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Multimodal wavelet embedding
representation for data combination
(MaWERIC): integrating magnetic resonance
imaging and spectroscopy for prostate cancer
detection

P. Tiwari®, S. Viswanath?, J. Kurhanewicz®, A. Sridhar® and A. Madabhushi®*

Recently, both Magnetic Resonance (MR) Imaging (MRI) and Spectroscopy (MRS) have emerged as promising tools for
detection of prostate cancer (CaP). However, due to the inherent dimensionality differences in MR imaging and spec-
tral information, quantitative integration of T, weighted MRI (T,w MRI) and MRS for improved CaP detection has
been a major challenge. In this paper, we present a novel computerized decision support system called multimodal
wavelet embedding representation for data combination (MaWERIC) that employs, (i) wavelet theory to extract 171
Haar wavelet features from MRS and 54 Gabor features from T,w MRI, (ii) dimensionality reduction to individually
project wavelet features from MRS and T,w MRI into a common reduced Eigen vector space, and (iii), a random forest
classifier for automated prostate cancer detection on a per voxel basis from combined 1.5 T in vivo MRl and MRS. A
total of 36 1.5 T endorectal in vivo T,w MRI and MRS patient studies were evaluated per voxel by MaWERiC using a
three-fold cross validation approach over 25 iterations. Ground truth for evaluation of results was obtained by an
expert radiologist annotations of prostate cancer on a per voxel basis who compared each MRI section with
corresponding ex vivo wholemount histology sections with the disease extent mapped out on histology. Results
suggest that MaWERIC based MRS T,w meta-classifier (mean AUC, pn=0.89 + 0.02) significantly outperformed (i) a
T,w MRI (using wavelet texture features) classifier (n=0.55+ 0.02), (ii) a MRS (using metabolite ratios) classifier
(n=0.77 £ 0.03), (iii) a decision fusion classifier obtained by combining individual T,w MRI and MRS classifier
outputs (. =0.85 +0.03), and (iv) a data combination method involving a combination of metabolic MRS and MR
signal intensity features (. =0.66 + 0.02). Copyright © 2011 John Wiley & Sons, Ltd.
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in metabolite (choline, creatine citrate) ratios (5). However, some
studies have shown that manual interpretation and visual integra-
tion of multimodal data is subjective and thus prone to inter-and
intra-observer variability (6,7). It is therefore preferable to build

INTRODUCTION

In the biomedical field, there is a genuine need for developing
data integration strategies for combining discriminatory features
from multiple modalities to develop multimodal meta-classifiers
for improved disease detection, diagnosis, and prognosis (1).
While data integration strategies have been proposed for quan-
titatively combining multiple imaging modalities (2-4), these
tools are not readily applicable to integration of imaging and
non-imaging data because of differences in scale and feature
dimensionality. For instance, consider the difficulties in quantita-
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tively combining at the voxel level T,-weighted (T,w) MR imaging
(reflecting structural attributes) acquired as scalar intensity values
with MR spectroscopy (MRS) acquired as a vector (or spectrum)
of metabolite concentrations; each modality encodes a different
type (structural or metabolic) and dimensionality of information.
Nevertheless, both modalities reflect information regarding the
same region of interest they are captured from and consequently,
examining them in conjunction is crucial. Manual diagnosis of
prostate cancer (CaP) on T,w MRI and MRS involves visually iden-
tifying hypointense regions on T,w MRI followed by inspection
of spectrum at corresponding spatial locations to identify changes
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a data integration (DI) based computerized support system
(DI-CSS) meta-classifier that can accurately extract and com-
bine relevant information from both imaging and non-imaging
data channels for improved disease classification (3,8). Such a
CSS could then be integrated into a clinical setting to assist radi-
ologists in accurate characterization, staging, as well as directing
and evaluating disease treatment and treatment response.

One major challenge in developing a CSS for quantitative inte-
gration of imaging and non-imaging data (hereafter referred to
as data level integration) is to represent the different data channels
within a common unified representation prior to data integration.
In this study, we introduce a novel computerized framework to
address this problem. We refer to this framework as multimodal
wavelet embedding representation for data combination
(MaWERIC), where the aim is to enable seamless quantitative
data level integration of imaging and non-imaging data while
overcoming differences in scales and dimensionalities. Addi-
tionally, MaWERIC provides the ability to build meta-classifiers
from different modalities once the data representation and inte-
gration issues are resolved. While MaWERIC could be applied to
a number of different domains and applications, in this study,
we demonstrate its applicability in building meta-classifiers for
improved prostate cancer detection using T,w MRI and MRS.

Prostate cancer (CaP) is the second leading cause of cancer
related deaths among men, with 217 730 new cases and 32 050 es-
timated deaths in the USA in 2010 (9). The current gold standard
for CaP detection is a sextant transrectal ultrasound examination
that is known to have a low detection sensitivity (20-25%) due to
poor image resolution of the ultrasound (10). In the last decade,
Tow MRI has shown great potential for characterizing disease
presence and staging of CaP (11). MRS has recently emerged as
a complement to traditional T,w MRI for improved CaP diagno-
sis (12). While clinical studies have shown that the use of struc-
tural and metabolic MR information yields greater CaP
detection accuracy compared to diagnosis based on individual
modality (5,13-16), few attempts have been made to quantita-
tively combine the different information channels (17,18). While
some studies have proposed CSS classifiers for combining multiple
MR imaging protocols (T,-w, dynamic contrast enhanced (DCE),
line-scan diffusion, diffusion weighted imaging, T,-mapping MRI)
(3,8), to our knowledge, no previous strategies for quantitative
integration of T,w MRI and spectroscopy (imaging and non-
imaging modalities) for CaP detection have been suggested.

