
Analyzing Test Driven Development based on
GitHub Evidence

Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner, Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, Canada

Email: {nborle, feghhi, stroulia, rgreiner, hindle1}@ualberta.ca

Abstract—Testing is an integral part of the software-
development lifecycle, approached with varying degrees of rigor
by different process models. Agile process models advocate Test
Driven Development (TDD) as one among their key practices
for reducing costs and improving code quality. In this paper
we comparatively analyze GitHub repositories that adopt TDD
against repositories that do not, in order to determine how
TDD affects a number of variables related to productivity and
developer satisfaction, two aspects that should be considered in
a cost-benefit analysis of the paradigm.

In this study, we searched through GitHub and found that
a relatively small subset of Java-based repositories can be seen
to adopt TDD, and an even smaller subset can be confidently
identified as rigorously adhering to TDD. For comparison pur-
poses, we created two same-size control sets of repositories.
We then compared the repositories in these two sets in terms
of number of test files, average commit velocity, number of
commits that reference bugs, number of issues recorded, whether
they use continuous integration, and the sentiment of their
developers’ commits. We found some interesting and significant
differences between the two sets, including higher commit velocity
and increased likelihood of continuous integration for TDD
repositories.

I. INTRODUCTION

Test Driven Development (TDD) is a practice advocated
by agile software-development methodologies, in which tests
are written in advance of source code development. These
tests, bound to fail originally in the absence of any “real”
code, effectively constitute a specification of the functionality
and behavior of the software code, which can be tested as it
is being developed [1]. The provision of immediate, specific
and local feedback is believed to have a positive effect on
code quality, may have an effect on the rate at which code
is developed, and might also have an effect on the emotional
state of the developers.

Ideally in TDD, all tests should be written in advance of
all source code but this kind of rigor may not be consis-
tently found among test-concious developers [2]. Since the
consistency with which TDD is adopted by different software
project varies, its effects are also likely to vary. In this paper,
we report on a study designed to investigate the way TDD is
actually practiced and the distinct characteristics that TDD
projects exhibit, not typically found in non-TDD projects.
More specifically, we study the prevalence and influence of
TDD and TDD-like methodologies on software development
processes in Java repositories hosted on GitHub in 2015.

Further we seek to determine if detectable differences in
sentiment can be observed between repositories that practice
TDD and those that do not. In our research we explore the
following questions:

RQ1: Does the adoption of TDD improve commit velocity?

RQ2: Does the adoption of TDD reduce the number of
bug-fixing commits?

RQ3: Does the adoption of TDD affect the number of
issues reported for the project?

RQ4: Is continuous integration more prevalent in TDD
development?

RQ5: Does the adoption of TDD affect developer or
user satisfaction?

To find TDD repositories we use the capabilities of BOA [3]
to look at the abstract syntax trees (ASTs) of source and test
code to determine if they follow a testing paradigm. RQ1
and RQ2 are both answered through the analysis of commits
in each repository, the former with commit timestamps and
the latter by the commit messages themselves. Next, RQ3
is addressed by extracting the issues associated with the
repositories in our study and counting the numbers of their
occurrences. RQ4 is addressed by finding occurrences of
travis.yml files, as evidence for the use of continuous
integration. Finally, in the pursuit of RQ5, we applied senti-
ment analysis to the revision logs, issues, issue comments, and
pull-request messages.

For our study, we had to construct sets of repositories that
are not adopting TDD, against which to compare the ones
we identified to follow TDD practices. The key requirement
for this task is to develop a method for constructing these
“control repository sets” so that they are comparable to the
TDD-adopting repositories. To that end, we used K-means
clustering to group repositories, and we randomly sampled
control repositories that are comparable to the range of sizes
in the clustered sets of repositories. Clustering is important
in our study for performing stratified comparisons, which is a

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

way of controlling for the fact that many GitHub repositories
have very few commits [4]. Finally, it is important to note that
for all of the comparisons made between control groups and
the repositories under test, we consider a p-value of 0.0023 or
less to be of statistical significance. This is the Bonferroni [5]
corrected alpha value (α = 0.05

21 ≈ 0.0023) with 21 p-values.
The rest of this paper is organized as follows. Section II

reviews related work. Sections III, IV and V explain our
methdology for this study, report on our findings, and reflect
on the threats to the study’s validity. Finally, in Section VI,
we conclude with a summary of our work and the lessons we
learned from it.

II. RELATED WORK

A. TDD practices

In 2007, Hindle et al. described a taxonomy for classifying
revisions based on the types of files being changed in a revi-
sion. The classes of this taxonomy include source revisions,
test revisions, build revisions and documentation revisions
(STBD) [6]. In the context of Hindle et al. this study considers
source code revisions and test revisions, the revision classes
most relevant to TDD.

Zaidman et al. studied two different open source repos-
itories to determine if testing strategies such as TDD are
detectable [7]. Zaidman et al. present a method of associating
source code with test code by relying on a naming convention
where the word “Test” is added as a postfix to a test file
corresponding to a similarly named source file. They also
reference the use of JUnit imports as a method of test file
identification [7]. In our study we consider use of import
statements as well as this naming convention for associating
test files to source files when detecting TDD. We differ in that
we perform case insensitive matching of the word “Test” to a
file name instead of just considering “Test” as a postfix.

