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ABSTRACT 
 
In this paper, we present a novel stereoscopic video quality 
assessment method based on 3D-DCT transform. In our 
approach, similar blocks from left and right views of 
stereoscopic video frames are found by block-matching, 
grouped into 3D stack and then analyzed by 3D-DCT. 
Comparison between reference and distorted images are 
made in terms of MSE calculated within the 3D-DCT 
domain and modified to reflect the contrast sensitive 
function and luminance masking. We validate our quality 
assessment method using test videos annotated with results 
from subjective tests. The results show that the proposed 
algorithm outperforms current popular metrics over a wide 
range of distortion levels.  
 

Index Terms— 3D video quality, depth perception, 3D-
DCT, stereo-correspondence 
 

1. INTRODUCTION 
 
In the last decade, stereoscopic video technologies have 
burgeoned which led to an increasing interest in various 3D 
applications, for example 3DTV. The overall aim of a 3D 
video system is to deliver high quality video plus a natural 
sensation of depth. The 3D video delivery chain includes the 
stages of capture, encoding, transmission, possible post-
processing at the receiver side and then display. Any of 
these stages may cause degradation of 3D visual quality and 
errors introduced at a certain step of the production process 
may propagate through the chain. Therefore, quality 
assessment is a key factor in the design and optimization of 
3D video processing systems. Failing to evaluate the quality 
increases the risk of dissatisfied users who might experience 
effects attributed to poor stereo images, such as headache, 
eye pain or other simulator sickness symptoms.  

The ultimate way to evaluate visual quality is to run 
subjective tests. However, subjective evaluation is time-
consuming and expensive. The goal of objective 
stereoscopic quality assessment (QA) research is to design 
algorithms that can automatically assess the quality of 3D 
images or videos in a perceptually consistent manner. 
Although objective quality assessments of 2D image and 
video have been an active research topic for some decades, 
still very few efforts have been concentrated on 3D image 
and video quality evaluation. 

For stereoscopic video quality metrics, a widely used 
approach is to apply 2D metric to evaluate the quality of 
each video channel separately, and then to calculate the 
overall 3D video quality as the mean of the two images. 
This approach might work for impairments equally affecting 
the left and right image; however, it would fail in many 
other cases. It is because this approach does not consider 
stereo perceptual information, such as rendered perception 
of depth, stereoscopic impairments, visual discomfort, 
relative size, motion, texture gradient, disparity, and 
temporal masking [1, 2]. To solve this problem, recently, 
some stereoscopic image and video quality metrics have 
been proposed by measuring the quality of disparity and 
cyclopean image separately and combing them in a 
compound measure. In [3], a monoscopic quality component 
and stereoscopic quality component for measuring 
stereoscopic image quality have been combined. The former 
component assesses the trivial monoscopic perceived 
distortions caused by blur, noise, contrast change etc; while 
the latter assesses the perceived degradation of binocular 
depth cues only. In [4], the popular 2D image quality metric 
called structural similarity index (SSIM) [5] has been 
applied for 3D images in the form of view plus depth, where 
information about depth has been added to the metric using 
a local or global approach. In [6], an overall quality metric 
has been suggested by combining image quality with 
disparity quality using a nonlinear function. In [7], a quality 
metric for color stereo images has been proposed based o 
the use of binocular energy contained in the left and right 
retinal images calculated by complex wavelet transform 
(CWT) and Bandelet transform. Other works have addressed 
the use of discrete cosine transform (DCT) as a component 
in 2D image and video quality metrics [8, 9, 10]. However, 
DCT has not been investigated for its implementation to 
stereoscopic image and video quality metric. 

In this paper, we propose a full reference stereoscopic 
quality metric based on 3D-DCT, which takes into account 
some HVS properties, such as contrast sensitive function 
(CSF) and luminance masking  In the proposed metric, 3D-
DCT transform is used to analyze the perceptual similarity 
of blocks in stereo frames grouped using disparity 
correspondence and block-matching.   

The rest of the paper is organized as follows. In Section 
2 the proposed metric is described. The used set of test 
sequences and subjective tests are described in Section 3. 
Section 4 describes the experiment results. Final conclusions 
are presented in Section 5. 
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Figure 1. Flow chart of proposed model 

2. PROPOSED ALGORITHM 

The proposed stereo quality assessment scheme is given in 
Figure 1. We consider 3D video represented in the form of 
two channels – left and right – forming a stereo-pair of 
views. The depth perception is created by the slight different 
perspective of the two views manifested as disparity. The 
original (reference) video is distorted by some processing 
stage, e.g. compression and the level of distortions (or 
quality) between the reference and distorted videos has to be 
determined (full-reference metric). Both the reference and 
distorted videos are processed to find the disparity map 
between  the  left  and  right  views.  The  assessment  runs  on  
blocks. For each reference block A0 in the left reference 
view, the corresponding block B0 is  selected.  In  the  
reference video the most similar blocks in the left and right 
view, namely A1, A2, A3 are  found  and  stacked  in  a  3D  
structure, which then undergoes 3D-DCT. The same is done 
for the structure associated with the block B0. Both 3D-DCT 
domain structures are then corrected with masking factors to 
account for the influence of the contrast sensitivity and 
luminance masking. Transform-domain mean square error is 
computed between the two set of coefficients to get a 
measure about the difference of three stereo blocks 
associated with A0.  