In this study, we aimed to leverage MaWERIC to build an in-
tegrated structural metabolic meta-classifier that would assign
a probability of CaP presence at every spatial location on in-vivo
prostate To-w-MRI/MRS studies. Figure 1 illustrates the organiza-
tion of our MaWERIC strategy. Our approach was based on com-
bining wavelet (Gabor and Haar filters) features extracted from
both T,w MRI and MRS modalities (19). The advantage of using
wavelet transform (19) is that it provides multi resolution dis-
criminatory information from different data modalities, including
but not limited to signals and images (20-22). The 2D-Gabor
wavelet filter is defined as the convolution of a 2D Gaussian func-
tion with a sinusoid (23). A Gabor filter bank is then generated by
variation of the associated scale and orientation parameters. This
filter bank provides a means for multiscale and multi orientation
texture characterization and representation of an image. Haar
wavelet decomposition is a commonly used signal filtering tech-
nique that provides a way of extracting the class discriminating
frequency components that could yield higher classifier accuracy
compared to the original signal (19,24). An advantage of the

Haar wavelet is that it preserves features that are representative
of abrupt changes in signals (dominant spectral peaks such as
those that correspond to the most significant metabolites on
MRS), while simultaneously eliminating spectral noise (24). Both
Gabor and Haar wavelet filters have been previously used in con-
junction with CSS classifiers to distinguish between different
data classes for various biomedical applications (20-22,25). In
the context of this study, multiresolution features for T,w MRI
and MRS were obtained using Gabor and Haar wavelet filters.

While the wavelet based representations of MRS and T,w MRI
channels provide a uniform feature representation of the data,
the feature vectors obtained by the application of Gabor and
Haar wavelet filters are of very high dimensionality and are
therefore subject to the curse of dimensionality (26). As a result,
a subsequent but necessary step is the application of principal
component analysis (PCA) to the high dimensional feature vec-
tors obtained (by wavelet decomposition) from each individual
data modality (T,w MRI, MRS) to obtain a reduced dimensional
representation of the data and make the data representation
amenable to the application of the classifier (27). The representa-
tion of MRS and T,w MRI data in terms of eigenvectors (obtained
by PCA) also allows for overcoming of the scale (resolution) and
dimensionality differences between the two modalities, since the
wavelet representations obtained from each individual modality
are of varying dimensionality and can be reduced to the same
number of eigenvectors. Data level fusion is then performed by
concatenating the principal eigenvectors corresponding to each
modality. This fused eigenvector representation is then used to
train a random forest (RF) classifier. RF is a commonly used ensem-
ble classifier that combines predictions from several weak classi-
fiers to generate a more accurate and stable classifier (28). The
RF classifier has been successfully used in various biomedical
classification applications (29-31). Advantages of RF include:
(i) the ability to integrate a large number of input variables,
(ii) robustness to noise in the data, and (iii) relatively few tuning
parameters.

PREVIOUS WORK

Quantitative data integration strategies with the intent of build-
ing meta-classifiers that combine discriminatory information
from different data channels can be categorized into two major
classes. The first class (combination of data (COD)) involves com-
bining the data prior to classification. The second class, known as
decision level classification (combination of interpretation (COIl))
involves training individual data classifiers (unimodal classifica-
tion) and combining the outputs from each classifier (32). In
the context of COD strategies, data can be combined either in
its original acquired form or following the application of an
appropriate transformation to each data modality to obtain im-
proved discriminatory information beyond the original acquired
data. MaWERIC is a COD approach where wavelets and PCA are
used to extract discriminatory features from each modality prior
to data integration. The meta-classifier trained on this wavelet,
PCA based data representation, is then applied to the problem of
CaP detection from multimodal MRI.

In subsequent sections, we discuss both individual unimodal
classifiers for Tow MRI (22), MRS (33) and multimodal meta-
classifiers for CaP detection using multiparametric MRI. We also
briefly discuss previous combination strategies involving MRI-
MRS for brain tumor classification (17,18).
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Figure 1. Flowchart showing various components and methodological overview of our data integration method. Wavelet features were first extracted
individually from Tow MRI and MRS, followed by dimensionality reduction using PCA. The reduced dimensional vectors, now existing in the same
dimensions and scale, were concatenated during data combination followed by data classification.

Unimodal classifiers for T,w MRI

Since image intensity on Tow MRI is susceptible to artifacts such as
bias field inhomogeneity (34) and intensity nonstandardness (35),
researchers have explored alternate representations of T,w
image intensities (e.g., Gabor or wavelet based texture features)
to build classifiers for predicting CaP presence on MRI (22).
Madabhushi et al. presented a supervised CSS system for detec-
tion of CaP from four Tesla ex vivo prostate T,w MRI, where 33 3D
texture features (statistical, gradient, Gabor) were quantitatively
extracted at each voxel (T,w MRI spatial resolution) (22). These
extracted features were then used to train a number of supervised
classifiers (AdaBoost, Bayes, decision trees) which were employed
to assign a probability of CaP presence at each image voxel.

