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SOME FORMULAS FOR APOSTOL-EULER POLYNOMIALS
ASSOCIATED WITH HURWITZ ZETA FUNCTION AT

RATIONAL ARGUMENTS

Qiu-Ming Luo

We give some explicit relationships between the Apostol-Euler polynomials

and generalized Hurwitz-Lerch Zeta function and obtain some series repre-

sentations of the Apostol-Euler polynomials of higher order in terms of the

generalized Hurwitz-Lerch Zeta function. Several interesting special cases are

also shown.

1. Introduction

Throughout this paper, we always make use of the following notations: N = {1, 2, 3, . . .}
denotes the set of natural numbers, N0 = {0, 1, 2, 3, . . .} denotes the set of nonnegative integers,
Z−0 = {0,−1,−2,−3, . . .} denotes the set of nonpositive integers, Z denotes the set of integers,
R denotes the set of real numbers, C denotes the set of complex numbers.

The generalized Bernoulli polynomials B
(α)
n (x) and Euler polynomials E

(α)
n (x) of order α

(real or complex) are usually defined by means of the following generating functions (see, for
details, [1], [5], [13], [15]):

(1.1)
(

z

ez − 1

)α

exz =
∞∑

n=0

B(α)
n (x)

zn

n!
(|z| < 2π)

and

(1.2)
(

2
ez + 1

)α

exz =
∞∑

n=0

E(α)
n (x)

zn

n!
(|z| < π) .

Obviously, the classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) are defined
by

(1.3) Bn (x) := B(1)
n (x) and En (x) := E(1)

n (x) (n ∈ N0) ,

respectively. The classical Bernoulli numbers Bn and Euler numbers En are defined by

Bn := Bn (0) and En := 2nEn

(
1
2

)
(n ∈ N0) ,(1.4)

respectively.
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Some interesting analogues of the classical Bernoulli polynomials and numbers were first
investigated by Apostol [2, p. 165, Eq. (3.1)] and (more recently) by Srivastava [14, p. 83-84].
We begin by recalling Apostol’s definitions as follows:

Definition 1.1 (Apostol [2]; see also Srivastava [14]). The Apostol-Bernoulli polynomials
Bn(x;λ) in x are defined by means of the generating function:

zexz

λez − 1
=

∞∑
n=0

Bn(x;λ)
zn

n!
(1.5)

(|z| < 2π when λ = 1; |z| < |log λ| when λ 6= 1)

with, of course,

(1.6) Bn(x) = Bn(x; 1) and Bn (λ) := Bn (0;λ) ,

where Bn (λ) denotes the so-called Apostol-Bernoulli numbers (In fact, it is a function in λ).

Recently, Luo and Srivastava extended further the Apostol-Bernoulli and Apostol-Euler
polynomials and their generalizations as follows:

Definition 1.2 (cf. Luo and Srivastava [10, 12]). The Apostol-Bernoulli polynomials
B(α)

n (x;λ) of order α are defined by means of the generating function
(

z

λez − 1

)α

exz =
∞∑

n=0

B(α)
n (x;λ)

zn

n!
(1.7)

(|z| < 2π when λ = 1; |z| < |log λ| when λ 6= 1)

with, of course,

B(α)
n (x) = B(α)

n (x; 1) and B(α)
n (λ) := B(α)

n (0;λ) ,

Bn (x;λ) := B(1)
n (x;λ) and Bn (λ) := Bn (0;λ) ,

(1.8)

where Bn (λ), B(α)
n (λ) and Bn (x;λ) denote the so-called Apostol-Bernoulli numbers, Apostol-

Bernoulli numbers of order α and Apostol-Bernoulli polynomials respectively.

Definition 1.3 (cf. Luo [11]). The Apostol-Euler polynomials E(α)
n (x;λ) of order α are

defined by means of the generating function

(1.9)
(

2
λez + 1

)α

exz =
∞∑

n=0

E(α)
n (x;λ)

zn

n!
(|z| < |log(−λ)|) ,

with, of course,

E(α)
n (x) = E(α)

n (x; 1) and E(α)
n (λ) := 2nE(α)

n

(α

2
;λ

)
,

En (x;λ) := E(1)
n (x;λ) and En (λ) := 2nEn

(α

2
;λ

)
,

(1.10)

where En (λ), E(α)
n (λ) and En (x;λ) denote the so-called Apostol-Euler numbers, Apostol-Euler

numbers of order α and Apostol-Euler polynomials respectively.

