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Introduction 

Rotating machinery trains are rotationally free-free 
systems, and because of finite inertia and stiffness, they have 
many degrees of freedom. For most torsional vibration 
analysis the train may be adequately modeled as a close-
coupled assembly of discrete inertias and linear, torsional 
springs. While there is only negligible damping in most of the 
rotating assembly, significant damping may be encountered in 
the torque-speed characteristics of some machines or included 
by design with damped couplings or untuned, free, viscous 
shear dampers. 

The most common type of torsional vibration analysis is the 
steady-state response evaluation for constant average speed of 
operation and the associated periodic excitation torques. 
Steady-state response is determined by the particular solution 
for the equations of motion. This motion persists after 
damping action has effectively removed the homogeneous 
solution from the motion. Torsional steady-state response 
calculations have been standard machinery design practice for 
many years [1]. The analysis, including station-to-station, 
station-to-ground, and untuned, free, viscous shear damping 
actions, has been correctly formulated by a number of writers 
in the past [1-4]. While damping is often a nonlinear 
phenomenon, it has been standard practice to linearize the 
description, employing an equivalent viscous damping action. 
Even with this linearization, the computational difficulty 
associated with complex arithmetic has led to a rejection of 
the rigorous solution as impractical [3], or as feasible only in a 
tabular calculation format [1, 4, 5]. In view of the greatly 
increased computational capacity now readily available, it is 
appropriate to reexamine this key machinery design analysis 
and to recast it in terms familar to today's analysts and 
consistent with current computational methods. 

The purpose of this paper is to develop the complete steady-
state torsional response to periodic excitation in a form 
directly suited to machine computation. This will be a 
solution for the actual rotation of each station, not the 
relative rotation, as this makes the roles of steady twist and 
rigid body oscillations ("rolling modes") more clear. This is 
also the motion required for comparison with measurements 
made using single station, FFT measuring techniques [6]. The 
relative motion is readily available from these results simply 
by computing station-to-station differences. There follows 
below a description of the system leading to formulation of 
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the equation of motion, the determination of the complete 
particular solution, and two example problems illustrating the 
methods and results obtained. 

System Description 

A typical torsional system model is shown in Fig. 1. The 
primary sub-system consists of n{ rotational inertias with 
elastic interconnections. Damping is indicated by station-to-
station and station-to-ground viscous coupling. The varying 
torque-speed relation for a ship's propeller or damper 
winding action in a synchronous generator are typical sources 
of station-to-ground viscous coupling. Significant station-to-
station damping is often found in couplings incorporating 
damper elements. Additional damping is indicated in the form 
of n2 untuned, free, viscous shear dampers, sometimes known 
as "Houdaille dampers," although they have been 
manufactured by several companies. This type of damper will 
be called a free damper. The rotor of each free damper is 
viscously coupled to one of the primary inertias. Although 
this description has been in terms of the single shaft system 
shown in Fig. 1, it should be understood that the methods 
described apply to both single shaft and branched systems 
with any of the viscous damper types in any location. 
Examples of both single shaft and branched systems are given 
later. 

Let each degree of freedom be represented by the rotation 
of a system inertia. Using the subscripts p and/to denote the 
primary system components and free damper components, 
respectively, the equation of motion for the system is 
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Fig. 1 Typical damped torsional system 
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where the complex series coefficients are related to the real 
coefficients by 

1 
(fl/m -jbim) 

The entire excitation vector may be written as 

(4) 

The submatrices [Jp] and [Jf] are each diagonal and com
posed of the component mass moments of inertia. The elastic 
torques developed in the primary sub-system are described by 
[Kpp] while the other partitions of the stiffness matrix are 
null, reflecting the absence of elastic coupling to the free 
damper rotors. The partitions of the damping coefficient 
matrix are: 

[Cpp], a matrix of viscous coefficients reflecting station-to-
station and station-to-ground torques on the primary 
inertias; 

[Cpf\, [CfP], cross coupling matrices containing free damper 
coefficients reflecting the interaction between primary 
inertias and free damper rotors; and 

[Cff], a diagonal matrix of free damper coefficients. 

For systems reducible to an equivalent single shaft, the 
martices [Kpp] and [Cpp] are of triple band diagonal form; for 
branched systems, the form of these matrices depends on the 
nature of the branching and the station numbering scheme 
employed. The cross coupling matrices, [CPf] and [Cfp\, are 
usually sparse. 