Unimodal classifiers for MRS

Previous CSS strategies developed in the context of MRS data
can be broadly divided into two main categories: signal quantifi-
cation (model dependent) (36-38) and statistical pattern recog-
nition based (model independent) strategies (30,33,39,40).
Commonly used MRS quantification strategies include VARPRO
(36), AMARES (37) and QUEST (38), which are software utilities,
where the objective is to minimize the squared distance be-
tween acquired data and a model basis function built on prior
information about the metabolic profiles of a typical MR
spectrum. Conversely, pattern recognition based features try to
capture the underlying variance in the data using regression
analysis. Kelm et al. (30) compared classification techniques for
prostate MRS data based on pattern recognition strategies such
as PCA (27) and independent component analysis (ICA) (41) with
quantification based feature extraction strategies using SVM, RF
and Gaussian process classifiers. They showed that pattern rec-
ognition based classifiers provided better classification results
for CaP detection compared to MRS quantification strategies.
Tiwari et al. presented a CSS for CaP detection using 1.5 Tesla
in vivo prostate MRS, where each prostate spectrum was classi-
fied on a per voxel basis as either belonging to cancerous or
non-cancerous classes using a hierarchical clustering method in
conjunction with non-linear dimensionality reduction (NLDR)

strategies (33). NLDR strategies were used to obtain a low dimen-
sional representation of high dimensional MR spectra followed
by hierarchical k-means clustering to identify CaP signatures in
the prostate. A sensitivity of 89.33% and a specificity of 79.79%
on a per voxel basis were obtained for eighteen 1.5T prostate
MRS studies. Luts et al. presented a method that leveraged ICA
and Relief-F in conjunction with SYM and linear discriminant
analysis classifiers for brain tumor classification using MRS (40).

Combining imaging-imaging MRI channels

Chan et al. presented a statistical classifier that integrated texture
features from multi-protocol 1.5 T in vivo MRI to generate a statis-
tical probability map representing likelihoods of cancer in different
regions of the prostate (3). Liu et al. examined multiparametric
in vivo MRI maps (T»-w, DCE, DWI) within a fuzzy Markov random
fields framework (42). The maps were generated by curve fitting
data from each protocol with ROI limited to the peripheral zone
of the prostate, while evaluation of the results was performed in
manually delineated CaP regions on MRI (with corresponding
whole-mount histology and ex vivo MRI data used for reference).
Ampeliotis et al. explored the use of image intensity features
from both DCE and T,w MRI data for the classification of CaP
(43). A statistically significant improvement in classifier perfor-
mance was reported when fusing modalities compared to using
of individual modalities. Another multiprotocol (DCE and T,-w)
MRI based CSS has been presented that combines pharmacoki-
netic features from DCE with T,w image intensities (44).

Decision integration strategies for MRl and MRS

To our knowledge, no data or decision integration strategies for
combining imaging and spectroscopy for use in CaP detection
have been reported. Jesneck et al. proposed a decision integra-
tion approach where probabilities for breast cancer presence
obtained from classifiers built individually from features extracted
from different imaging modalities (sonogram, mammogram) and
patient history (non-imaging) were combined to obtain an inte-
grated classifier for improved breast cancer diagnosis (45). Another
COl approach has been suggested that combines classifier outputs
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from three heterogeneous modalities: face recognition, voice rec-
ognition, and hand geometry within a Bayesian framework for im-
proved biometric based personnel identification (46). However, a
major disadvantage of such decision integration based strategies
is that all inter-source dependencies between modalities could
be lost since each modality is treated independently (26).

Data integration strategies for MRl and MRS

A data integration approach involving integration of multiproto-
col MR image intensities (T;-w, To-w, proton density-weighted,
gadolinium-DTPA) with the areas under spectral peaks of specific
metabolites (myo-inositol, glucose, choline, creatine, glutamate/
glutamine, N-acetyl aspartate, lactate/fatty acids, fatty acids)
from MRS has been presented for classifying four brain tumor
types (Types II, lll, IV and meningioma), healthy tissues, and cere-
brospinal fluid (CSF) (18). MRS and MRI features were directly
concatenated into a single joint feature vector and used in con-
junction with a Mahalanobis distance based classifier. Classifier
results showed that the voxel level classification obtained by this
multimodal feature combination was significantly superior com-
pared to the results obtained using unimodal classifiers.

In this study, we aimed to show that MaWERIC provides signif-
icant improvements over previous COD and COI strategies for
prostate cancer detection using multimodal MRI (18,45). We
showed the utility of MaWERIC for developing the first CSS
method that quantitatively combines T,w MRI and MRS for CaP
detection and demonstrates significant improvements over
using individual modalities and other previous state-of-the-art
data fusion strategies (18,45).

