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Abstract

Soliton breather excitation in superlattice has been studied in this pa-

per. It is observed that under certain conditions, the vector potential

equation for the electromagnetic wave propagating through the superlat-

tice assumes the sine-Gordon (sG) equation. The solution of which does

not give only a soliton but also a soliton breather. The binding energy of

the breather is calculated to be

where u is the velocity of the breather and vQ is the velocity of the

electromagnetic wave in the absence of electrons. As can be seen, when

v —)• | the binding energy tends to zero, hence, the breather disintegrates

into a soliton and antisoliton. It was further observed that the binding

energy decreases with an increase in A (the half miniband width) for a

given value of d (SL period). Similarly it also decreases with increase in d

for a given value of A. Comparing the breather's rest energy Eb to that of

soliton Es i.e Eb = 2Bssxa.v. We noted that the breather's rest energy is

less than that required to excite a soliton.



1 Introduction

The nonlinear interaction of quantum periodic semiconductor structures-

quantum superlattices with electromagnetic radiation is an important di-

rection of research in modern quantum electronics. This is as a result of

latest technological advances made in the preparation of extremely high-

quality periodic structures demonstrating the very strong nonlinear prop-

erties in the millimeter, submillimeter, infrared and optical electromagnetic

field[l-4]. The presence of additional periodic potential (a superlattice po-

tential) due to, for example, the periodic disribution of the chemical com-

position of the semiconductor gives rise to the subdivision of the energy

spectrum of the electron carriers into a series of narrow (usually less than

O.leV) allowed and forbidden minibands. The nonlinearity of the superlat-

tice is due to the fact that the electron energy in a miniband is bounded,

which gives rise to an oscillatory motion of electrons in a magnetic field on

one hand, and a strongly nonparabolic dispersion law, on the other hand, a

consequence of which is an N shape current-voltage characteristic[5,6], dy-

namic localization of electrons (self induced transparency) [7] and absolute

negative conductivity[8].

The miniband nature of the energy spectrum of the carrier electrons in

SL facilitates the propagation of large amplitude nonlinear electromagnetic

fields, particularly those exhibiting solitary wave solutions. The nonlinear

fields e.g. the soliton, are now of great interest in many physical prob-

lems^]. Free-field solitons have been investigated extensively namely for

quantum fields[10], but in condensed matter we require knowledge of the

behavior and integrity of solitons in the presence of "impurities" or applied

fields. Kink solitons, or domain walls, occur in magnetic[ll] and ferrodis-

tortive[12] materials and in many Landau-Ginsburg expansion contexts[13].

The very existence of solitons is due to the fact that, under certain

conditions, the equation for the vector potential A in a superlattice re-

duces to sine-Gordon (sG) equation. The sG equation has not only the

soliton solution but also a solution in the form of a breather which can



be interpreted as bound states of solitons and antisolitons.The solution of

sG equation has deeply influenced our understanding of various condensed

matter phenomena, notably among which are the charge transfers in quasi

1-D conductors [13,14], flow of flux quanta in Josephson junction [15] and

in superlattice[16,17].

In this paper, we will study the excitation of breather in SL. The mo-

tivation was driven, primarily, by the promise of massively increased bit

rates, through the application of ultrashort soliton pulses in long distance

optical communication networks. Secondly, the interaction of ultrashort

electromagnetic pulses with matter has recently attracted considerable re-

search interest as a result of progress in laser physics, in the production

of light pulses with rp as short as one oscillation period[18]. It will be

shown that the energy needed to excite the breather may be less than that

required to excite soliton. This is attributed to the large binding energy

of the breather. The dependence of A and d on the binding energy of the

breather will also be discussed.

The paper will be organised as follows: Section two, we briefly review

the basic equations; section three, the derived sine-Gordon equation is

solved and finally in section four, the results are discussed and conclusions

made.

2 The sine-Gordon EM field equation of the super-
lattice

The exceptional peculiarities of nonlinear equations are impossible to study

using linearisation procedures, even with a subsequent of small nonlineari-

sation using the perturbation theory based on an expansion in the normal

linear modes. In this section we shall show how nonlinearity in SLs leads

essentially to the sine-Gordon equation.