The external torques, acting on the primary system inertias, 
compose the upper partition of the excitation vector. The 
lower partition is null since no torques external to the system 
act on the free damper rotors. The steady-state condition 
implies 1) constant average angular velocity, w, and 2) 
periodic excitation torques at all stations, expressible in terms 
of a common fundamental frequency Q. In most cases there is 
a direct relation between o and Q, but this is not necessary; the 
two frequencies are carried separately here. A typical external 
torque, acting on the /th primary inertia, may be expanded in 
a Fourier series 

T,( r ) 

T , ( 0 = y f l f f l + ancosQt + ai2cos2Qt + 

+ bnsinQt + bi2sm2Qt + . . . (2) 

For internal combustion engines the series coefficients may be 
estimated using Porter's data [7] while for many other 
machines the manufacturers can provide the required values. 
In some cases it will be necessary to compute the coefficients 
by a harmonic analysis of measured data. For present pur
poses, it is convenient to express the series in complex form 
[8]: 
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Particular Solution 

For the steady-state response, the particular solution is 
required for the equations of motion, equation (2), with the 
excitation given by equation (5). The required solution may be 
assumed in the form 

( y - ] = « ' l 1 ) + . . . +(R_,)e->n' + {R0) 

+ {R1)e' f l '+ . . . +{Rm}e>mn<+ . . . (6) 

where (1) denotes a column vector of unit elements, used here 
to reflect uniform rotation. In order to determine the response 
vectors, the assumed form is differentiated and substituted 
into the differential equations, 
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Nomenclature 

a = cosine coefficient in excitation 
series 

b = sine coefficient in excitation 
series 

c = station-to-station or free damper 
coefficient 

d = station-to-ground damping 
coefficient 

e = Naperian base 
j = complex unit, \A-̂ ~i 

k = shaft stiffness 

u = response cosine coefficient 
v = response sine coefficient 
C = damping matrix 
/ = inertia matrix 
K = stiffness matrix 
R = response vector 
T = torque vector 
a = complex Fourier series coef

ficient 
6 = station rotation angle 
u = average angular velocity, a 

constant 

0 = fundamental excitation 
frequency 

Subscripts 

/ = referring to the free dampers 
/ = station index 

m = typical oscillatory mode index 
0 = refers to a constant term 
p = refers to a primary train com

ponent 
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Fig. 2 Single shaft system with two free dampers 

Table 1 System parameters for Example 1 
Station Moment of Damper 

i inertia coefficients Stiffness 
Ji , d, Cj kj 

(kg.m2) (N.m.s) (N.m.s.) (N.m.s./rad) 

1 
2 
3 
4 
5 
I 
IV 

1.70 
2.50 
2.30 
1.40 
3.70 
0.15 
0.17 

0.10 
0.30 
0.35 
0.00 
0.40 

9.90 

0.20 
0.22 

5600 
8200 

12000 
4000 

. + j )ei'na< + . . . O) 

The terms of this equation may be grouped according to the 
nature of their time dependence, with each such group ex
pressing an independent relation. The term linear in t is 
identically the null vector and provides no information. 

Steady Twist Term. The group of constant terms 
describes the steady twist associated with the net transfer of 
power through the train. The positions of the free damper 
rotors are immaterial to the solution and may be taken as 
zero. The upper partition of the steady solution vector is 
{Rpo), to be determined by 

[^p](RPo) = ( a o l - " [ r f ] ( l l (8) 
Since [Kpp] is of rank ri\ - 1, it is singular, and the elements of 
!R pO can not be directly determined. If one station is chosen 
as a reference and assigned zero steady rotation, the 
remaining elements of (Rp0 ), representing steady rotations 
relative to the reference station, may be determined from nx -
1 of the relations expressed in equation (8). 

Oscillatory Terms. The group of terms associated with the 
wth harmonic define the response in that harmonic according 
to 
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Table 2 Response vectors for Example 1 
Station [uQ] {u{\ [V[\ [u2\ {u2} 

i (lO^rad) (10~3rad) (lO^rad) (10"-3rad) (10-3rad) 
1 
2 
3 
4 
5 
I 
IV 

0.000 
1.19 
3.72 

-11.29 
-33.99 

-
-

2.47 
1.93 

-1 .31 
-5 .42 

- 16.25 
-0 .06 
-0 .02 

1.33 
1.03 
0.60 
0.22 

-1 .69 
0.13 

-0 .26 

-1.48 
-0 .16 

0.89 
1.10 

-0 .18 
-0.11 

0.09 

4.33 
0.50 

-4 .39 
-3.61 

2.23 
-0 .03 

0.02 

For finite damping the coefficient matrix is never singular; it 
may be inverted entirely in terms of real operations. For each 
positive harmonic index, the complex response vector {Rm j is 
determined by solving equation (9). The response vector for a 
negative harmonic index is the complex conjugate of that for 
the corresponding positive harmonic index, as can be shown 
using equation (9) and the properties of complex numbers. In 
terms of real quantities, the mth harmonic displacements are 

[ a >. 
- M =2 Real (R,„) cos{mQt) 

Of J ni 

~2 Imag (R„, )sin(wO0 (10) 

The particular solution, equation (6), could be assumed in a 
form displaying rigid body oscillations and twisting 
oscillations separately. The first involves oscillatory 
displacement without deformation, while the second requires 
deformation, and both motions do in fact occur. When 
formulated separately, at each harmonic, the two responses 
add to produce (Rm ) as presented here, and they cannot be 
determined separately. 

As presented here, a factor 0.5 is introduced in defining a, 
(equation (4)) which is effectively cancelled by the factor 2.0 
appearing in equation (10). The factor 0.5 was introduced to 
be consistent with the accepted relation between real and 
complex Fourier series coefficients [8]. This is also consistent 
with the steady twist calculation where no cancellation occurs. 
For numerical implementation, there may be a small ad
vantage to deleting both factors in the oscillatory response 
calculation. 