MATERIALS AND METHODS

Data

Thirty-six 1.5 Tesla (T) Tow MRI and MRS patient studies prior to
radical prostatectomy were reviewed. Studies were of biopsy
proven prostate cancer patients that were clinically referred for
a prostate cancer MR staging exam for improved therapeutic se-
lection. MR imaging was performed using a 1.5-T whole-body MR
imaging unit (Sigma; GE Medical Systems, Milwaukee, WI, USA).
Patients were imaged in supine position using a body coil for sig-
nal excitation and a pelvic phased-array coil (GE Medical Systems,
Milwaukee, WI, USA) combined with a balloon-covered expand-
able endorectal coil (Medrad, Pittsburgh, PA, USA) for signal recep-
tion. MR images were routinely post-processed to compensate for
the reception profile of the endorectal and pelvic phased array
coils. A spectroscopic MR imaging volume was then selected by
an expert to maximize coverage of the prostate while minimizing
the inclusion of periprostatic fat and rectal air. 3D proton (1-H)
MR spectroscopic imaging data were acquired using a water and
lipid suppressed double spin-echo point resolved spectroscopic
sequence optimized for quantitative detection of both choline
and citrate. Water and lipid suppression were achieved by using
the band selective inversion with a gradient dephasing technique
(47). To eliminate signals from adjacent tissues, especially peri-
prostatic lipids and the rectal wall, outer voxel saturation pulses
were also used (48). Data sets were acquired as 16 x 8 x 8 phase-
encoded spectral arrays (1024 voxels) using a nominal spectral
resolution of 0.24-0.34cm?, 1000/130, and a 17-min acquisition
time.

Preprocessing

3D MR spectroscopic imaging data were processed and aligned
with the corresponding T,w imaging data using a combination
of inhouse software interactive display language (Research Sys-
tems Inc., Boulder, Colorado, USA) software tools (48). The raw
spectral data were apodised with a 1-Hz Gaussian function and
Fourier transformed in the time domain and in three spatial
domains. Choline, creatine, and citrate peak parameters (i.e.,
peak area, peak height, peak location, line width) were estimated
using an iterative procedure that was used to first identify statis-
tically significant peaks (those with a signal-to-noise ratio higher
than 5) in the magnitude spectrum. The frequency shift that best
aligned the spectral peaks with the expected locations of cho-
line, creatine, citrate, and residual water was then estimated.
Subsequently, the spectra were phased using the phase of the
residual water and metabolite resonances. Baseline values were
corrected using a local nonlinear fit to the non-peak regions of
the spectra. Subsequent feature extraction and classification
steps were performed using algorithms developed with the
MATLAB (MathWorks Inc.,, Natick, MA, USA) programming
environment.

Ground truth annotations

For all experiments considered in this study, ex vivo whole mount
histological sections obtained from radical prostatectomy speci-
mens were available. The ground truth CaP extent on the MR im-
aging was manually delineated by an expert by visually
registering corresponding histological and radiological sections;
correspondence between sections was determined manually
by visually determining anatomical fiducials on the histology and
imaging. Having delineated the CaP extent on the MR imaging,
an expert spectroscopist then labeled the spectral voxels within
the CaP annotated regions on the MRI/MRS according to the
5-point scale. Figure 2 shows the standardized 5-point scale
developed by Jung et al. that was used to visually classify each
spectrum as being: (a) scale 1, definitely benign; (b) scale 2, prob-
ably benign; (c) scale 3, equivocal- (d) scale 4, probably cancer;
and (e) scale 5, definitely cancer. All spectra labeled as 4 or 5
were assumed to be CaP and spectra labeled as 1 or 2 were as-
sumed as benign (49). The voxels labeled as three and atrophic
(a) were assumed to be indeterminate, and consequently ex-
cluded from our analysis. The 36 studies comprised 2120 class
1 and 2 spectra and 1026 class 4 and 5 spectra (Table 1). The
class labels for the individual spectral voxels assigned by a com-
bination of manual registration of histology and MRI and subse-
quent visual inspection were used as the surrogate ground truth
for CaP extent on the MRI/MRS. The ground truth surrogate was
then used for training and evaluating the MaWERIC classifiers.

Notation

We defined a metavoxel in the MRS grid as: c € C, where Cis a 3D
grid of MRS metavoxels. For each c € C, F(c) = [fu(d)|x € {1,... M}]
represents the MR spectral vector, reflecting the frequency com-
ponent of each of the M metabolites being measured (33). Note
that the MRS metavoxel and T,w MRI voxel are at different reso-
lutions, where 1 MRS metavoxel corresponds to approximately
90 To,w MRI voxels. Feature extraction from T,w MRI was per-
formed on a per voxel (T,w resolution) basis (3,22). The
responses of various texture filters (described in the next section)
were averaged over all voxels within each metavoxel c € C. The
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Figure 2. lllustration of the standardized 5-point scale spectra, where Figures 1a-e correspond respectively to: (a), likely benign; (b), probably benign;
(c), equivocal; (d), probably malignant; and (e), likely malignant. (Fig. reproduced from Jung et al. with permission of the author).