Beller et al. [2] studied the prevalence of TDD practices
among several developers by having them install a tool that
monitored their development in their integrated development
environment (IDE). They found that TDD is rarely practiced
by software developers. In other work Beller et al. [8] found
that of a group of 40 students 50% spent very little time testing
their code. This suggests that an analysis of GitHub reposito-
ries may yield small numbers of test files in repositories.

Athanasiou [9] found that there is a positive correlation
between test code quality and throughput and productivity.
This is relevant to our work because it shows that an emphasis
placed on testing can result in software development benefits.

In 2016, Santos and Hindle [10] studied the relationship
between build failure in GitHub repositories and the “unusu-
alness” of the commit messages that they found in those repos-
itories. To achieve this, they looked specifically at repositories
using Travis-CI, a tool for continuous integration that is widely
used in the open-source community1 [10]. In our work we
will determine how popular Travis-CI is among practitioners
of TDD and TDD-like software development.

1https://travis-ci.org/

Vailescu et al. also studied Travis-CI use in GitHub. They
looked at its prevalence and whether or not projects that had
Travis-CI configured are actually using the integration system.
Their work considered a sample of active GitHub repositories
obtained using GHTorrent. They found that a large number
of repositories are configured for Travis-CI but that less than
50% were making use of it [11].

B. Sentiment In Software Artifacts

To establish the credibility of extracting sentiment from
software artifacts, Murgia et al. conducted a study to deter-
mine if software developers left opinions behind during the
development process. They concluded that developers do leave
emotional content in their software artifacts. From this they
suggest that the automated mining of developers’ emotions
from their software artifacts is feasible [12]. Additionally,
others have applied sentiment analysis in the context of
StackOverflow showing breadth in this tools application to
software engineering [13].

Guzman et al. used sentiment analysis to extract opinions
from commit messages belonging to GitHub projects. Their
research identified relationships between positive and negative
sentiment and factors such as the programming language used,
team members’ geographic locations, day of the week and
project approval [14]. Like Guzman et al. we apply sentiment
analysis to the messages left behind during the development
process, but focused our approach on the comparisons of
projects using TDD process with those not using TDD process.

C. Clustering for Sampling

One of the oldest problems in the field of computational
geometry is that of partitioning d dimensional points in
IRd into appropriate groups (clusters) where members of a
cluster are related to one another [15]. To achieve this goal
for clustering repositories, we use the well known K-means
algorithm. The generic K-means variant can be described in
four steps [15]: first k initial points (centers) are arbitrarily
selected in IRd space. Second, all points in IRd space are
assigned to the closest center. Third, centers are recalculated
to be the center of each cluster determined in the seconds
step. Finally, steps two and three are repeated until there is
no longer any change in the value of the centers calculated in
step two.

To assess the quality of clusters generated from any cluster-
ing method such as K-means, Rousseeuw developed a visu-
alization technique for cluster quality known as the silhouette
plot [16].

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(1)

In the above equation, s(i) is the silhouette of the ith data
point, a(i) is the average dissimilarity between the ith data
point and the other members of its cluster, and b(i) is the
minimum average dissimilarity between the ith data point and
the other clusters that exist in the partitioned space. Note
that the reference to dissimilarity implies the use of some

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

distance metric. Using the above equation, we can obtain the
average silhouette width from all the silhouette values for each
cluster to determine the quality of the clusters individually.
Alternatively, we can find the average silhouette width across
all clusters to determine the quality of a particular k partition
of the data space using K-means clustering for example.

III. THE STUDY METHOD

A. The Data Set

We used the BOA infrastructure [3] to obtain 256572 Java
repositories from a copy of GitHub, archived September 2015.
From each of these repositories, we obtained the repository
URL, its commit logs, its commit timestamps, and its re-
visions; for each revision, we collected the names of the
Java files created in it. Further, we used GitHub’s application
programming interface (API) to obtain the repository issues
and pull requests.

Of these 256572 Java repositories, 41301 contain test files.
An even smaller subset of 20590 repositories, to which we
refer as TDD-like repositories, contain test files created in
advance of the source-code files they test. Finally, a set of 1954
repositories, to which we refer as TDD repositories, fulfill the
TDD-like requirement and also exhibit high class coverage, as
defined later.

In our study, we analyzed all TDD repositories (1954) and
the 76 the most substantial TDD-like repositories, the cluster
where repositories had the largest numbers of authors and
commits. For the purpose of comparing TDD and non-TDD
projects, we created three corresponding control repository
collections. Some descriptive statistics from our data set are
reported in Table I, below.

Commits Issues Pull Requests
TDD CTRL TDD CTRL TDD CTRL

Cluster 9 189150 158168 1804 8384 497 2831
Cluster 1 9227 11454 141 206 96 74
Cluster 2 4102 3280 235 124 133 43

TABLE I: Distribution of Commits, Issues and Pull Requests

It is important to note here that the TDD/TDD-like sets were
disjoint from their control sets and that each repository from
each set had at least one commit and commit message.