Examples 

Single Shaft System. A single shaft system incorporating 
two free dampers is shown in Fig. 2. Numerical values for the 
system parameters are given in Table 1. Roman numeral 
subscripts are associated with the free dampers in both Fig. 2 
and Table 1. The shaft rotation rate is 27.0 rad/s, which is 
also the fundamental excitation frequency. The steady-state 
response of this system is to be determined for the external 
excitation torques given by 
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Station 
Table 3 System parameters for example 2 

Moment of Damper 
inertia coefficients 

/ ; . d; c,-
(kg.m2) (N.m.s) (N.m.s.) 

Stiffness 
k, 

(N.m.s./rad) 
0.068 
0.068 
1.360 
2.260 
0.136 
0.056 
0.045 
0.169 
0.220 

Gear ratio: R = N}/N6 =0.5 

0.230 

0.080 

10.00 

7.00 

170000 
290000 
79000 
90000 

11000 
11000 

Similar to equation (6), but modified along the lines of 
equation (10), the response is expected to be of the form 

{0(O)=27f(l) + ("o) + lHi)cos(27f)+lVi)sin(27f) 

+ {u2)cos(54t)+{v2)sm(54t) (12) 

The response vectors, («,•) and I f , ) , have been computed as 
described above and are tabulated in Table 2. 

Branched System. The branched system shown in Fig. 3 
represents a two cylinder engine with flywheel driving a 
generator with a rotating exciter. A free damper is mounted at 
the free end of the crankshaft. The branch models a cam shaft 
and blower. The gear ratio from the main shaft to the branch 
is R = 0.5, as appropriate for a four-stroke engine. Engine 
speed is 1800 rpm for which w is 188.5 rad/s. Expressed in 
N»m units, the nonzero external torques on the system are 

Tx = 106.06 + 123.0 cos (188.50 + 235.0 sin (188.5t) 

T2 = 106.06-123.0 cos (188.50-235.0 sin (188.5'r) (13) 

T4 = -160.0 

Ts = -10 .0 

Assuming no compliance in the gearing, the equations of 
motion are of the form 

(14) 

(15) 

(16) 

(17) 

where the variables are 

{<#») =col (.01,02,03,eA,Os,81/R,8a/R,eT) 

The excitation vector and coefficient matrices are 

(T!=col(T1 ,T2 ,0,T4 ,0,0,RT8 ,0) 

[J] = diag (./, ,J2 ,J% + R2J6 , /4 ,JS ,R
2/7 ,R

278 ,Jj) 

7.00 

0.00 0.00 Symmetric 

0.00 0.00 10.00 

0.00 0.00 - 10.00 10.23 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.02 

-7.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 

(18) 

126/ Vol . 107, JANUARY 1985 

[ q = 

.tf. 
d d* Q^ •ox 

«i O.i. 0 

<r 6 6 

O j 8 oJ ? j 

^ 

6 N 

ON, 

O 

7777 

6 

6 

777" 

6 

O 

Fig. 3 Branched torsional system with damping 

Table 4 Response vectors for example 2 
Station l"o) 

(10^3rad) (10~5rad) (10"5rad) 
0.000 
0.624 

-1.355 
-3.929 
-3.929 
-0.670 
-2.272 
-3.867 

-72.263 
0.129 

- 0.151 
- 0.009 
- 0.010 
- 0.076 

0.204 
0.455 

-21.483 

143.100 
2.100 
0.464 

-5.763 
-6.090 

0.232 
-0.673 
-1.478 
15.824 

' 170 

-170 460 

0 -290 371.8 

0 0 - 7 9 

0 

0 

0 

0 

0 

-2.8 

0 

0 

Symmetric 

169 

- 9 0 

0 

0 

0 

90 

0 

0 

0 

5.5 

-2.8 2.8 

0 0 

(19) 
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The coefficient of the free damper is evident in the corners 
of [CI. The branched structure of the problem is evident in the 
form of the stiffness matrix. 

The steady state response, expressed in terms of physical 
rotations and neglecting the rigid body displacements, will be 
of the form 

[0) = {«„} + {«!) cos (188.50+(fi) sin (188.50 (20) 
The response vectors (u0 j , {u,), and (uj) are tabulated in 
Table 4. 

Conclusion 

For free-free machine trains incorporating all of the 
common viscous damping actions, the rigorous description of 
steady-state torsional vibration has been formulated and 
solved in matrix form. The resulting solutions are well-suited 
to computer implementation. While the resulting coefficient 
matrices are too large for satisfactory manual computation, 
they are easily within the capabilities of today's computers. In 
obtaining these solutions, the entire motion has been ad
dressed in a common framework, including both steady and 

oscillatory twists; the role of rigid body oscillation has been 
clarified. The analysis is further unified in that there is no 
need to consider resonant and nonresonant conditions 
separately as has been done in some previous analyses. 
Similarly, single shaft and branched systems are handled in 
the same manner; there is no distinction between them after 
the coefficient matrices have been defined. 
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