Table 1. Number of spectra and patients for each scale as
annotated by an expert

Scale Spectra Patients
Labeled spectra 4242 36
Scale 1 820 32
Scale 2 1300 28
Scale 3 1096 36
Scale 4 574 34
Scale 5 452 23

Tow MRI feature vector was obtained by calculating a mean
feature vector at each c € C. As a result, at every metavoxel, c€ G,
the corresponding intensity feature vector is denoted as F’2(c)
while the corresponding mean Gabor wavelet feature vector
(details in the next section) is denoted as F2" (c). For MRS,
the feature vector comprised of ratios of concentrations of

metabolites is denoted as F***(c) while the corresponding Haar
wavelet feature vector for each c € C is denoted as F"'*"(c). A
classifier is defined as: h(c), h € {RF, SVM, PBT}, where RF is a ran-
dom forest, SVM is a support vector machine and PBT is a prob-
abilistic boosting tree classifier (described in subsequent
sections). Similarly, notation for a classifier trained in conjunction
with different feature vectors was identical to the feature vectors
and involved replacing the F with h (e.g, a classifier that
leverages the features in F™2%(c) is denoted as h’>"(c). Description
of each of the feature vectors evaluated in this study is provided
in Table 2.

METHODOLOGY

The MaWERIC method is comprised of four modules: C.1, wave-
let feature extraction; C.2, data representation using PCA; C.3,
data combination; and C.4, data classification (Fig. 1). We
describe each of these modules in detail in the subsequent
subsections.

Table 2. Description of different feature notations and associated dimensionality of each feature vector evaluated
Notation Description Number of Dimensions
Fw Gabor feature vector for T,w MRI 34
Fl= non-steerable Gradient T,w MRI feature vector 13
F'» first order statistical T, w MRI feature vector 8
FTes Haralick T,w MRI feature vector 13
FT2t Combined ensemble of Tow 68
MRI feature vector F?{ = F2W Fln FT2 Fls
FMRS MRS metabolite and ratio feature vector F**° 5
() =Achi Acr Acits Ach + crl Acits Actl Acr
FMRSw MRS wavelet feature vector Variable (depends on the coefficients
chosen to maximize energy)
Fr Reduced dimensional T,w MRI Eigen feature vector obtained 15
via PCA on F2*
FiBsw Reduced dimensional MRS Eigen feature vector obtained 15
via PCA on F"%"
Fnt Combined feature vector obtained by concatenating MRS metabolite 6
area and ratio features with mean MRI intensity F"(c) = [F*(c), F2(c)]
Fit, Wavelet PCA based MaWERIC feature vector 30
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C.1 Wavelet feature extraction

a) Haar wavelet features for MRS

The spectral signal F(c) is convolved simultaneously with a
high pass (£,) and a low pass () filter to obtain the
corresponding high (H,) and low (L)) filter coefficients as follows:

Hp = F(c) x &, Ly = F(C) Y,

where * is the convolution operator and dimensionality of coeffi-
cients H, and L, is M/2 (M is the dimensionality of each spectrum).
Downsampling or decimation by a factor of 2 was performed on
coefficients after each pass through filters during multilevel de-
composition. We considered the wavelet packet decomposition
(WPD) method for extracting MRS wavelet features as suggested
in (50), in which both L, and Hy, coefficients are iteratively decom-
posed using high (&) and low () pass filters into a full tree like
structure of a predefined length K producing a total of 2 coeffi-
cients. The reconstruction of the signal in WPD was then per-
formed using the best basis algorithm that combined the
coefficients that minimized the entropy at each level of the tree
(51). As a result, for each MR spectrum F(c) at each c€C, an M
dimensional wavelet feature vector F*#(c) was extracted using
a Haar wavelet basis function. M varies as a function of the num-
ber of coefficients retained by the best basis algorithm, which in
turn aims to minimize the entropy for each spectrum.

b) Gabor wavelet features for T,w MRI

Gabor operators are defined as the convolution of a 2D Gaussian
function with a sinusoid, such that the cosine component is
considered real and the sine component imaginary (23). As a
result, at every metavoxel ceC, a total of 54 Gabor features
F2"(c),k € {1,...,54} were obtained at nine different scales
and six orientations similar to that shown in (22) and are repre-
sented by a Gabor feature vector F™2"(c). Further details on the
implementation of Gabor texture features for feature extraction
can be found in (22).

C.2 Lower dimensional data representation using principal
component analysis

PCA is a linear dimensionality reduction technique that applies a
linear transformation to data to obtain the most uncorrelated
features by maximizing variance within the data (27). Variance in
the data is then expressed in terms of orthogonal eigenvectors.
The eigenvectors that contain the most variance in the data
represent the principal components. At each metavoxel, ceC,

the high dimensional MRS wavelet feature vector F*(c) is re-
duced to transformed eigenvector Fpe" (c) = [er, €2, €3, - - ., eu]

using PCA, where [e;, ey, ..., eyl represents the eigenvectors
obtained from eigenvalue decomposition of the data ranked in
order of greatest variance. Therefore, the first m eigen vectors
that represent a prespecified percentage of the variance in the
data are extracted while the remaining eigenvectors are dis-
carded. The high dimensional T,w MRI Gabor feature vector
F2%(c) is similarly reduced to a lower dimensional representa-
tion, F124(c), using PCA.

