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Abstract: Closed persistent patterns in data mining is biggest challenge in these days.  The existing models find 

these patterns from traditional and transactional databases. This paper approach a novel model to mine closed 

persistent patterns using the invert matrix for any given traditional data file or for any raw sequential data and 

adjunct closed persistent element matrix which reduces the consumption of number of iterations or search space 
for retrieving various persistent patterns of deferent elements. We approach adjunct quick mining in closed 

persistent patterns (AQCPP) matrix to reduce the iterate levels i.e. the l and l+1 levels in mining conditions.  

Iteration time improvement is the clear output over the ancestors work in this process. Our experiments resulted 

efficient quick mining process throughout our analysis the algorithms performed efficiently with less 

computations. As a case study we also implemented our inline mechanism over Service Patterns to analyze the 

performance of the proposed AQCPP algorithm over lightweight directories and our results are satisfactory. 
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I. Introduction: 
 Though the introduction of Sequential Pattern Mining received considerable attention with the rapid 

growth in the usage of the amount of huge stored digital data using data mining techniques among researchers 

with broad applications like bioinformatics, web access traces, system utilization logs, etc., the sequential 

pattern algorithms face uneasiness while mining long sequential patterns or while mining at low supported 

thresholds. One possible solution to overcome this issue is by mining closed persistent patterns. 

 A closed persistent pattern is said to be a narrowed sequential pattern which has no super sequence with 

the same happening frequency [1]. The main advantage of mining closed persistent patterns are, this can reduce 

the time and space cost when generating volatile numbers of frequent sequence patterns by mining only closed 

frequent subsequences ( these closed sequences generally does not contain any super sequence with sample 

support) which results in avoiding unnecessary traversing search space. 

 However, there are not so many methods proposed in order to mine closed sequential patterns due to 

the problem of complexity, out of these Apriori [2], GSP [3], CloSpan [4] etc., algorithms are enforced in mining 
closed frequent item sets. All these algorithms follows a sustenance- and- test epitome, that is, these mechanisms 

needs to sustain a set of already mined closed sequences that can we further used to prune the search space to 

check if a newly found frequent set is promising to be closed one. But this sustenance may lead to poor 

scalability as a large number closed patterns will occupy large memory and search space which also effects the 

threshold measures. 

   In this paper we concentrated mining closed sequential patterns based on adjunct using inverted and 

adjunct based inline element matrices named Adjunct Quick Mining in Closed Persistent Patterns (AQCPP). 

This study proposes and feasible approach extending Quick mining in closed persistent patterns (QCPP) in order 

to find deferent inline patterns by reducing the scan/search space and minimizes number of scans of the original 

input.  This mechanism consumes less memory and runs over an order of faster magnitude for mining closed 

persistent patterns especially when the support threshold is low. 
 

II. Literature Review: 
 The Sequential pattern mining was first posed by Agarwal and Srikanth [4] and later many algorithms 

were proposed by many others for performance improvements. Initially the inventors Agarwal and Srikanth [4] 

refined their algorithm [4] by introducing Generalized Sequential Patterns (GSP) based on the based on 

implementing apriori dimensions [3]. 

Few other interesting algorithms on persistent pattern mining are SPADE [7], SPAM [8], PrefixSpan 

[9]. The SPADE uses lattice theoretic approach based on vertical ID list in order to optimize original search 

space into optimized smaller spaces. Later SPAM was introduces for mining long patterns this algorithm 
espouses a vertical bitmap representation and the performance scale shows that SPADE is more efficient than 

SPAM but still there is a flaw in this algorithm as it consumes more space compared with the SPAM algorithm. 

The other algorithm is the PrefixSpan algorithm which intern utilizes horizontal dataset format presentation and 
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prefix based pattern growth mechanism for mining sequential data. But this algorithm shows less performance 

with increased scalability. 

After the introduction of adopting the mining mechanisms of closed persistent patterns some of few 

interesting algorithms like CHARM [10], CLOSET [11], CLOSET+ [12], BIDE [13] and several other methods 

[14] were devised. But most of these algorithms were designed in order to sustain the already mined frequent 

patterns to proceed for pruning process among these in order to reduce the search space and memory, the 

algorithm TFP [15] was adopted  for a compact hash levelled trees were devised in order to store the closest 

item sets. Later BIDE [13] was introduces in order to discover closed persistent patterns without maintaining 

candidate database.  

 

III. Related Work: 
The primary aim of mining or theory invention is to make utilize the pre available data to invent new 

points and to unhide the new groups that were with non-existing in the past with feasible solutions by utilizing 

the space and less time consumption. The repetitive item set mining plays a vital role in many mining process 

and applications, such as relational rules, sequential patterns and clustering. Frequent item set construction has 

been a major research area over the years and several techniques have been proposed in many papers to address 

the problem of mining correlation. PIM (persistent invert matrix) algorithm is widely classified into two 

classifications. The first classification is Apriori and other classification is Persistent Pattern growth. 