B. Recognizing Repositories That Practice TDD

For this study, we take the following three characteristics
of software projects as evidence of TDD adoption: (a) the
inclusion of test files, (b) the development of tests before the
development of the source-code these tests exercise, and (c)
the high coverage of the overall source code by tests.

How many repositories include test files?: To determine
how many repositories included test files we used the abstract
syntax trees available through BOA to study the import
statements in each Java file for each repository. This included
import statements that matched the following regular expres-

sion where JUnit2, TestNG3 and Android test4 are frameworks
and tools for implementing test cases.

‘ˆ(org\.junit\.*)|
(org\.junit\.Test)|
(junit\.framework\.*)|
(junit\.framework\.Test)|
(junit\.framework\.TestCase)|
(org\.testng\.*)|
(android\.test\.*)$‘

Once a file was shown to contain one of these imports,
we considered the repository as containing test files, and thus
meeting the first criterion for being considered as adopting
TDD.

How many repositories write test files first (TDD-like)?:
We then reviewed all the revisions and all associated Java files
created in each revision. Here, we excluded all repositories
where there were no Java files that could be identified as test
files and unlike the previous question, we only considered files
that contained JUnit imports. This process involved four steps.

Step 1. We partitioned the Java files into two sets, for
each of the repositories. The first set included files identified
as test files, because their filename matched the regular
expression shown below and they imported JUnit. The second
set contained the remaining Java files.

/.*test.*\.java/i

Step 2. For each file in each set we identified its creation
time, based on the revision in which it was created.

Step 3. For each of the test files we found matching
or similarly named files, under the assumption that Java
programmers typically name their test files according to
their source-code files. For example, “someFile.java” might
have a corresponding test file called “TestSomeFile.java” or
“someFileTest.java”. If no matching file could be found, we
searched for similar files. Similar file names were identified
using the Python Standard Library for string comparison. A
similarity threshold of 0.8 was used, where 0 is completely
dissimilar and 1 is exactly the same. This threshold was
chosen because it could match, for example, words like
“search” with “searching”. Here the file “searchTest.java”
would be similar to “searching.java”. Finally, if no matching
or similar files were found for a test file, that test file would
be ignored in this step.

Step 4. Having identified pairs of files, including a test
file and a source-code file with matched or similar name,
we then ensured that the timestamp associated with the test
file was either older or the same as the source file(s). This

2http://junit.org/junit4/
3http://testng.org/doc/index.html
4http://developer.android.com/tools/testing/index.html

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

ensured that the test file was either committed before or at
the same time as the source file(s).

How many repositories practice TDD?: For this question
we again considered JUnit, Android and TestNG imports
as identifying test files. Unlike the TDD-like repositories
collected through the process above, to declare a repository as
rigorously practicing TDD we added an additional criterion:
in addition to having test files created at the same time or
before source code files, TDD repositories had to have high
class coverage where all the classes defined in the top level
namespace of source files are referenced in at least one test
file.

To determine if a repository has high class coverage we
used the ASTs provided in the BOA framework. Each Java
file in a repository is associated with an ASTRoot AST Type,
a container class that holds the AST [3]. After obtaining this
object, BOA allows navigation through the namespace of the
source file (the Java package) so that the declarations made
in the namespace can be observed. In our case, when looking
through source files we only recorded class declarations in the
namespaces provided by the ASTRoot. To deal with test files
we looked at all the types that were referenced in the test file
and recorded these. This includes types that were explicitly
referenced in the initial declaration of a variable as well as
any type changes that occur when a variable is reassigned.
For example, if a variable of type “MyInterface” is declared
and later assigned an instance of a class “ImplementsMyInter-
faceClass”, we would detect the use of this class.

Finally combining the knowledge of types used in test
files with classes declared in source files, we considered a
repository to have high class coverage only if every class
defined in all source files was referenced in at least one test
file in the most current version of the repository.

C. Control Set Construction

Now that we had a method for obtaining TDD and TDD-
like repositories, we needed a way to produce control sets
of repositories against which we could compare those that
we obtained. Again, we needed to be conscious of the many
“perils” of GitHub [4] so we employed stratified sampling
through K-means clustering to address this problem. In partic-
ular, we used K-means clustering to group repositories based
on their total number of commits and authors. These features
were selected due to concerns that imbalances in the number
of commits or authors (confounding factors) could lead to
comparisons being made between large active repositories and
small inactive repositories.

When clustering TDD-like repositories, we found that the
distribution of our data points was not well suited to clustering
initially, leading to highly imbalanced clusters. To mitigate this
issue we applied the following transformation to the features:

Featurenew = loge(Authors) + loge(Commits) (2)

The results of the clustering can be observed in Table II.
This transformation was important because we wanted to

obtain a data partitioning, such that the cluster of repositories
with the largest numbers of commits and authors was large
enough to produce a sample from which we could achieve
statistically significant conclusions. To select the values of k
to be used in K-means clustering we used mean silhouette
width as our measure of clustering quality. For TDD-like
repositories we restricted the value of k to be within the range
2 to 10 to avoid creating clusters with too few repositories
to make statistically meaningful conclusions. The plot of the
mean silhouette values for the TDD-like clusters can be seen
in Figure 1.