2.1 Finding block-disparity map 

The disparity (or parallax) observed between the right and 
the left frame is generally inversely proportional to the 
distance to the object. Stereo matching is to search for a 
point in an image that corresponds to the point specified in 
the other image in terms of associated features. Stereo 
matching plays a key role in the structure-from-stereo 
algorithms, which aim at getting an image (a map) being 
indicative for the distance to the object. In our approach, we 
calculate a dense disparity map between the left and right 
frames using a color-weighted local search [11]. 
Considering rectified images, a window of size 9x9 from the 
left frame is run in horizontal direction to find similarity in 
terms of block matching, weighed by the color difference in 
a bilateral manner [11].  

2.2 Block selection and 3D-DCT transform 

DCT  plays  a  key  role  in  our  approach.  We  rely  on  the  
capabilities of DCT to decorrelate data and achieve highly 
sparse representation [12].  In our approach, by the use of 

 
Figure 2. An example of block selection in stereoscopic image 

DCT we aim at modeling two processes taking place in the 
HVS. First, we model the binocular vision by combining 
together the left and right corresponding blocks [13]. 
Furthermore, we simultaneously model the saccades – the 
pseudo-random movements the eyes are performing while 
processing spatial information [14]. All those similar blocks 
are stacked together in a 3D structure to be jointly projected 
on  the  DCT basis.  Thus,  the  resulting  set  of  coefficients  is  
expected to be informative about similarities across views 
and in spatial vicinity. Block-Matching (BM) is applied to 
find similar blocks around the reference block A0 (B0) and 
its stereoscopic correspondence within a search range 
region. Mean Squared Error (MSE) is used as dissimilarity 
measure 

=              (1) 
where ×  is the size of the macro block,  and  
denote the pixel intensity of the searched block and 
reference block respectively. Using BM, one best matched 
block  in  the  left  view  and  two  similar  blocks  in  the  right  
view are found and grouped together as shown in Figure 2. 
In the figure,  is the reference block in the left-view 
frame,  is the most similar block to  in the same 
channel.  is the corresponding block to reference block 

 in right channel found through the stereo-correspondence 
search, and  and  are the two best matching blocks to 

 which are searched within search region around  in the 
right channel. Note that the similarity between  and  
has been found through another similarity mechanism an 
eventual  could be or could not be one of the selected 
blocks , = 2, 3.  The four blocks in the reference 
stereoscopic image = {  , , , } and the respective 
four blocks in the distorted stereoscopic image =
{  , , , } are grouped into two 3D arrays respectively. 

A 3D-DCT transform is applied to these two 3D arrays, 
i.e. = {  , , , }  and = {  , , , } . In our 
setting, for nice symmetry and fast processing the size of the 



blocks  is  fixed  to  4x4,  thus  fixing  the  size  of  the  3D  
structure to a cube of ridge length 4. However, any other 
block size is possible and also more blocks can be collected 
on  the  base  of  similarity,  thus  forming  a  3D  structure  of  
bigger size. Our previous experiments with 2D images and 
videos have shown that finding one similar block is 
sufficient to account for this type of similarity around the 
reference block. The search region around the reference 
block and its stereo correspondence has been fixed to 22x22.  

2.3 Modified MSE 

In [9], a perceptually-driven metric for 2D image quality 
assessment has been suggested. It calculates an MSE 
between the 8x8 DCT coefficients of the reference and 
distorted block modified by coefficients reflecting the 
masking effect of the contrast sensitivity function [9]. The 
method has been further modified in [10] to take into 
account also between-coefficients contrast masking of DCT 
basis functions. While the original approach was developed 
for DCT of size 8x8 and using masking coefficients 
determined by the JPEG quantization table, we have 
modified it to work with DCT of size 4x4. Correspondingly, 
the  coefficients  of  the  top  layer  of  the  4x4x4  3D-DCT,  
which concentrate most of the energy of the similar blocks 
are weighted with a down-sampled version of the masking 
table used in [10]. The lower layers are scaled down with 
coefficients determined by the energy distribution within the 
block. The modified version of PSNR is: 

= 10 (255 / )            (2) 
=

×
,     (3) 

where, I, J denote image size,  is the first layer of 4x4x4 
3D-DCT coefficients with indices i, j in reference image,  
is  the  one  in  distorted  image,   is a correcting factor 
determined by the CSF and it is obtained by down-sampling 
the normalized quantization table of JPEG into 4-by-4 size 
and then squared [9],  is  to  reduce  the  value  of  
contrast masking in accordance to the model proposed in 
[10]. We have tested two versions of the formula: without 
masking effect, i.e. = 1,denoted as ‘PHVS-3D’ and 
with masking effect calculated, denoted as ‘PHVS-M-3D’. 
For the latter case, the table from [10] has been divided into 
four 2-by-2 blocks and then used in the formula from [10] 
with a normalizing factor = 2 instead of 16. For efficient 
calculation, we have chosen that the reference blocks do not 
overlap.  