C.3 Data combination

Because of the physical and dimensionality differences between
MR spectra and Tow MRI features, the MaWERIC meta-classifier is

created in the joint T,w MRI and MRS eigen space obtained by
PCA. Following the mapping of F>* and FM®" to the reduced di-

mensional eigenvector representations, F/2 and FM%", a new con-

catenated feature vector Fiy, = [F% (c), Fi¥ (c)], is obtained.

C.4 Data classification using a random forest classifier

The RF classifier uses the majority voting rule for class assign-
ment by combining decisions from an ensemble of bagged
(bootstrapped aggregated) decision trees (52). The C4.5 decision
tree is a multistage classifier that creates a tree like structure by
breaking down a complex decision process into a collection of
simpler decisions for predicting the best possible outcome solu-
tion by combining the simple decisions (53). RF further combines
these decisions to provide a more optimal and stable solution.
For a given training set, N bootstrapped subsets are created with
replacement of the training data. Based on each training subset,
a C4.5 decision tree classifier h;,jc{1,..., N}, is constructed (53).
The class label (CaP or normal) hj(c) for each metavoxel ce C
based on the feature vector F2%(c) is then obtained using the
decision trees h;jc{1,2,...,N}; hic)=1 if cis classified as CaP
(scale 4, 5), and h;(c) = 0 otherwise. The final class likelihood that
¢ belongs to the CaP class by the RF classifier is obtained by aggre-
gating the decisions of individual weak learners asy; Z;L h;(c). The
higher the value of this class likelihood, the more likely ¢ belongs
to the CaP class. We defined h”(c) as the binary prediction result
for the classifier at each threshold p €[0, 1] such that h’(c)=1
when h(c) > p or 0 otherwise.

EXPERIMENTAL DESIGN AND EVALUATION

Comparative strategies

In the following subsections, we evaluate and compare the indi-
vidual modules (feature extraction, classification, data integra-
tion) that comprise MaWERIC with: (i) other feature extraction
strategies used in the context of automated CaP detection for in-
dividual T,w MRI and MRS modalities (22,54); (ii) a data integra-
tion method similar to a COD method as presented in (18) that
combines MRS metabolite features with T,w MRI intensities; (iii)
a decision integration strategy; and (iv) two other ensemble clas-
sifiers, SVMs (55) and probabilistic boosting trees (PBT) (56).

Comparative feature extraction strategies for T,w MRI
and MRS

We now discuss some of the feature extraction and quantifica-
tion strategies previously proposed in the context of MRS
(30,40) and Tow MRI (3,22,44) that we implemented to quantita-
tively compare with MaWERIC. The results of these comparative
studies will be described later in the Results section.

a) Metabolic peak features for MRS

In the clinic, radiologists typically assess the presence of CaP
on MRS based on choline (A.,), creatine (A.,), citrate peaks (A,
and the A, , /A ratios. Variations in these values from prede-
fined normal ranges (Ach 1 o/Acir < 1) are highly indicative of the
presence of CaP (57,58). To compare MaWERIC with metabolic
features used clinically, we created a metabolic feature vector
for MRS by calculating the area under the choline (A"), creatine
(A%, and citrate (A“") peaks using the composite trapezoidal rule
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and recording the corresponding ratios (Acn/Ac Ach + o/ Aci) (54).
Each ceC was then defined by a metabolite feature vector
FMRS(C) =[Achi Acri Acits Ach + ol Acits Achl Acr).-

b) Texture features for T,w MRI

Following is a brief description of other individual texture fea-
tures that have previously been explored in conjunction with
classifiers for discriminating between CaP and normal areas on
T,w MRI (3,22).

* Non-steerable gradient: Thirteen non-steerable gradient fea-
tures for each voxel on the T,w MRI scene were obtained by
convolution of the T,w MRI scene with the Sobel, Kirsch, and
standard derivative operators at every spatial location (59).

* First order statistical: Eight first order statistical features in-
cluding mean, median, standard deviation, and range of gray
scale image intensities within a sliding window neighbor-
hood of 3 x 3 pixels centered around each spatial location
in the T,w MRI scene were extracted (59).

® Second order statistical: 13 Haralick features including en-
ergy, entropy, inertia, contrast, correlation, sum average,
sum variance, sum entropy, difference average, difference
variance, difference entropy, local homogeneity, and average
deviation were extracted within a sliding window neighbor-
hood of 3 x 3 pixels centered around each voxel in the Tow
MRI scene (60).

For each class of texture features, corresponding T2w texture
feature vectors F™>,i € (1,2,3) were constructed at every c € C.
A combined ensemble of texture features was defined as F>' =
[FT2w FT=1 FT2 FTs] obtained by concatenating all textural
attributes obtained from T,w MRI. PCA was used to reduce each
individual texture feature F™> j € (1,2,3) to the corresponding
low dimensional representation Fj2(c) and this was then used
for classification.