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8

K

M
ea

n
Si

lh
ou

et
te

 W
id

th

TDD
TDD−like

Fig. 1: Mean Silhouette Width for TDD/TDD-like K-means

Considering the silhouette plot for the TDD-like clusters, we
used k = 9. From the resulting clusters we chose to work with
cluster 9 to answer the remaining research questions because
it contained the most substantial repositories in terms of
numbers of commits and authors. Finally, to generate a control
set for the TDD-like repositories we randomly sampled 76
repositories where loge(Authors) + loge(Commits) values
were on the interval (9.36, 14.07) to match the 76 TDD-like
repositories we had obtained.

For the set of TDD repositories k = 2 was used for
clustering because it gave the highest mean silhouette value
in Figure 1. For this task clustering was performed in two di-
mensions and log transformations were not used because good
clustering could be achieved without these manipulations.

The results of this clustering produced Table III below. To
generate equivalently sized control sets for clusters 1 and 2,
we found the two repositories from each cluster where one
had the smallest number of authors (Amin) and the other had
the smallest number of commits (Cmin). Then we found the
two repositories where one had the largest number of authors
(Amax) and the other had the largest number of commits
(Cmax). Finally, random sampling took place for each cluster
so that every control repository had Cmin and Cmin values
greater than the smallest two repositories, and Cmax and Cmax

values smaller than the largest two repositories in each cluster.

D. Investigating Our Research Questions

Having obtained a set of TDD and TDD-like repositories,
we then used this set and the corresponding control set of

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

Size Amin Amedian Amax Cmin Cmedian Cmax sumlogmin sumlogmax

Cluster 1 2970 1 1 1 1 1.0 1 0 0
Cluster 2 1791 1 1 1 2 2.0 2 0.69 0.69
Cluster 3 3732 1 1 2 2 3.0 5 1.10 1.61
Cluster 4 3819 1 1 3 3 6.0 11 1.79 2.40
Cluster 5 4079 1 2 5 4 12.0 30 2.48 3.40
Cluster 6 2456 1 2 8 7 23.0 96 3.43 4.56
Cluster 7 1242 1 3 13 16 53.0 394 4.57 6.11
Cluster 8 425 1 7 40 32 156.0 1305 6.11 9.22
Cluster 9 76 11 67 167 253 1289.5 7763 9.36 14.07

TABLE II: Clustered TDD-like Repositories

Size Amin Amedian Amax Cmin Cmedian Cmax

Cluster 1 1873 1 1 6 1 3 27
Cluster 2 81 1 2 18 28 42 116

TABLE III: Clustered TDD Repositories

equal cardinality to answer our research questions.
1) RQ1: Does TDD/TDD-like improve commit velocity?:

To address this question we extracted the timestamps associ-
ated with all the commits collected and then noted the average
of the timestamp differences (deltas) between commits in each
repository.

2) RQ2: Does TDD/TDD-like reduce the required number
of bug fixing commits?:

/.*((solv(ed|es|e|ing))|(fix(s|es|ing|ed)?)
|((error|bug|issue)(s)?)).*/i

To address this question we used the regular expression
shown above to identify bug fixing commits in the repositories.
We consider this count to be an approximation of the number
of bugs that had existed in that repository.

3) RQ3: Does TDD/TDD-like affect the number of issues
that are associated with a repository?: To address this ques-
tion we counted the number of issues associated with each
repository from the two sets and observed the differences
between them. Issues were obtained through the GitHub API.

4) RQ4: Is continuous integration more prevalent in
TDD/TDD-like development?: To address this we used a part
of a publicly available BOA script5 in order to determine if
a Travis-CI travis.yml file was present in a repository.
While we focus specifically on Travis-CI, we used this as an
approximation for counting the number of repositories that
were using continuous integration.

5) RQ5: Does TDD affect developer or user satisfaction?:
To address this we applied the methodology described by
Guzman et al. [14] using the software SentiStrength6 to the
two TDD clusters we obtain. Once sentiment scores had been
obtained for each of the commits, we then averaged the scores
for each repository to obtain repository level sentiment scores.
We used the commits obtained from BOA and the issues and
pull requests obtained from the GitHub API

5http://boa.cs.iastate.edu/boa/?q=boa/job/public/30188
6http://sentistrength.wlv.ac.uk/

IV. ANALYSIS AND FINDINGS

A. Repository Counts

Of the 256572 Java repositories available in our GitHub data
set, we identified 41302 (16.1%) repositories as having test
files, 20590 (8.0%) repositories as TDD-like where they create
test files before creating source files, and 1954 repositories
(0.8%) as practicing TDD according to our criteria.