  Persistent pattern is a temporal domain and trend research for this study. The preexisting techniques in 

this temporal domain is totally based and grown Apriori candidate generation logic and suffer from duplicate 
input iterations setback. Adjunct span, a deferent  of PP-growth is came into research for feasible inline pattern 

mining needs inputs to be in the form of tuples and does not have any track of temporal sequence across 

continuous pattern mines or executable tuples. 

  A feasible solution for persistent temporal pattern (FPTP) exposes the sequential pattern mining on one 

big inline, but have practical issues in duplicate scans of the first copy of inputs and iterates of the tree. 

    A sequence Sq0closed if there is no master Sequence of Sq0 with the same support in the main data 

file or raw data. So many inventions went in recent years to propose to mine nearest sequential patterns. 

Mining sequential patterns with closed with closed patterns may reduce huge amount in number of patterns 

produced in the task and without loss of any data because it can be used to get all set of sequential patterns. 

Mining closed patterns may significantly reduce number of patterns produced is information lossless because it 

can be used to derive the complete set of closed patterns. 
 

IV. Methodology: 

4.1. Problem Definition: 
This section discusses the basic concepts in inline pattern mining and the problem of mining repetitive 

closed inline patterns in an inline basic data. Let 34 be an input categorical sequence dataset and be a set of 

items in the dataset 34. 

 A sequence Sq0 = <s1, s2,….,sk>, (si Í I) for 1≤i≤k, is an ordered list. We assume that there exists a 
linear order in sequence Sq0. A sequence Sq0is closed if no super sequences of Sq0 with the same support exist 

in the basic given data. 

 

Given a minimum support threshold min_sup and an input categorical dataset 34, the task of prefix 

based mining of sequential patterns is to mine the complete set of frequent patterns based on prefix in the dataset 

34. 

Practical approach:  Take the basic inline data like 12342413421324341234 in which the patterns to be mined 

and assume that the support count is 2. The persistent patterns of item 1 of this sequence would be for frequent 

1-itemset = {1,2,3,4}, frequent 2-itemset = {12,13, 14}, frequent 3-itemset = {123, 124,132,134,143B} and 

frequent 4-itemset = {1234,1324, 1342}. 

 

4.2 Algorithms: 
An inverted matrix approach to correlate each item with its inline segments those are sub in lines of the 

inline in which it occurs as an adjunct and to relate all items in each segment using pointers. Similar to the 

vertical approach in the transactional database representation, the item is the key of each record 

In this layout. The difference between this approach and the vertical approach is that each attribute on 

the inverted matrix is not the transaction ID, but a pointer points to the location of the next item on the same 

inline segment. The construction of the inverted matrix is assumed to be pre-processing of the mining process. 

The inverted matrix that is made of two parts: the index and the inline array. 

The index contains the items and the inline array is a set of rows in which each row is associated with 
one item in the index part. Each row is made of pairs representing pointers, where each pair holds two 
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information: the physical address in the index part of the next item in the same sequence segment, and the 

physical address in the row of the next item in the same sequence segment. The entries of the sequence segments 

with items are done as follows: the given sequence is read, the location ofthe first item in the inline is sought 

and an entry to its inline array is added that holds the location of the next item in this inline. For the second time 

the same process occurs, in which an entry in the inverted matrix of the second item is added to hold the 

location of the third item in the sequence. 

 

  Table-1 represents inverted matrix for the given following data @1. 

12342413421324341234----@1 

Table-1: Inverse matrix generation of the above sequence 

Index 1 2 3 4 5 6 

1 – 1 2,1 3,2 3,3 2,5   

2 – 2 3,1 4,2 1,3 4,4 3,5  

3 – 3 4,1 4,3 2,4 4,5 4,6  

4 – 4 2,2 1,2 2,3 3,4 1,4 $,$ 

 
The proposed mechanism for AQCPP consists of three algorithms namely the creation of invert matrix, 

mining of close persistent patterns and adjunct patterns respectively. These three algorithms were developed to 

mine the closed persistent patterns in sequence database. The invert matrix is used to store the sub adjunct of 

adjunct levels having various elements as adjunct in the sequence the mining phase steps are described in 2 steps 

namely, step 1 and step 2 is given in algorithm2. The process of mining nearest patterns in described in 

algorithm 3. 

 

Algorithm1: Generation of invert matrix: 
 
Step 1: Monitor the input sequence and find the repeated item set for the given seed value (threshold value).  

Assign the sequence index value for repeated item and create the invert matrix with index of items in rows 

creation. 

Step 2: Monitor the input sequence and seek for the current index in the inverted matrix and an entry to 

sequential data representation is appended the represents the index of the next element in that particular 

sequence. 

Step 3: Do the above step repeatedly till end of the sequence is framed. 