Comparative data integration strategies

a) Classifier combination (COIl)

Classifiers h"2(c), h"™**(c) are individually trained on F}2% (c) and
FYR(c) for all ceC. The independence assumption can then

be invoked to fuse h24")(c) and h"**¥)(¢) at each c € C and at

every threshold as h!7(c) = h24%) (c) x W) (c) h € {RF, PBT,
SVM}.(26)

b) Data combination (COD) by MRS metabolic area and ratio fea-
tures and T,w image intensity

A combined feature vector F™(c)=[F"*(c), F2(c)] was
obtained by concatenating the MRS metabolite area and ratio
features (FMR*(c)) with the mean intensity feature (F™(c)) for each
metavoxel ¢ € C. RF classifier along with PBT and SVM classifiers
(described in the next section) were then trained using F"(c)
to obtain the meta-classifiers h™(c), h € {RF, PBT, SVM}.

Comparative classifier strategies

a) Probabilistic boosting tree (PBT) classifier

The PBT algorithm (56) is a combination of the decision tree
(53) and AdaBoost (61) classifiers. AdaBoost is an ensemble

classifier obtained by combining classifier predictions from sev-
eral weak classifiers. PBT combines decision tree and AdaBoost
by iteratively generating a tree structure of a predefined length
in the training stage where each node of the tree is boosted with
L weak classifiers. The hierarchical tree is obtained by dividing
the training samples in two left and right subsets and recursively
training the left and right subtrees using AdaBoost (61). During
testing the conditional probability that any ce C belongs to
the CaP class given the combined MRI-MRS feature vector,
Fit,(c), was calculated at each node based on the learned hier-
archical tree.

b) Support vector machine (SVM) classifier

SVM aims at identifying the best possible hyperplane that can
accurately separate data into two classes. The SVM classifier is
constructed using a kernel function that projects the training
data into a higher dimensional space by an implicit feature map-
ping in the dot product space (55). In our study, the radial basis
function (RBF) kernel was used to project the training data into a
higher dimensional space. In contrast to PBTs and RFs, where a
probability or likelihood was generated for each voxel belonging
to a class, SVM classifiers were typically used to generate a hard
decision; h(c) =1 if metavoxel c is identified as CaP and h(c)=0
otherwise. However, a pseudo likelihood that any metavoxel ¢
belonging to a class could be generated by calculating how far
or close each ¢ was from the SVM decision hyperplane during
classification and converting this distance in terms of likelihood
of each ¢ belonging to a class. As a result, the greater the dis-
tance of ¢ from the hyperplane, the higher the likelihood that
it belonged to a particular class; the proximity of an object to
the hyperplane reflects greater ambiguity with respect to class
membership.

Performance measures

The classification performance of MaWERIC was compared with
related state-of-the-art feature extraction classifier and data fu-
sion strategies by (i) the area under the receiver operating char-
acteristic (ROC) (62) curve (1*YC) and (i) the classification
accuracy (1) at the operating point on the ROC curve. Both per-
formance measures were reported for voxel level classification.

Classifier accuracy

Based on the binary prediction results obtained from the classi-
fier, ROC curves representing the tradeoff between CaP detec-
tion sensitivity and specificity can be generated. Each point on
the curve corresponds to the voxel level CaP detection sensitivity
and specificity of the classifier (h”(c)) for some p €[0, 11. The op-
erating point ® on the ROC curve is defined as the value of p
that yields detection sensitivity and specificity that is closest to
100%. A three-fold randomized cross-validation procedure was
used to evaluate the performance of MaWERIC with other
strategies. Hence, for the 36 patient studies examined in this
study, three sets of spectra obtained from 12 different studies
were constituted. During a single run of cross-validation, two of
the three sets (corresponding to 24 studies) were chosen for
training the classifier while the remaining set of 12 studies were
used for independent testing. Classifier results were generated
on a per voxel basis. This process was repeated until voxels
from all 36 studies were classified once within a single run of
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cross-validation. This randomized cross-validation process was
then repeated 25 times for different training and testing sets.
The mean and standard deviation of classifier AUC values (,uAUC)
were recorded over the 25 runs. Additionally, the classifier accu-
racy (1) at the operating point of the ROC curve was also
recorded.

EXPERIMENTAL SETUP

Experiment 1. Comparison of MaWERiIC with unimodal classi-
fiers T, w MRI and MRS.

MaWERIC was compared with individual feature extraction
strategies for T,w MRI and MRS. Individual features obtained
were also quantitatively evaluated with each other to determine

the best performing Tow MRI and MRS features in terms of ¢

and pA<,
Experiment 2. Comparison of MaWERIC with other COD and
COl strategies.

MaWERIC was compared with current state-of-the-art COD
and COI strategies by the direct combination of metabolic fea-
tures with T,w image intensities and a combination of individual
classifier predictions for MRI-MRS integration, where binary pre-
dictions from the two unimodal classifiers were combined using
a dot product operation to obtain the final classification.
Experiment 3. Comparison of classifiers (RFs compared to PBTs
and SVMs).

Performance of SVM and PBT classifiers was compared with
the RF classifier used for MaWERIC and with other comparative

(d) cor

(b) T2w MRI

(e) COD

studies (unimodal T,w MRI and MRS strategies from Experiment
(1) and COD and COl strategies from Experiment (2)) using p*Uc

and ;A measures.

RESULTS

Experiment 1. Comparing MaWERIC with unimodal classifiers
T,w MRI and MRS.