The main object of the present paper is to give some explicit relationships between the
Apostol-Euler polynomials and generalized Hurwitz-Lerch Zeta function and to investigate some
series representations of the Apostol-Euler polynomials in terms of generalized Hurwitz-Lerch
Zeta function.
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2. Some explicit relationships between the Apostol-Euler polynomials and the
generalized Hurwitz-Lerch Zeta function

A family of the Hurwitz-Lerch Zeta function Φ(ρ,σ)
µ,ν (z, s, a) defined by (see e.g. [9, p. 727,

Eq. (8)]

(2.1) Φ(ρ,σ)
µ,ν (z, s, a) :=

∞∑
n=0

(µ)ρn

(ν)σn

zn

(n + a)s

(µ ∈ C; a, ν ∈ C \ Z−0 ; ρ, σ ∈ R+; ρ < σ when s, z ∈ C;

ρ = σ and s ∈ C when |z| < 1; ρ = σ and <(s− µ + ν) > 1 when |z| = 1),

contains, as its special cases, not only the Hurwitz-Lerch Zeta function

(2.2) Φ(σ,σ)
ν,ν (z, s, a) = Φ(0,0)

µ,ν (z, s, a) = Φ(z, s, a) =
∞∑

n=0

zn

(n + a)s

and the Lipschitz-Lerch Zeta function (cf. [15, p. 122, Eq. 2.5 (11)]):

(2.3) φ(ξ, a, s) := Φ
(
e2πiξ, s, a

)
=

∞∑
n=0

e2nπiξ

(n + a)s

(
a ∈ C \ Z−0 ; <(s) > 0 when ξ ∈ R \Z; <(s) > 1 when ξ ∈ Z)

,

but also the following generalized Hurwitz-Lerch Zeta functions introduced and studied earlier
by Goyal and Laddha [7, p. 100, Eq. (1.5)]

(2.4) Φ(1,1)
µ,1 (z, s, a) = Φµ(z, s, a) :=

∞∑
n=0

(µ)n

n!
zn

(n + a)s
,

which, for convenience, are called the Goyal-Laddha-Hurwitz-Lerch Zeta function. Here the
symbol (a)k denotes the Pochhammer symbol or the shifted factorial defined, a ∈ C, by

(2.5) (a)k =
Γ(a + k)

Γ(a)
=

{
1 (k = 0)
a(a + 1) · · · (a + k − 1) (k ∈ N),

where Γ(x) is the usual Gamma function.
Recently, Garg et al. [6] obtained the following interesting formula:

(2.6) B(l)
n (a;λ) = (−n)lΦl(λ, l − n, a) (n, l ∈ N; n = l; |λ| < 1; a ∈ C \ Z−0 ).

Clearly, we have

(2.7) Bn (a;λ) = −nΦ(λ, 1− n, a) (n ∈ N; |λ| 5 1; a ∈ C \ Z−0 ).

Below we give the following explicit relationships between the a family of Euler polynomials and
a family of Zeta function.

Theorem 2.1. For n ∈ N; − 1 < λ 5 1; α ∈ C; a ∈ C \ Z−0 , the following relationship

(2.8) E(α)
n (a;λ) = 2αΦα(−λ,−n, a)

between the Apostol-Euler polynomials of higher order and the Goyal-Laddha-Hurwitz-Lerch Zeta
function.
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Proof. By (1.9) and the generalized binomial theorem, yields

∞∑
n=0

E(α)
n (a;λ)

zn

n!
=

(
2

λez + 1

)α

eaz = 2α
∞∑

k=0

(α)k

k!
(−λ)ke(k+a)z

=
∞∑

n=0

[
2α

∞∑

k=0

(α)k

k!
(−λ)k(k + a)n

]
zn

n!
=

∞∑
n=0

[
2α

∞∑

k=0

(α)k

k!
(−λ)k

(k + a)−n

]
zn

n!
.

