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Abstract
Aminoglycoside antibiotics are protein synthesis inhibitors applied to treat infections caused mainly by
aerobic Gram-negative bacteria. Due to their adverse side effects they are last resort antibiotics typically
used to combat pathogens resistant to other drugs. Aminoglycosides target ribosomes. We describe the
interactions of aminoglycoside antibiotics containing a 2-deoxystreptamine (2-DOS) ring with 16S rRNA. We
review the computational studies, with a focus on molecular dynamics (MD) simulations performed on RNA
models mimicking the 2-DOS aminoglycoside binding site in the small ribosomal subunit. We also briefly
discuss thermodynamics of interactions of these aminoglycosides with their 16S RNA target.

Introduction
Aminoglycosides are antibiotics targeting ribosomes that
interfere with bacterial protein synthesis. They are often last
chance antibiotics used to cure hospital-acquired infections
caused mainly by aerobic Gram-negative bacteria [1].
Aminoglycosides are still valuable drugs used to treat
such infections as sepsis, tuberculosis, tularemia, brucellosis
and nosocomial respiratory tract infections. They also
provide synergistic bactericidal activity in combination
with antimicrobials that inhibit bacterial cell wall synthesis
[2]. Moreover, they show potential in the treatment of
HIV-1 infected patients and human genetic disorders [3].
Aminoglycosides are injected because they are poorly
absorbed from the gut. Oral administration can be used in
hepatic encephalopathy. However, prolonged use of high
aminoglycoside doses may result in their ototoxicity and
nephrotoxicity.

The main resistance mechanism is related to deactivation
of aminoglycosides through their chemical modification by
bacterial aminoglycoside modifying enzymes [4]. Resistant
bacterial strains have plasmids containing genes encoding
these enzymes. However, enzymatic modifications by
ribosomal methyltransferases or mutations of the target
(even though rare) also contribute to resistance. In addition,
bacteria may decrease aminoglycoside uptake by reducing
membrane permeability or actively pump them out of the
cell.

2-Deoxystreptamine (2-DOS) aminoglycoside antibiotics
bind to decoding A-site in helix 44 of 16S RNA in
proximity to mRNA codon and anti-codon of the aminoacyl-
tRNA. They interact with and hinder the dynamics
of two functional A-site adenines (A1492 and A1493,
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Escherichia coli numbering) that act as a switch ensuring
the accuracy of decoding (Figure 1). Binding of 2-DOS
aminoglycosides locks these adenines in a flipped-out state
which promotes decoding errors by allowing incorporation
of near-cognate and non-cognate tRNAs [3]. However,
2-DOS aminoglycosides also interact with Helix 69 of
23S rRNA in the large subunit. These two binding sites
are conserved elements of ribosomes and form a flexible
intersubunit bridge responsible for collective functional
motions of the subunits. Some 2-DOS aminoglycosides were
shown to alter the dynamics of this bridge and to further
affect translocation of tRNAs and subunit rotation [5]. Also,
aminoglycosides interfere with the formation of ribosome
subunits by stabilizing subunit precursor particles [6].

From the chemical point of view, 2-DOS aminoglycosides
are pseudo-oligosaccharides composed of two to five
rings connected by flexible glycosidic linkers (Figure 2).
Depending on the position of these linkers, aminoglycosides
are divided into 4,5- or 4,6-disubstituted 2-DOS. Most pKas
of their amino groups are above 7 making them positively
charged at physiologic pH [7]. Due to such polycationic
nature, aminoglycosides have high affinity for the negatively
charged phosphates in the nucleic acid backbone. Thus they
bind to a variety of RNA targets [7,8], including human
ribosomes, especially the mitochondrial ones whose small
subunit A-site has a similar secondary and tertiary structure
to the bacterial one [9] (Figure 1). This was confirmed by
measuring the activity of 2-DOS aminoglycosides against
bacterial cells but with ribosomes containing different A-
site sequences [10]. Therefore, aminoglycosides are not
sufficiently selective, which results in their adverse side effects
[11]. Additionally, one can be predisposed to aminoglycoside-
induced deafness, which is associated with the A1555G
mutation in the mitochondrial 12S rRNA [12] (Figure 1).