 

Algorithm 2: Mining of close persistent patterns: 
 

Phase 1:  

For each item in frequent 1- itemset 

Step1: Get all all 2-item set having the item as adjunct. 

Step2: Monitor the sequence levels relevant item in the inverted matrix using the index of the adjunct item in the 

item set and get the frequencies of 2-item set.  Prune the items to ignore the non-frequent itemsets like Apriori. 

 

Phase2: 

     For each item in K-Item set 

Step1: Make a adjunct based sequence element matrix having itemsets as adjunct value and remaining items as 

rows and columns. The diagonal elements are the frequency of k+2 item set. 

Step2: Monitor the sequence levels having the sequence element matrix adjunct as sequence adjunct in the 
inverted matrix, find the frequencies of k+1 – itemset and k+2 itemset and update entries in the regular matrix. 

Step 3: Prun to remove non frequent itemsets before generating next level itemset and repeat the above steps in 

Phase-2. 

 

For the sequence 1234241342132434123given in practical approach , the following adjunct based sequence 

element matrices with 12 as adjunct is first created using the frequent 2-itemset {12, 13,14} for patterns of item 

1. The diagonal elements represent the frequency of 123 and 124 and non-diagonal represent the frequency of 

123 and 124 and the non-diagonal elements represent the frequency of 1234 and 1243. 

 

Table-2 represents Adjunct based sequence element matrix adjunct 12 

12 3 4 

3 3 3 

4 1 4 
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Likewise the adjunct based sequence matrices are created for each itemset at level k in the mining 

process in order to find the frequent sequential patterns. The profit of the process is that the number of monitors 

is minimized by monitoring sequence elements at k and k+1 levels at the same time. That is the frequency of 

pattern 123 and 1234 are found using single monitor and same process is done for patterns 124 and 1243in a 

single monitor. 

 

Alogorithm3: Mining of frequent closed adjunct patterns: 
Step1: Classify the frequent sequential patterns using the transaction in which they appear. 
Step2: Figure out their equivalence classes containing elements sharing the same supporting transactions.( For 

itemsets belong to the same equivalence class iff they are supported by the same set of transactions). 

Step3: Find the persistent sequences which are more elements in each equivalent class. 

 

Practical Approach2: 

Let the transaction segments of item 1 be as shown in following table: 

Table-3:Transaction level table for for item 1: 

Level ID Sequence 

1 1234 

2 134 

3 1324 

4 1234 

The existence of continuous patterns with prefix 1 and support count as 2 in the transaction levels, are as 

follows: 

 

12 = {1, 3, 4} 

13 = {1, 2, 3, 4} 
14 = {1, 2, 3, 4} 

123 = {1, 4} 

124 = {1, 3, 4} 

134 = {1, 2, 3, 4} 

1234 = {1, 4} 

 
Table-4 the equivalence classes for the above patterns are shown in the following table: 

Equivalence class patterns 

{1,4} 123 , 1234 

{1,3,4} 12 , 124 

{1,2,3,4} 13 , 14, 134 
 

Here the maximal frequent item sets 1234, 124 and 134 identified from each equivalence class are 

closed and the maximal frequent closed item set is 1234. 
 

V. Expermental Results: 
This part gives us the reports of the performance testing of AQCPPwith splice dataset. The splice 

datasets is distributed as part of the UCI KDD archive. The data set encompasses a wide variety of data types, 

analysis, tasks and other application areas. 

 
Figure-1: comparison analysis of proposed mechanism with other mining mechanisms 
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 The above graph clearly proves that the proposed AQCPP mechanism mines the persistent pattern with 

less consuming process time when compared to Apriori and QCPP 

 

5.1 A Case Study on Service Patterns: 
 In order to analyze the performance of our proposed mechanism, we deployed our proposed AQCPP 

mechanism over Service Patterns to analyze the performance for better quick mining methodology and 

compared our results with the other two algorithms namely QCPP which is the common prefix mining algorithm 

used by many data mining applications  and APRIORI mining method. 
 

Table-5: Comparative analysis over Service Patterns 

AQCPP QCPP APRIORI PP with Band width over service 

15 10 5 5 

25 15 10 4 

35 20 13 8 

45 25 16 6 

55 30 18 8 

 

 The above table shows the comparative performance efficiency of the proposed one with the other two 

algorithms over service patterns. 

 
Figure-2: comparison analysis of proposed mechanism with other mining mechanisms over Service Patterns 

 

VI. Conclusion: 
 In this paper we proposed an efficient pattern mining algorithm which performs quick mining over 

closed persistent patterns which performs well compared with the other experimental algorithms which follows 

a sustain and maintain mechanism in order to prune closed persistent patterns. Our inline pattern mining 

mechanism implementing Inverse matrix mechanism and the sequential mining algorithm reduces the 

performance complexity in order to figure out closest persistent patterns and also reduces the number of 

iterations compared with the others. Our offline and online (i.e. over service patterns) experimental results are 

satisfactory. 
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