3. TEST SEQUENCES 

The performance of the proposed stereoscopic quality 
assessment model has been validated using the results from 
subjective tests [15]. Four multi-view video sequences have 
been used, namely Akko&Kayo, Champagne Tower, 
Pantomime, and Love Birds1. Different camera baselines 
have been selected to get stereo pairs with three different 
types of depth: no depth (2D), short baseline (3D) and wide 
baseline (3D). The sequences have been cut into 10 seconds 

and coded using the simulcast MPEG-4 standard encoder. 
Five different quantization parameters QP (=25, 30, 35, 40, 
45) have been applied to each processed sequence. Thus, a 
total of 12 reference sequences and 60 distorted sequences 
have been obtained.  

The video sequences have been used in experienced 
quality tests. The test group included 32 persons equally 
stratified by gender and age between 18 and 45. The 
visualization was done on an auto-stereoscopic display 
provided by NEC [15]. The tests collected the opinion in 
term of quality (11 point scale) and acceptance (binary 
scale). The overall ratings of stereoscopic videos have been 
ranked in terms of mean opinion score (MOS).  

4. RESULTS 

The results of the proposed approach are compared along 
with several state-of-art quality metrics: PSNR, MSSIM 
[16], SSIM [5], UQI [17], NRMSE [18], PSNR-HVS [9], 
PSNR-HVS-M  [10],  which  are  all  2D  metrics  and  the  3D  
metric from [6]. For the latter, we have set SSIM to measure 
the image quality and UQI to measure the disparity quality 
[6]. All algorithms compare the luminance component only. 
The 2D metrics have been run on the left and right channels 
separately and the results have been averaged.  

Figure 3 presents the results of fitting logistic curves on 
the dependence between MOS and the quality predicted by 
some of the compared measures. In Table I, Spearman, 
Pearson and Kendall correlations for each compared quality 
assessment are presented. Popular 2D quality metrics, such 
as MSSIM, SSIM and UQI for the given stereoscopic test 
set show lower correlation to MOS. Surprisingly, the 
method from [6] does not correlate to MOS well either, see 
Figure 3 d). The standard PSNR, NRMSE, along with 
PSNR-HVS and PSNR-HVS-M suit the visual perception 
remarkably better. Finally, it can be seen that the proposed 
metrics PHVS-M-3D and PHVS-3D, outperform the other 
considered metrics. Both Spearman correlation and Pearson 
correlation are above 0.9 for PHVS-M-3D and PHVS-3D. 
The performance is also confirmed by the well-behaving 
logistic curves shown in Figure 3 e) and f). 

 
Table I. Spearman, Pearson, and Kendall correlations for 

considered metrics 

Metric Spearman 
Correlation 

Pearson 
Correlation 

Kendall 
Correlation 

PSNR 0.8639 0.8431 0.6610 
MSSIM[16] 0.6734 0.7246 0.4857 

SSIM[5] 0.6232 0.7068 0.4437 
UQI[17] 0.5113 0.5333 0.3726 

NRMSE[18] 0.8431 0.8786 0.6327 
PSNR-HVS[9] 0.8862 0.8850 0.7017 

PSNR-HVS-M[10] 0.8594 0.8817 0.6644 
Global comb.[6] 0.6307 0.6938 0.4416 

PHVS-3D 0.9168 0.9063 0.7436 
PHVS-M-3D 0.9150 0.9232 0.7500 

 
 



5. CONCLUSION 
 
In this paper, we proposed a novel full-reference 
stereoscopic quality metric based on 3D-DCT. We modeled 
the combined effects of binocular vision and saccades which 
are considered important for visual quality assessment 
through the decorrelation properties of DCT. In addition, the 
CSF and luminance masking were taken into account by 
applying proper masking. The approach is simple yet quite 
effective as demonstrated by comparing it against subjective 
tests. The experimental results have shown that our metrics 
outperform current state-of-the-art quality metrics. We have 
to note that our implementation does not take into account 
masking effects created by motion. Our experiments have 
shown that this masking plays minor role in estimating the 
quality. This observation has been confirmed by subjective 
tests on still images from the same database, which resulted 
in the same MOS as in the case of the respective videos. 
Another future improvement of the approach can be 
achieved by adding proper disparity-driven weighting to the 
other masking mechanisms. As the subjective experiments 
in [15] have shown, differences in depth presence (i.e. 
through different camera baseline) play rather marginal role 
in evaluation the overall quality compared with compression 
artifacts. Yet, they can and shall be modeled in a future 
version of the suggested approach.  

 

 
Figure 3. Logistic Fitting Figures of MOS vs. a) PSNR, b) SSIM, 

c) NRMSE, d) Global Comb. e) PHVS-M-3D, f) PHVS-3D 
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