2-DOS aminoglycoside binding site in the ribosome
is composed only of RNA as confirmed by the crys-
tal structure of the 30S subunit in the complex with
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Figure 1 The position of 2-DOS aminoglycoside binding site in the 30S subunit (in pink, PDB code: 1IBK [14])

Lower inset shows the most probable sequences of this site in human and bacterial ribosomes. Paromomycin is shown as

green van der Waals spheres, mRNA fragment is in red.

Figure 2 Examples of 4,5 and 4,6-disubstituted 2-deoxystreptamines
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Figure 3 2-DOS aminoglycoside binding mode in the model of the decoding A-site

Left: Selected 2-DOS aminoglycosides superimposed on the RNA model of the 16S RNA A-site. PDB codes of the crystal

structures of the complexes: neamine (2ET8 [37]), ribostamycin (2ET5), RNA (in grey) and neomycin B (2ET4), lividomycin

A (2ESJ), amikacin (2G5Q [68]). Only one A-site of the crystallized duplex is shown. Right: Superimposed complexes with

neomycin B (purple) and kanamycin A (coloured by atom name) with RNA shown in pink and grey respectively. The water

molecule present in the neomycin B complex mediates hydrogen bonds (yellow dashed lines) between the N1 amino group

of aminoglycoside ring II and O6 atom of the base G1405. Similar hydrogen bonds are made by the O2′′ hydroxy group from

kanamycin’s ring III.

paromomycin [13,14]. Also, RNA oligonucleotide models
with sequences corresponding to 16S RNA decoding A-
site were crystallized and shown to mimic well this rRNA
bulge and aminoglycoside mode of binding [15] (Figure 3).
The structural data confirmed that such aminoglycoside
binding site forms also without the ribosome context.
This 22 base pair RNA duplex contains two symmetric
aminoglycoside binding sites (bulges) and is often used as
a starting point for molecular dynamics (MD) simulations
[16]. Aminoglycosides anchor to their rRNA target through
a neamine core (rings I and II in Figure 2). Electrostatics
is believed to play a leading role in aminoglycoside short-
range interactions with nucleic acid targets [17–19], as well
as in aminoglycoside diffusion towards the A-site [20,21].
However, also the role of the aminoglycoside-aromatic CH/π
stacking contribution should not be underestimated [22].

Understanding the interactions between 2-DOS
aminoglycosides and their RNA target at atomic detail
is important to design antibiotic modifications or new
scaffolds that would increase their selectivity towards
the bacterial target. The ribosome is flexible, both locally
(decoding site adenines are in equilibrium between extra and
intra-helical states) and globally (the ribosome undergoes
concerted motions during entire translation process,
especially in the polypeptide elongation phase). Simulations
can complement experiments to give insight into the
dynamics at atomic resolution. We review computational
approaches, mainly MD simulations, which used models of
aminoglycoside binding site in 16S RNA. MD is a common

method to study internal flexibility of molecules at atomic
resolution and surrounded by explicit water molecules
and ions. Newton’s equations of motions are numerically
solved in femtosecond time steps to obtain a trajectory
of motions, i.e. the positions and velocities of atoms as a
function of time. The classical mechanics based potential
energy of the molecule is a sum of simple analytic functions
with semi-empirical parameters [23]. MD approach, even
though conceptually simple, has proven useful to determine
conformational states of biomolecules around starting
structures.