B. How many Repositories have Test Files

TABLE IV: TDD-like Cluster 9 Test Files per Repo

TDD-like Controls
Mean 9.83 38.18
STD 8.57 124.06
Quantile 0% 1.00 0.00
Quantile 25% 2.75 0.00
Quantile 50% 6.50 0.00
Quantile 75% 18.25 11.25
Quantile 100% 32.00 871.00

TABLE V: TDD Cluster 1 Test Files per Repo
TDD Controls

Mean 1.73 0.67
STD 1.72 4.16
Quantile 0% 0 0
Quantile 25% 1 0
Quantile 50% 1 0
Quantile 75% 2 0
Quantile 100% 27 130

TABLE VI: TDD Cluster 2 Test Files per Repo
TDD Controls

Mean 3.04 2.94
STD 6.06 10.77
Quantile 0% 0 0
Quantile 25% 1 0
Quantile 50% 1 0
Quantile 75% 3 1
Quantile 100% 49 72

In Table IV, we see that the mean number of test files
is much larger for the control group but the quantiles also
indicate that the control group is highly skewed, and that the
median number of test files is larger for the TDD-like cluster.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

Looking at Figure 2 the vast majority of TDD repositories
have more test files and that only the largest 20% of controls
have a very large number of test files.

A two sample Mann–Whitney–Wilcoxon test for this data
returns a p-value of 3.576e-06, indicating that TDD-like
repositories have a significantly larger number of test files as
compared to controls of the same size.

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Test Files

C
um

ul
at

iv
e

D
en

si
ty

TDD−like
Control

Fig. 2: Cluster 9: CDF of Test Files per Repo

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Test Files

C
um

ul
at

iv
e

D
en

si
ty

TDD
Control

Fig. 3: Cluster 1: CDF of Test Files per Repo

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Test Files

C
um

ul
at

iv
e

D
en

si
ty

TDD
Control

Fig. 4: Cluster 2: CDF of Test Files per Repo

In Figure 3 the curve for the control group always sits above
the curve for the TDD group. Further, in Table V both the
median and the mean values for the TDD group are greater
than those of the control group. Taken together this strongly
suggests that smaller sized TDD repositories have more test
files on average than the control group.

A two sample Mann–Whitney–Wilcoxon test for this data
returned “p-value < 2.2e-16”, confirming that there is ex-
tremely strong evidence to conclude that smaller TDD repos-
itories have more test files.

Similarly to Figure 2 we can see in Figure 4 that the density
curve for the TDD group sits below the control group until
approximately 90% of the TDD repositories, after which the
density lines cross. Additionally, the quantiles indicate that the
control data is highly skewed. From the CDF and observing
that the mean and median values are larger for the TDD
repositories, we can see that larger TDD files tend to have
more test files than the controls.

To establish significance, a two sample Mann–Whitney–
Wilcoxon test for this data returns a p-value of 3.576e-06,
indicating that generally speaking TDD-like repositories have
a significantly larger number of test files as compared to
controls of the same size.

C. Results for RQ1

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Commit Velocity

C
um

ul
at

iv
e

D
en

si
ty

TDD−like
Control

Fig. 5: Cluster 9: CDF of Average Commit Velocity per Repo

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Commit Velocity

C
um

ul
at

iv
e

D
en

si
ty

TDD
Control

Fig. 6: Cluster 1: CDF of Average Commit Velocity per Repo

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average Commit Velocity

C
um

ul
at

iv
e

D
en

si
ty

TDD
Control

Fig. 7: Cluster 2: CDF of Average Commit Velocity per Repo

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

TABLE VII: TDD-like Cluster 9 Avg Commit Velocity (Days)

TDD-like Controls
Mean 0.71 1.33
STD 0.50 1.40
Quantile 0% 0.02 0.12
Quantile 25% 0.34 0.40
Quantile 50% 0.65 0.82
Quantile 75% 0.85 1.63
Quantile 100% 2.47 7.38

TABLE VIII: TDD Cluster 1 Avg Commit Velocity (Days)
TDD Controls

Mean 8.48 8.73
STD 36.01 33.33
Quantile 0% 0.000000e+00 0.000000e+00
Quantile 25% 1.435185e-03 2.337963e-03
Quantile 50% 5.285108e-02 2.740856e-01
Quantile 75% 1.712558e+00 3.219814e+00
Quantile 100% 5.897032e+02 5.632412e+02

TABLE IX: TDD Cluster 2 Avg Commit Velocity (Days)
TDD Controls

Mean 9.16 5.19
STD 11.15 7.86
Quantile 0% 0.00 0.11
Quantile 25% 0.50 0.69
Quantile 50% 5.15 2.05
Quantile 75% 12.91 6.20
Quantile 100% 46.90 45.31

As shown in Figure 5 the density curve for the TDD-like
repositories sits above the density curve of the corresponding
control set. This indicates that most of the TDD-like repos-
itories have a smaller average time difference between their
commits as compared to the controls. This is further supported
by the mean and median values in Table VII where both are
smaller for TDD-like repositories.

A two sample Mann–Whitney–Wilcoxon test for differences
in TDD-like commits velocity returns a p-value of 0.004218.
This is not a significant difference however due to α ≈ 0.0023.