Proceeding as in [17], we assume that the characteristic length in which

a significant change in the EM field is large enough compared with the de

Broglie wavelength of the electrons or with the superlattice period. There-



fore the electron current density can be written as

-A(r,t)
c

(1)

where f(p) is the distribution function of the elctron canonical mo-

mentum p , v(p) is the electron velocity, e the electron charge and A(r, t)

the vector potential. The key physical parameter describing the electron

distribution in the bands is the dispersion relation, for superlattices the

following dispersion law is most often considered [16,17]:

^ ^ d ) (2)

In eqn.(2), p± and p2 are the transverse and longitudinal (relative to the

superlattice axis) components of the quasi momentum, respectively, A,, is

the half width of the vth allowed miniband,

are the size-quantized levels in an isolated conduction film, d = d0 + d\

{do is the width of the rectangular potentail wells and d\ is the potential

depth with a non zero quantum transparency) is the superlattice period.

We assume that electrons are confined to the lowest conduction mini-

band {v = 1) ans omit the miniband indices. This is to say that the field

does not induce transitions between the filled and empty minibands. We

further assume that the characteristic time for change in the field is short

compared with the mean free time of electrons r. We therefore ignore the

collision of electrons with the lattice. The electron velocity is given by

, . de(p) Ad . p,d, fA.

^ p ) = = s m ( ) ( 4 )

Substituting eqn. (4) in eqn.(l) and making the following transforma-

tion pz —> poz + \AZ, we obtain for the non-degenerate electron gas the

following expression for the z component of the current density j ,



jz = josin(~Azd) (5)

where

With n the conduction electron density and Ik(x) the Bessel function

of imaginary argument. We evoke the classical Maxwell equation for the

vector potential, i.e.,

A . 1 32A 4x
AA~^W = ~V3 (7)

and substitute j z from (5) to obtain the nonlinear field equation:

d2<(>
- wl

o s in (f> = 0 (8)

w h e r e

Here uo is the EM velocity in the absence of electrons and u^ = ~e2

is the square of the Langmuir frequency.

Equation (8) is quite frequent in the literature of nonlinear processes where

it is called sine-Gordon equation.

3 Solution of sine-Gordon Equation

We can transform eqn.(7) into a dimensionless equation by making the

following transformation;



£ = —x and r = uot

(10)

the result of which gives,

f)2,h
hsin^ = 0 (11)

By using the method proposed by Lamb [18] we seek the solution in

the form,

(12)

(13)

With the help of eqn(12) we reduce eqn.(ll) into the form,

- ipj + ip) = 0 (14)

Here we use the trigonometry identity

We can then seek to separate the variables of eqn.(14) by using the trial

eqn.(13). This gives the following equation,

(16)



where / ' = §£ and g = %

Differentiating eqn(l6) with respect £ and r we get;

for all f and r.

Hence

f"\'
y 7 = -m F •2"

here // is the separation constant. After integrating eqn.(18) twice we

get;

(20)

where ci, C2, di and c?2 are integration constants. Substituting eqns.(19)

and (20) into eqn.(16) shows that c\ — d\ = 1 and cq — di — 0. Therefore

+ e (21)

g2 = -}xgA + \g2-e (22)

When n = 0 = 0 we obtain asingle phase solution, i.e. a soliton solution.

Therefore eqns.(21) and (22) become;

(23)

92 = A / , (24)



the solutions of which are;

g = exp{r}VX(r ~ TO)) (25)

&,) (26)

Hence from eqns.(12) and (13) we obtain;

,T) = 4arctan{exp [rry([v - Vo) - or)]} (27)

where

7 = y i + A = - T ^ and 0 < a < 1; a = -=•; rj = ±1 .

The solution of eqn. (27) characterises a soliton kink for 77 = 1 and antisoli-

ton for 17 = —1.

Substituting £ = ^x and r = woi into eqn.(27) we obtain;

(f)(x,t) =4arctan|exp(y^((:r-2;o) - «t)H (28)

Eqns.(21) and (22) can also be solved for A ^ 0 and \i ^ 0, the result

of which becomes,

(29)

g2 = Xg2-0 (30)

For A > 0 the solutions for eqns.(29) and (30) are



s i n h

(32)

We put £o = 0 and ro = 0 without loss of generality. Hence,

(33)

Eqn.(33) describes the interaction of two solitons moving with velocities

u in opposite directions.

When - 1 < A < 0 and 9 < 0 the solution of eqns.{29) and(30) gives;

r) = 4 arctan

4 arctan
tan i' sin(r cos

cos sin v)
(34

where S7 = 1/tanf.