Thermodynamics of 2-DOS aminoglycoside
interactions
A single-stranded 27-mer RNA hairpin containing one
bulge has been often used in solution studies as a mimic
of the small subunit decoding A-site binding 2-DOS
aminoglycosides [16,24]. The thermodynamic binding data
for this RNA oligonucleotide showed that the equilibrium
dissociation constants for 2-DOS aminoglycosides are in
the micromolar range and correlate with the total charge of
the antibiotic [19,25–28]. Moreover, aminoglycoside binding
at pH above 5.5 is linked with proton uptake by their
amino groups [29]. Overall, in accord with the positive
net charge of these antibiotics, increasing ionic strength or
pH decreases their binding affinities to RNA. Also, in our
study on the electrostatics of aminoglycoside − 16S RNA
A-site crystallographic complexes, we observed correlations
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between the experimentally determined binding free energies
and electrostatic contribution to binding [30]. However, in
isothermal titration calorimetry (ITC) studies, depending
on buffer solutions and pH conditions, for some 2-
DOS aminoglycosides, a favourable entropic contribution
(positive T�S) to binding to the decoding A-site model
was observed [9,27,28,31,32]. Since ITC gives information
on the generation or release of heat occurring in the entire
process in the sample cell, it is difficult to assess what
contributes to the observed positive entropy term. It could
come from conformational changes of aminoglycoside, RNA
or release of ions upon binding. We have also observed a
positive T�S in the ITC studies of amikacin, a semi-synthetic
derivative of kanamycin A, which possesses a unique L-
HABA (L-( − )-γ -amino-α-hydroxybutyric acid) extension
[32] (Figures 2 and 3). Amikacin, probably due to this L-
HABA tail, is quite resistant to enzymatic modifications
by bacterial enzymes. However, it seems that this tail has
also another role that of balancing the enthalpy–entropy
contributions to binding. With MD simulations we found
that amikacin’s tail is more flexible in the complex with RNA
than in water solution [32]. The hydrogen bonds formed by
this tail observed in the crystal structure turned out to be
weak and transient in MD simulations. Since the presence of
amikacin did not affect the UV-melting profiles and circular
dichroism spectra of the oligonucleotide A-site model, it
could be that the positive T�S arises also from the L-HABA
tail.

Hydration patterns in aminoglycoside
binding site
In the crystal structures of 16S RNA A-site models in
the complexes with 2-DOS aminoglycosides many water-
mediated hydrogen bonds were found and simulations have
proven their importance in the interactions with RNA [33–
35]. For example, a water molecule bridges the interactions
of the antibiotic with a uracil pair U1406/U1495 (Figure 1)
and contributes to the stability of the complexes [34,36].
An MD study of the A-site oligonucleotide model in the
complex with paromomycin showed that the neamine core
forms crucial hydrogen bonds stabilizing this antibiotic,
whereas two other rings interact more weakly and transiently
with RNA [33]. Also, many water-mediated contacts
between paromomycin and RNA were found stable in these
simulations.

The analysis of crystallographic structures of the rRNA
complexes with twelve 2-DOS aminoglycosides showed
repeated water-mediated hydrogen bond patterns [30].
Therefore, the water molecules that interact strongly with
aminoglycosides and weakly with RNA could be mimicked
with modified antibiotic groups. A pattern showing the
idea of using the hydrogen bonds of mediating waters for
designing new modifications of aminoglycoside functional
groups is presented in the right panel of Figure 3. In the
crystallographic structures of the aminoglycoside binding site

RNA models [37] a hydroxy group of kanamycin A mimics
the water molecule present in the complex with neomycin B.