As shown in Figure 6 the density curve for the TDD
repositories with smaller numbers of commits also sits above
the control density curve as did the TDD-like repositories.
This indicates that most of these small TDD repositories have
a smaller average time difference between their commits as
compared to the controls. This is further supported by the
mean and median values in Table VIII where both are smaller
for TDD-like repositories.

A two sample Mann–Whitney–Wilcoxon test for this data
returns a p-value of 4.732e-06, showing there is very strong
evidence that control repositories generally have larger elapsed
times between commits as compared to their TDD counter-
parts.

In Figure 7 the density curve for the TDD repositories
with larger numbers of commits sits below the control density
curve contrary to the previous results showing that a larger
proportion of TDD repositories have larger average velocities.
Considering this with the mean and median values in Table IX
this suggests that for TDD repositories with larger commits
there is a slower commit velocity relative to controls.

A two sample Mann–Whitney–Wilcoxon test for this data
returns a p-value of 0.1498, which means there is not suffi-
cient evidence to be able to claim any difference in commit
velocity between TDD and control repositories that have larger
numbers of commits.

D. Results for RQ2

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Bug Fixing Commits

C
um

ul
at

iv
e

D
en

si
ty

TDD−like
Control

Fig. 8: Cluster 9: CDF of Bug Fixing Commits per Repo

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Bug Fixing Commits

C
um

ul
at

iv
e

D
en

si
ty

TDD
Control

Fig. 9: Cluster 1: CDF of Bug Fixing Commits per Repo

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Bug Fixing Commits

C
um

ul
at

iv
e

D
en

si
ty

TDD
Control

Fig. 10: Cluster 2: CDF of Bug Fixing Commits per Repo

In Figure 8 the density curve for the TDD repositories
always sits above the density curve for the control repositories,
and we see in Table X that the mean and median are smaller for
control repositories. This is contrary to the authors’ hypothesis
that TDD-like behaviour would reduce the number of bug
fixing commits.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

A two sample Mann–Whitney–Wilcoxon test for this data
returns a p-value of 0.0009295, showing there is strong evi-
dence that control repositories generally have smaller numbers
of bug fixing commits.

TABLE X: TDD-like Cluster 9 Bug Fixing Commits

TDD-like Controls
Mean 951.25 678.71
STD 885.07 934.12
Quantile 0% 96.00 7.00
Quantile 25% 323.00 175.50
Quantile 50% 519.00 274.00
Quantile 75% 1512.75 908.00
Quantile 100% 2896.00 6793.00

TABLE XI: TDD Cluster 1 Bug Fixing Commits
TDD Controls

Mean 0.26 0.41
STD 0.73 1.08
Quantile 0% 0 0
Quantile 25% 0 0
Quantile 50% 0 0
Quantile 75% 0 0
Quantile 100% 7 10

TABLE XII: TDD Cluster 2 Bug Fixing Commits
TDD Controls

Mean 3.53 4.57
STD 4.49 6.03
Quantile 0% 0 0
Quantile 25% 0 1
Quantile 50% 2 3
Quantile 75% 4 6
Quantile 100% 25 38

As shown in Figure 9, the density curve for the TDD
repositories always sits above the density curve for the control
repositories showing that these TDD repositories have fewer
numbers of commits referencing bugs. This is also supported
by the mean value shown in Table XI.

A two sample Mann–Whitney–Wilcoxon test for this data
returns a p-value of 0.0009526, showing there is strong evi-
dence that control repositories generally have larger numbers
of bug fixing commits relative to smaller TDD repositories.

As shown in Figure 10, the density curve for the TDD
repositories always sits above the density curve for the control
repositories showing that these TDD repositories have fewer
commits referencing bugs. This is also supported by the mean
and median values shown in Table XII.

A two sample Mann–Whitney–Wilcoxon test for this data
returns a p-value of 0.1834, which indicates that despite the
evidence in the two figures above there is insufficient evidence
to conclude that there is a difference in the number of bug
fixing commits between larger TDD repositories and controls.

E. Results for RQ3

As shown in Figure 11, the density curve for the TDD-
like repositories sits above the density curve for the control
repositories showing that these TDD-like repositories have
fewer numbers of issues. This is also supported by the mean
value shown in Table XIII.

A two sample Mann–Whitney–Wilcoxon test for this data
returns a p-value of 0.02656, showing there is not enough
evidence to conclude that control repositories have a larger
number of issues. Recall α ≈ 0.0023.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Issues

C
um

ul
at

iv
e

D
en

si
ty

TDD−like
Control

Fig. 11: Cluster 9: CDF of Number of Issues per Repo

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Issues

C
um

ul
at

iv
e

D
en

si
ty

TDD
Control

Fig. 12: Cluster 1: CDF of Number of Issues per Repo

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Issues

C
um

ul
at

iv
e

D
en

si
ty

TDD
Control

Fig. 13: Cluster 2: CDF of Number of Issues per Repo

While a comparison of the means in Table XIII and an
inspection of the density curves in Figure 11 seem to suggest
that TDD repositories have fewer numbers of issues, a two
sample Mann–Whitney–Wilcoxon test for this data produced
a p-value of 0.2574. This shows that there is insufficient
evidence to conclude that there is any difference between
the number of issues in control repositories and smaller TDD
repositories.