The solution (34) represents a localised pulsating object-the bound state

of a soliton and antisoliton called a breather (bion). The breather type

solution satisfies the boundary condition 0(£,r) ~> 0 as |£| —>• oo. Hence,

it is sometimes called 07r-pulse. The internal frequency w of pulsation of

a localised breather is given by;

= Lj0 cos v (35)
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The spatial spread of the pulsing region is inversely proportional to the

following value;

Q = sinv = 1/(1 + Q2)2 = 1 - ~ (36)

The transition of the motionless breather to the breather which moves

as a whole with a velocity u, is realized by the Lorentz transformation.

so the breather, moving with a velocity u is described by the following

function

tan vsin[(r — —ty^f cos v]~
= 4arctan (37)

Hence the frequency of pulsations in moving breathers is given by

uB = 7w0 cos v (38)

4 Discussion

We have studied the excitation of a soliton and a breather (bion) in SL. We

did so by solving for the current j2 along the superlattice axis in the absence

of scattering and evoked the Maxwell's equation for the eloctromagnetic

wave. We obtained the usual sine-Gordon equation. The most popular

version is the ID sG equation whose solutions are the single and double

soliton solutions i.e kink (soliton) and breather (bion). The stability of the

soliton solution of the (sG) equation is demonstrated in [19].

The soliton solution is usually obtained in the form

4>(x, t) = 4arctan | exp \± (~^- J 1 (39)
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where, I2(u) = IQ-J and 1% = £•£. This describes a smoothed out function

with values </>o —̂  ±TT as re —̂  ±00. The quantity I refers to the spatial

extension of the kink spreading. The dependence of I on the kink trans-

lational velocity u is suggestive of its "particle-like" or soliton features.

<t>(x,t) is a soliton travelling perpendicular to the SL axis (along the x di-

rection) at a constant velocity u. It is easy to express eqn.(39) in terms of

an electric field Ez which can be written as

Ea = Eosech I ^ ~ " * j (40)
V l(u) /

where EQ is the amplitude. The velocity u and the spatial spread (/) of the

soliton can be expressed in terms of the amplitude by

0̂ Pv

where /? = | | ^ . An increase in the amplitude causes the soliton width

to approach zero and its velocity to approach the velocity of light v0 in a

homogeneous medium.

The amplitude, width, and velocity of the soliton can be combined in an

expression
u ed

which depends on the SL period. [17]

Equations (37) and (38) describe a bion with velocity u and frequency

of pulsation uB = 7^0 cos v and a soliton. The parameters of SL appear in

the frequency of the bion through w0. It is observed that uB increases as

d and A increases and vise versa. Hence the frequency of the bion can be

regulated by changing A and d.

The total energy and momentum of solitons and bions were calculated

following the approach in [20], The energy of the breather (bion) is ex-

pressed as;

EB = I67 sin v = I67 (1 - ~
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and that of momentum as;

pB —

It is worthy to note that the calculation is done by taking v0 = 1. The

energy of the soliton is E3 = 87[19]. The rest energy of the breather EB is

expressed in terms of Es as EB = 2ES sin v. The total energy of free solitons

and antisolitons is equal to 2Ea = I67. Therefore, under the formation of

breather there is a release of the following energy;

Eb = I67 - I67 sin v = 167[1 - sin v\

According to this expression, v ~> | the binding energy approaches zero

and the bion disintegrates into a soliton and an antisoliton.

The graph of the ratio of the binding energy of the breather to that

of the soliton energy is plotted against A* = ^ for given values of d (see

figure 1). We observed that as A* increases |£ decreases. Similarly j*-

decreases as d increases but it does so at a faster rate than A*. This can

be seen from the expression

b
E
Es u%md2kT A* hiA*)

We, therefore, suggest that optimal selection of d and A* can ensure

a good breather stability. In [21] it has been proposed that a breather

propagation through SL can cause ionization of impurity centres. This is

manifested in the damping of the breather and by recombination radiation.

It is also noted in the same paper that propagation time of a breather is

two or three orders of magnitude less than the propagation time of soliton.

In conclusion we have shown that a soliton and a breather can be gen-

erated and propagated in SL. We noted that the rest energy of the breather

EB is related to the soliton energy Ea as EB = 2£3 sin u. Hence the energy

needed to excite the breather is much less than that required to excite

the soliton. This makes it highly desirable to investigate the possibility of

13



propagation of breather in SL. Interestingly the energy relation depends

on the SL parameters (A, d). This enables the properties of the breather

and soliton to be manipulated by changing the parameters.
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The plot of | t against A* for:

1) d = 100A, 2) d = 150A, and 3) d = 200A.

17