Flexibility of aminoglycoside binding site
models from MD simulations
Even though all-atom MD simulations of the whole ribosome
or its subunits have been performed to study mRNA
decoding and tRNA translocation, e.g. [38,39], MD studies
of the RNA models of aminoglycoside binding site allowed
focusing on local dynamics and adenine flipping on longer
timescales. Classical MD studies of 16S RNA A-site models
confirmed the flipping motion of A1492/93 [34,40,41]. MD
simulations with enhanced sampling approach characterized
the thermodynamics of adenine mobility and estimated the
energetic barrier for adenine flipping in the range of 0.5–5
kcal/mol [42]. These two bases were found to flip in and out
of the bulge on a timescale faster than aminoglycoside binding
suggesting a stochastic gating mechanism where the ligand
does not induce flipping out of A1492/93 but only traps
them in a flipped out state [43]. Another targeted MD study in
combination with approximate free-energy calculations (with
a molecular mechanics/Poisson–Boltzmann method) showed
that A1492/93 preferred the flipped-out state [41].

The dynamics of the small subunit A-site RNA models
with single and double-point nucleotide substitutions
were studied to understand the effect of mutations on
aminoglycoside short-range interactions with RNA [34,44].
These studies showed that nucleotide substitutions may affect
local dynamics of A1492/93 and paromomycin binding mode,
as well as hydration patterns and ionic distributions around
RNA bulge. Specifically, MD simulations of the A1408G A-
site variant that is characteristic of eukaryotic cytoplasmic
ribosomes (Figure 1) showed that (i) more Na+ ions gather
in the binding site and (ii) A1492/93 interact more strongly
with G1408, which may explain why bacteria with A1408G
substitution are resistant to aminoglycosides [45].

MD simulations were also applied to investigate the
reasons for different selectivities of 2-DOS aminoglycosides
towards decoding A-sites of various organisms [36]. In the
human variant we observed flipped-out conformations of
A1491 resulting in narrowing of the major groove and fre-
quent exchange of conformations within the U1406/U1495
(Figure 1). These factors may explain the slightly lower (one-
fold) binding affinity of 2-DOS aminoglycosides towards the
human cytoplasmic A-site variant [9].

Even though the 2-DOS aminoglycoside binding site is
bare of proteins, amino acid alterations in a nearby ribosomal
protein S12 affect activity of these antibiotics. S12, together
with the S4 and S5 ribosomal proteins, contributes to the
fidelity of decoding. Certain mutations in the S12 protein
(such as K42A and R53A) inactivate paromomycin even if
it is already bound to the ribosome [46]. These S12 mutants
also make ribosomes hyper-accurate. With MD simulations
of a ribosome fragment, we found that these S12 mutations
affect the mobility of A1492/93 by allowing the interactions
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of A1492 with a flexible K43 [47]. Therefore, the miscoding
effect of paromomycin maybe cancelled because A1492/93
acquire conformations less favourable for aminoacyl-tRNA
accommodation.

Other computational methods in the
studies of 2-DOS aminoglycosides and their
16S RNA target
Apart from classical all-atom MD simulations, other
techniques have been also applied to study the interactions
of 2-DOS aminoglycosides and their 16S RNA target.
One study used an empirical potential to calculate the
contributions of various 2-DOS aminoglycoside rings to the
interactions with rRNA [48]. For example, for paromomycin
and neomycin B large contributions of rings I, II and IV were
found, with a much smaller contribution of ring III (Figures 2
and 3). The interaction energies were also calculated with
ab initio quantum mechanical calculations [49].

The Poisson–Boltzmann model of electrostatics was used
to verify the importance of electrostatic contribution to
binding [18,19]. The study used the whole 30S subunit
but the calculations did not explicitly include its dynamics.
Reduced representations of the antibiotics were used to detect
how they diffuse towards the RNA target. These further
confirmed the importance of electrostatics not only in the
local short-range interactions but also in the first steps of
the binding process, i.e. pathways of association towards the
target [20,21].

