(s)))φ1(t) + B(f(s, u(s)))φ2(t)
)

≥ maxt∈[0,1] λ
(∫ 1

0 G(t, s)f(s, u(s))ds
)

≥ maxt∈[0,1] λ
(∫ 1−δ

δ G(t, s)f(s, u(s))ds
)

≥ R2 = ‖u‖.
So

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂ΩR2 . (3.6)

From(3.5),(3.6) and Theorem1.1[10], thus T has a fixed point in u ∈ P ∩(ΩR2 \
ΩR1), which is a positive solution of BVP(1.1) between R1 and R2..
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