While a comparison of the means in Table XIII and an
inspection of the density curves in Figure 11 seem to suggest
that TDD repositories have larger numbers of issues, a two
sample Mann–Whitney–Wilcoxon test for this data produced
a p-value of 0.3. This shows that there is insufficient evidence
to conclude that there is any difference between the number of
issues on control repositories and smaller TDD repositories.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

TABLE XIII: TDD-like Cluster 9 Issues

TDD-like Controls
Mean 23.74 110.32
STD 111.92 363.48
Quantile 0% 0 0
Quantile 25% 0 0
Quantile 50% 0 0
Quantile 75% 0 0
Quantile 100% 829 2037

TABLE XIV: TDD Cluster 1 Issues
TDD Controls

Mean 0.08 0.11
STD 0.70 0.78
Quantile 0% 0 0
Quantile 25% 0 0
Quantile 50% 0 0
Quantile 75% 0 0
Quantile 100% 22 16

TABLE XV: TDD Cluster 2 Issues
TDD Controls

Mean 2.90 1.53
STD 7.97 5.63
Quantile 0% 0 0
Quantile 25% 0 0
Quantile 50% 0 0
Quantile 75% 1 0
Quantile 100% 51 47

F. Results for RQ4

TABLE XVI: Repositories using Travis-CI

Travis-CI Cluster size Percentage
Cluster 9 (TDD-like) 1 76 1.32%
Cluster 9 (CTRL) 5 76 6.58%
Cluster 1 (TDD) 54 1873 2.88%
Cluster 1 (CTRL) 9 1873 0.48%
Cluster 2 (TDD) 10 81 12.35%
Cluster 2 (CTRL) 0 81 0.00%

Table XVI presents a summary of the repositories that use
Travis-CI. From this table, some clear differences can be seen
in the counts between the TDD clusters and their controls.
To determine the significance of the TDD/TDD-like sets and
their controls two sample Mann–Whitney–Wilcoxon tests were
performed. For the comparison between TDD-like cluster 9
and its control group a p-value of 0.09787 was obtained.
For the comparison between TDD cluster 1 and its control
a p-value of 1.085e-08 was obtained and for the comparison
between TDD cluster 2 and its control and p-value of 0.001152
was obtained. The p-values for the TDD clusters are significant
as α ≈ 0.0023.

From the table and the reported p-values it can be seen
that there is no significant difference between TDD-like repos-
itories and the control group in terms of repositories that
use Travis-CI, having a travis.yml file. However, there
is a statistically significant difference for both sets of TDD
repositories such that the TDD repositories are significantly
more likely to be using Travis-CI.

TABLE XVII: P-values for Sentiment Comparisons

TDD C1 vs. CTR TDD C2 vs. CTR
Commits 0.3099 0.8987
Issues 0.5081 0.1269
Pull Requests 0.6283 0.0748

G. Results for RQ5

Table XVII reports the results of multiple two sample
Mann–Whitney–Wilcoxon tests that were conducted to exam-
ine if any differences in sentiment between TDD repositories
and control repositories could be detected in commit messages,
Issues and issues comments or pull request comments. As
can be seen in table XVII there were no significant p-values
obtained for any of the tests. This means that statistically
speaking, we were unable to conclusively determine that
practicing TDD has any effect on the sentiment captured in
software repository artifacts.

V. THREATS TO VALIDITY

In this work, internal validity is threatened by our choice
to use file names as our basis of TDD identification. In
particular, this approach does not consider file contents and
not all developers use the source/test file naming convention
we assumed. They may instead name files by their use case.
Also, it may be the case that repositories truly employing TDD
were omitted from our count due to low test to source file
ratio. Another threat to internal validity was our use of hand
crafted regular expressions for the identification of bugs fixing
commits. This may have resulted in an over or underestimation
of the true number of bugs. A final threat to internal validity is
that the data used for this study was a byproduct of software
development and was not collected specifically to study TDD.

Construct validity is threatened in this work by not con-
sidering dynamic code such as Java reflections, where the
behaviour of a class changes at run time7. Therefore we
may be erroneously excluding repositories that are practicing
TDD. Another threat to construct validity is that we only
consider repositories that follow a TDD-like or TDD process
from their conception to their current state. This excludes any
repositories that either switch from using TDD to another
paradigm, or switch from another paradigm to a TDD-like
or TDD paradigm. Construct validity is further threatened by
our choice to only consider file creation times as this does
not account for the order in which the contents of files are
completed. Therefore we cannot know if TDD is truly being
practiced (all the test code in a test file is written before
the source code that it tests). Finally, construct validity is
threatened by our choice to measure test files by their imports
of JUnit, TestNG and Android test frameworks. This may not
capture all testing activities as developers may test with other
frameworks or without the use of a framework.