Atomistic level description of aminoglycoside–RNA
interactions is important to aid in the design of new
compounds. Predicting the most optimal binding mode of
the complex is termed docking. Docking involves searching
for and scoring conformations of the complex, typically
based on the molecular mechanics potential energy function.
Docking is necessary after virtual screening of chemical
databases to predict and rank the best binding poses of
modified or new compounds. Approaches to predict the 2-
DOS aminoglycoside poses in the 16S RNA decoding A-site
mimics were tried. However, modifications of the docking
algorithms that included the assessment of RNA flexibility
or implicit treatment of bridging waters were necessary [50–
52]. Since aminoglycosides are charged and flexible, some
interactions are water mediated, and ions are expelled upon
binding, standard docking protocols do not work for these
molecules. Therefore, aminoglycosides are often included in
the test sets for evaluation of the scoring functions in docking
[51,53–55].

Restricting aminoglycoside flexibility to
avoid resistance and toxicity
Finding new modifications of natural or semi-synthetic
aminoglycosides could help overcome bacterial resistance
and toxicity problems. It would be desirable to modify
aminoglycosides in such a way to increase their specificity

towards pathogenic bacterial ribosomes and to minimize
their affinity towards human, specifically mitochondrial,
ribosomes. Also, modified aminoglycosides should either
inhibit or reduce the activity of aminoglycoside modifying
enzymes. Numerous such efforts have been undertaken,
e.g. [3,56–59] but without spectacular clinical advancements.
However, to increase aminoglycoside selectivity towards
bacterial ribosomes, it is essential to understand the dynamics
of aminoglycosides and their binding site since both are
inherently flexible in solution. Formation of complexes, with
some exceptions, e.g. of the L-HABA tail or ring IV in
paromomycin, reduces aminoglycoside mobility. To narrow
the RNA target selection, the conformational freedom of
2-DOS aminoglycosides around glycosidic bonds has been
restricted. Conformationally constrained neomycin B and
paromomycin analogues have been developed. Even though
the affinity of these analogues towards the A-site model
decreased, it did not affect binding to a HIV-1 RNA fragment
[60]. So this study has shown that this direction could be
pursued further to reduce off-target effects.

The ribosome A-sites are conserved so it is difficult
to propose selective aminoglycoside modifications but
a possible route could be to either design sequence-
specific aminoglycoside extensions [61,62] or to combine
aminoglycosides perhaps with ribosome inhibitors that target
nearby sites. For example, neamine and neomycin B dimers
have been already explored to restrict the freedom of linkers,
avoid enzymatic modifications and decrease the doses.
Neamine dimers were shown to have comparable activity to
that of single neamine in in vitro translation and antimicrobial
assays against E. coli [63] but most importantly inhibited the
activity of aminoglycoside modifying enzymes. Neomycin B
dimers bound with higher affinity to A-site oligonucleotide
models and depending on the linker preferred bacterial over
the human model [64]. However, their antibacterial activity
was weaker than of single neomycin. Also, the neighbouring
binding cleft of hygromycin B (which binds at the site of
the upper stem in the secondary structure models shown in
Figure 1) was used to extend paromomycin to occupy a larger
moiety [65]. Recently, aminoglycosides were conjugated to
silica nanoparticles and have shown antimicrobial activity
against clinical resistant strains and also low cytotoxicity [66].
Regrettably, the quest for new aminoglycoside analogues with
enhanced antibacterial properties still resembles a random
walk and complex low-yield chemical synthesis of semi-
synthetic analogues precludes high-throughput studies on
many compounds.

Conclusion
Computational modelling of the dynamics of 16S rRNA
fragments mimicking the 2-DOS aminoglycoside binding
sites helps understand their interactions with RNA and
explain experimental data. Specifically, all-atom MD simu-
lations in explicit solvent capture the flexibility of A1492/93,
the importance of the neamine core, give insight into the
hydration and ionic patterns, as well as give implications
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how nucleotide substitutions change these interactions. The
advances in both computer power and potential energy
functions for nucleic acids [67] should make MD simulations
more routine to use them in flexible docking studies. Apart
from still insufficient sampling, which now only reaches the
experimental timescales for the model systems of the size
described here, there is still a need to improve the models for
divalent ions since they both contribute to the dynamics of
RNA and charged aminoglycoside binding.
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