(2.9)

Hence, the formula (2.8) follows. ¤

Corollary 2.2. For n ∈ N; − 1 < λ 5 1; a ∈ C \ Z−0 , the following relationship

(2.10) En (a;λ) = 2Φ(−λ,−n, a)

holds true between the Apostol-Euler polynomials and the Hurwitz-Lerch Zeta function.

It is well-known that the following relationship between the Bernoulli polynomials and the
Hurwitz Zeta function (see Apostol [3, p. 264, Theorem 12.13])

(2.11) Bn(a) = −nζ(1− n, a) (n ∈ N),

where ζ(s, a) denotes the Hurwitz Zeta function defined by

ζ(s, a) := Φ(1, s, a) =
∞∑

n=0

1
(n + a)s (< (s) > 1; a ∈ C \ Z−0 ).

An alternating series version of the Hurwitz Zeta function is given as follows:

Definition 2.3. The L-function is defined by

(2.12) L(s, a) :=
∞∑

n=0

(−1)n

(n + a)s

(< (s) > 1; a ∈ C \ Z−0
)
.

In the same method, it is not difficult, we give a quasi formula of (2.11) as follows:

Theorem 2.4. For n ∈ N; a ∈ C \ Z−0 , the following relationship

(2.13) En (a) = 2L(−n, a)

holds true between the Euler polynomials and the L-function.

It is well-known that the following relationship between the Bernoulli numbers and the
Riemann Zeta function (see [3, p. 266, Theorem 12.16])

(2.14) Bn = −nζ(1− n) (n ∈ N),

where ζ(s) denotes the Riemann Zeta function defined by

ζ(s) := ζ(s, 1) =
∞∑

n=1

1
ns

.

An alternating series version of the Riemann Zeta function is given as follows:

Definition 2.5. For <(s) > 0, the l-function defined by

(2.15) l(s) :=
∞∑

n=1

(−1)n

ns
.

Similarly, we give an analogue of the formula (2.14) as follows:
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Theorem 2.6. For n ∈ N, the following relationship

(2.16) En = 2l(−n)

holds true between the Euler numbers and the l-function.

3. Explicit series representations for the Apostol-Euler polynomials of order α

It is not difficult, we make use of the elementary series identity:

(3.1)
∞∑

k=1

f (k) =
q∑

j=1

∞∑

k=0

f (qk + j) , (q ∈ N) ,

to the Hurwitz-Lerch Zeta function (2.2), yields that

(3.2) Φ(z, s, a) = q−s

q∑

j=1

Φ
(

zq, s,
a + j − 1

q

)
zj−1.

Obviously, a special case of (3.2) when

z = exp
(

2pπi

q

)
(p ∈ Z, q ∈ N)

is the following summation formula for the Lipschitz-Lerch Zeta function φ(ξ, a, s) defined by
(2.3):

Φ
(

exp
(

2pπi

q

)
, s, a

)
= φ

(
p

q
, a, s

)

= q−s

q∑

j=1

ζ

(
s,

a + j − 1
q

)
exp

(
2(j − 1)pπi

q

)
,

(3.3)

in terms of the Hurwitz Zeta function ζ(s, a).

Theorem 3.1. For n, q ∈ N; p ∈ Z; ξ ∈ R, α ∈ C, the following formula of the Apostol-
Euler polynomials of order α

E(α)
n

(
p

q
; e2πiξ

)
=

i 2α · n!
Γ(α)

∞∑

k=0

(
α− 1

k

)(
k − p

q
+ 1

)

α−k−1

k∑

j=0

(
k − 1
j − 1

)
(n + 1)jB

(k)
k−j

· (2πq)−n−j−1

{
q∑

r=1

ζ

(
n + j + 1,

2ξ + 2r − 1
2q

)

· exp
[(

n + j

2
− (2ξ + 2r − 1)p

2

)
πi

]
−

q∑
r=1

ζ

(
n + j + 1,

2r − 2ξ + 1
2q

)

· exp
[(
−n + j

2
+

(2r − 2ξ + 1)p
2

)
πi

]}
,

(3.4)

holds true in terms of the Hurwitz Zeta function.
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Proof. We now rewrite the result of Lin et al. as follows (see [8, p. 823, Theorem]):