External validity is threatened by our choice to only work
with Java files. This was done out of convenience but means
that this work may not generalize to other programming

7http://www.javatpoint.com/java-reflection

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

languages. Another threat to external validity was our choice
to measure the occurrence of continuous integration by only
looking Travis-CI and the presence of a travis.yml file. It
is possible that repositories practicing continuous integration
were ignored in this study for not using Travis-CI. A final
threat to external validity was our choice to not exclude small
or personal projects from the study. While we have studied a
set of repositories that are representative of GitHub, this work
may not necessarily generalize to enterprise level software.

VI. CONCLUSIONS AND FUTURE WORK

In this work we studied Java repositories on GitHub and
compared those practicing Test Driven Development (or a
TDD-like approach) to those that did not. While our results are
interesting, this study cannot claim that any of these results are
the direct effect of implementing a TDD-like or TDD paradigm
as there may be confounding factors in the data.

In our study we found that 16.1% (41302) of Java reposi-
tories on GitHub have test files, 8.0% (20590) create test files
before they create source code files, and 0.8% (1954) practiced
TDD in September 2015. This corroborates evidence by Beller
et al. that TDD in not commonly practiced [2]. Of particular
interest was our finding that TDD repositories tend to be fairly
small, where the largest TDD repository we found had 116
commits.

When compared to the control repositories we found that
TDD-like repositories have significantly more bug-fixing com-
mits, whereas significance could not be established for commit
velocity or number of issues. These results, particularly for the
number of bug-fixing commits, contradict the authors’ expec-
tations as it was predicted that a TDD-like approach would
improve productivity and code quality. Currently we are not
able to provide an explanation for why this is the case. When
comparing TDD repositories to their respective controls, we
found that TDD repositories with smaller numbers of commits
and authors have significantly faster commit velocities and
fewer numbers of bug fixing commits as the authors expected.
We could not find any significant difference in the number
of issues for smaller TDD repositories. For the set of TDD
repositories with larger numbers of commits we could not
find any significant difference in the number of bug fixing
commits, average commit velocity or number of issues. This
indicates that TDD is an effective paradigm when developing
small repositories but may not be particularly effective when
developing larger code repositories.

Another interesting finding of this work was that repos-
itories that practice TDD according to our definition are
significantly more likely to be using Travis-CI as a continuous
integration system, and by extension are more likely to be
using continuous integration. This indicates that TDD practi-
tioners may make better use of available continuous integration
technologies.

Finally, our study of difference in sentiment between TDD
repositories and control repositories showed that sentiment
may not be a meaningful metric with which to compare
different software development paradigms.

Having studied the differences between repositories practic-
ing TDD and those that do not, future work needs to be done
to more rigorously determine if these are the direct results
of implementing a TDD methodology and to identify, if any,
confounding factors that may have influenced these results.
Extensions of this work will involve studying the order in
which methods within classes are developed and tested, as
well as investigating how source and test files correlate over
time between TDD repositories and repositories using other
development methodologies.

ACKNOWLEDGMENT

The authors wish to acknowledge the support of NSERC.

REFERENCES

[1] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[2] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how, and
why developers (do not) test in their ides,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM,
2015, pp. 179–190.

[3] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 35th International Conference on Software Engineering, ser. ICSE
2013, May 2013, pp. 422–431.

[4] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[5] Y. Hochberg, “A sharper bonferroni procedure for multiple tests of
significance,” Biometrika, vol. 75, no. 4, pp. 800–802, 1988.

[6] A. Hindle, M. W. Godfrey, and R. C. Holt, “Release pattern discovery
via partitioning: Methodology and case study,” in Mining Software
Repositories, 2007. ICSE Workshops MSR’07. Fourth International
Workshop on. IEEE, 2007, pp. 19–19.

[7] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in Software Testing, Verification, and Validation, 2008 1st
International Conference on. IEEE, 2008, pp. 220–229.

[8] M. Beller, G. Gousios, and A. Zaidman, “How (much) do developers
test?” in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, vol. 2. IEEE, 2015, pp. 559–562.

[9] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” Software En-
gineering, IEEE Transactions on, vol. 40, no. 11, pp. 1100–1125, 2014.

[10] E. A. Santos and A. Hindle, “Judging a commit by its cover; or
can a commit message predict build failure?” PeerJ PrePrints, 2016.
[Online]. Available: https://doi.org/10.7287/peerj.preprints.1771v1

[11] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik, and
M. G. van den Brand, “Continuous integration in a social-coding world:
Empirical evidence from github.** updated version with corrections**,”
arXiv preprint arXiv:1512.01862, 2015.

[12] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel
emotions? an exploratory analysis of emotions in software artifacts,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, 2014, pp. 262–271.

[13] B. Bazelli, A. Hindle, and E. Stroulia, “On the personality traits
of stackoverflow users,” in 2013 IEEE International Conference on
Software Maintenance. IEEE, 2013, pp. 460–463.

[14] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit
comments in github: an empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014,
pp. 352–355.

[15] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[16] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v3 | CC BY 4.0 Open Access | rec: 22 Jun 2016, publ: 22 Jun 2016