Φµ(z, s, a) =iz−aΓ(1− s)
∞∑

k=0

(k − a + 1)µ−k−1

k!Γ(µ− k)

k∑

j=0

(
k − 1
j − 1

)
(1− s)jB

(k)
k−j(2π)s−j−1

·
[
exp

(
−1

2
(s− j)πi

)
Φ

(
e−2πai, 1− s + j,

log z

2πi

)

− exp
[(

2a +
1
2
(s− j)

)
πi

]
Φ

(
e2πai, 1− s + j, 1− log z

2πi

)]
(µ ∈ C).

(3.5)

Setting

z = −e2πiξ, a =
p

q
and s 7→ −s, µ 7→ α

and by applying the series identity (3.3), we find that

Φα

(
−e2πiξ,−s,

p

q

)
=

iΓ(s + 1)
Γ(α)

∞∑

k=0

(
α− 1

k

)(
k − p

q
+ 1

)

α−k−1

k∑

j=0

(
k − 1
j − 1

)
(s + 1)jB

(k)
k−j

· (2πq)−s−j−1

{
q∑

r=1

ζ

(
s + j + 1,

2ξ + 2r − 1
2q

)

· exp
[(

s + j

2
− (2ξ + 2r − 1)p

q

)
πi

]
−

q∑
r=1

ζ

(
s + j + 1,

2r − 2ξ + 1
2q

)

· exp
[(
−s + j

2
+

(2r − 2ξ + 1)p
q

)
πi

]}
(α ∈ C).

(3.6)

Taking s = n in (3.6) and noting that (2.8) of Theorem 2.1, of course, with

λ = e2πiξ and a =
p

q
,

we obtain the desire (3.4). This proof is complete. ¤

Theorem 3.2. For n, q, l ∈ N; p ∈ Z; ξ ∈ C, the following formula of the Apostol-Euler
polynomials of order l

E(l)
n

(
p

q
; e2πiξ

)
=

i2l · n!
(l − 1)!

l−1∑

k=0

(
l − 1

k

)(
k − p

q
+ 1

)

l−k−1

k∑

j=0

(
k − 1
j − 1

)
(n + 1)jB

(k)
k−j

· (2πq)−n−j−1

{
q∑

r=1

ζ

(
n + j + 1,

2ξ + 2r − 1
2q

)

exp
[(

n + j

2
− (2ξ + 2r − 1)p

2

)
πi

]
−

q∑
r=1

ζ

(
n + j + 1,

2r − 2ξ + 1
2q

)

exp
[(
−n + j

2
+

(2r − 2ξ + 1)p
2

)
πi

]}
,

(3.7)

holds true in terms of the Hurwitz Zeta function.

Proof. Let α = l (l ∈ N) in (3.6) we may obtain the assertion (3.7). ¤
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Theorem 3.3. For n, q, l ∈ N; p ∈ Z; ξ ∈ C, the following formula of the Apostol-Euler
polynomials of order l

E(l)
n

(
p

q
; e2πiξ

)
=− i(−2)l · n!

(l − 1)!

l−1∑

k=0

(
l − 1

k

)
B

(l)
l−k−1q

−n−k−1
k∑

j=0

(
k

j

)(−n− 1
j

)
j!pk−j(2π)−n−j−1

·
{

q∑
r=1

ζ

(
n + j + 1,

2ξ + 2r − 1
2q

)
exp

[(
n + j

2
− (2ξ + 2r − 1)p

q

)
πi

]

−
q∑

r=1

ζ

(
n + j + 1,

2r − 2ξ + 1
2q

)
exp

[(
−n + j

2
+

(2r − 2ξ + 1)p
q

)
πi

]}
,

(3.8)

holds true in terms of the Hurwitz Zeta function.

Proof. Setting µ = m (m ∈ N) in (3.5), we obtain the following transformation formula:

Φm(z, s, a) =
iz−aΓ(1− s)

(m− 1)!

m−1∑

k=0

(
m− 1

k

)
B

(m)
m−k−1

·
k∑

j=0

(−1)m−k+j−1

(
k

j

)(
s− 1

j

)
j!(−a)k−j(2π)s−j−1

·
[
exp

(
1
2
(s− j)πi

)
Φ

(
e−2πai, 1− s + j,

log z

2πi

)

− exp
[(

2a +
1
2
(s− j)

)
πi

]
Φ

(
e2πai, 1− s + j, 1− log z

2πi

)]
(m ∈ N).

(3.9)

Letting

z = −e2πiξ, a =
p

q
and s 7→ −s, m 7→ l

and by applying the series identity (3.3), we obtain the following consequence

Φl

(
−e2πiξ,−s,

p

q

)

=
i(−1)l−1Γ(s + 1)

(l − 1)!

l−1∑

k=0

(
l − 1

k

)
B

(l)
l−k−1q

−s−k−1
k∑

j=0

(
k

j

)(−s− 1
j

)
j!pk−j(2π)−s−j−1

·
{

q∑
r=1

ζ

(
s + j + 1,

2ξ + 2r − 1
2q

)
exp

[(
s + j

2
− (2ξ + 2r − 1)p

q

)
πi

]

−
q∑

r=1

ζ

(
s + j + 1,

2r − 2ξ + 1
2q

)
exp

[(
−s + j

2
+

(2r − 2ξ + 1)p
q

)
πi

]}
(l ∈ N),

(3.10)

Further taking s = n in (3.10) and noting that (2.8) of Theorem 2.1, of course, with

λ = e2πiξ and a =
p

q
(p ∈ Z; q ∈ N; ξ ∈ R).

Therefore, the formula (3.8) follows. This proof is complete. ¤
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4. Further observations and consequences

Recently, Srivastava found the following elegant formula for Apostol-Bernoulli polynomials
Bn(x;λ) (see [14, p. 84, Eq. (4.6)]):

Bn

(
p

q
; e2πiξ

)
=− n!

(2qπ)n





q∑

j=1

ζ

(
n,

ξ + j − 1
q

)
exp

[(
n

2
− 2(ξ + j − 1)p

q

)
πi

]

+
q∑

j=1

ζ

(
n,

j − ξ

q

)
exp

[(
−n

2
+

2(j − ξ)p
q

)
πi

]}
(4.1)

(n ∈ N \ {1} ; p ∈ Z; q ∈ N; ξ ∈ R).

When ξ ∈ Z in (4.1), we can deduce a known result given earlier by Cvijović and Klinowski [4,
p. 1529, Theorem A]:

(4.2) Bn

(
p

q

)
= − 2 · n!

(2qπ)n

q∑

j=1

ζ

(
n,

j

q

)
cos

(
2jpπ

q
− nπ

2

)

(n ∈ N \ {1} ; p ∈ Z; q ∈ N) .

It follows that we set α = 1 in (3.4), or l = 1 in (3.7) and (3.8). Then we obtain the following
interesting formula for the Apostol-Euler polynomials En(x;λ).

Theorem 4.1. For n, q ∈ N; p ∈ Z; ξ ∈ R, the following formula of the Apostol-Euler
polynomials at rational arguments

En

(
p

q
; e2πiξ

)
=

2 · n!
(2qπ)n+1

{
q∑

j=1

ζ

(
n + 1,

2ξ + 2j − 1
2q

)
exp

[(
n + 1

2
− (2ξ + 2j − 1)p

q

)
πi

]

+
q∑

j=1

ζ

(
n + 1,

2j − 2ξ − 1
2q

)
exp

[(
−n + 1

2
+

(2j − 2ξ − 1)p
q

)
πi

]}

(4.3)

holds true in terms of the Hurwitz Zeta function.

A special case of formula (4.3) when ξ ∈ Z, is just a known result given earlier by Cvijović
and Klinowski:

Corollary 4.2 ([4, p. 1529, Theorem B]). For n, q ∈ N; p ∈ Z, the following formula of
the classical Euler polynomials

En

(
p

q

)
=

4 · n!
(2qπ)n+1

q∑

j=1

ζ

(
n + 1,

2j − 1
2q

)
sin

(
(2j − 1)pπ

q
− nπ

2

)
,(4.4)

holds true in terms of the Hurwitz Zeta function.
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