Qualitative results of classifications obtained from Gabor Tow
MRI (h™"), metabolic MRS features (h""*%), COD (h'™), COI (h}}"),

and MaWERiC (hg’gA) using a RF classifier are shown in Figure 3.
Probability heat maps for each strategy were obtained, where
the spatial locations shown in red (Figs. 3b and 3f) were identi-
fied as having a higher probability of CaP as determined by clas-
sifiers h™", WM"*, h/" h"7* and hif, on a single T,w slice. Locations
shown in blue are identified as having a higher probability of be-
ing benign by the classifiers. The white outline in Figure 3a
shows the ground truth (outlined with a white rectangle) for
CaP as annotated by an expert. Note the high CaP detection sen-
sitivity and specificity of MaWERIC (Fig. 3f) compared to individ-
ual unimodal T,w MRI (Fig. 3b) and MRS (Fig. 3c¢).

Figure 4a shows the AUC results while Figure 4b shows the ac-
curacy results for different feature extraction strategies (h™>",
h", h™ h!]* and hji,) obtained by a RF classifier over 25 runs
of cross-validation using box-and-whiskers plots. Note that
m=15 was used to reduce the dimensionality of T,w MRI and
MRS features since it captured ~93% of the variance in MRS

05

(c) MRS | os

(f) MaWERIC

Figure 3. (a) Original T,w image with MRS grid superposed and labeled according to the 5- point scale (2=probably benign; 3 =indeterminate;
4 =probably cancer; 5 =definitely cancer; A =atrophy). Figures 3b to 3f: probability heat map results superposed on a single T, slice by interpolating
the CaP probabilities at MRS resolution to a pixel level T,w MRI resolution using Gaussian smoothing; (Fig. 3b), T,w MRI wavelet classifier (h"™%);
(Fig. 3c), MRS classifier (h™*); (Fig. 3d), COD method involving integration of MRI mean intensity + MRS metabolic features (h™); (Fig. 3e), decision level
integration (h’;'); and (Fig. 3f) MaWERIC (h'FZ’C”A). Locations shown in red correspond to those identified by the classifiers as CaP while those shown in blue
correspond to metavoxels classified as benign. Note that the white outline in Figures 3b and 3f denotes the spatial extent of CaP shown on the Tow
slice. Also, note the high detection sensitivity and specificity of CaP probability (Fig. 3f) compared to other classifiers (h™"> WM p® hg") under
evaluation.
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Figure 4. Box-and-whisker plot results of (Fig. 4a) AUC and (Fig. 4b) accuracy obtained over 25 runs of three-fold cross validation in 36 studies for the
different feature extraction strategies using a RF classifier. Note that the red line in the middle of each box reflects the median value while the box is
bounded by 25 and 75 percentile of AUC (Fig. 4a) and accuracy (Fig. 4b) values. The whisker plot extends to the minimum and maximum values
(obtained in all 25 runs) outside the box and the outliers are denoted as the red plus symbol for different feature extraction strategies.

and T,w MRI features. As a result, the dimensionality of MaWERiC
used for evaluation was m=30.

Table 3 shows the quantitative results in terms of AUC and ac-
curacy across various feature extraction and classifier strategies
(h™, W™R W™ h!" and hjt,) under evaluation. The x*Y“ and
1 results shown in Table 3 across 25 iterations of 3-fold cross-
validation suggest higher CaP detection accuracy using
MaWERIC (1AY¢ = 0.89 +0.02, ;1" = 0.83 +0.03) compared to
both Tow MRI (1Y = 0.55 4+ 0.02, 1*“ = 0.5440.01) and MRS
(WAY€ = 0.77 £0.03, p = 0.72+0.02) for a RF classifier. Note
that a higher accuracy for MaWERIC was observed for the other
two classifiers (SVM and PBT) as well. Table 4 shows the p-values
of paired student t-tests conducted over U values for compar-
ing statistical significant difference of MaWERIC with all other
comparative feature extraction strategies (h™*, h"®, W™, h!"),
with the null hypothesis being of equal classification perfor-
mance from MaWERIC when compared to the other feature

Table 3. Mean AUC and accuracy results of different feature
extraction and classification techniques used for comparing
different strategies with MaWERIC using 25 iterations of 3-fold
cross validation in 3 classifier strategies (PBT, RF, SVM)

Index Feature Extraction Classifier ~AUC Accuracy

Method

1 MRS (FMR%) PBT 0784003 0724002
2 T,w MRI (F2%)  PBT  054+001 0.54+001
3 COD (F™™) PBT 0.72+0.03 0.67£0.03
4 COl (' PBT 0824001 0814003
5 MaWERIC (Fi",)  PBT ~ 0.88+0.03 0.81+0.03
6 MRS (FR%) RF 077+0.03 072+0.02
7 Tow MRI (FI}C‘X) RF 0.554+0.02 0.54+0.01
8 COoD (F™) RF 0.66+0.02 0.62+0.02
9 COl (h'") RF 0854003 0.78+0.03
10 MaWERIC (Fit,)  RF 0.89+0.02 0.83+0.03
11 MRS (FM%) SVM 0734001 0.76+0.14
12 TWMRI(FRY)  SYM  051+003 065001
13 COD (F™™) SVM 0.68+0.14 0.71+0.08
14 COl (hl") SYM  081+022 077+0.18
15 MaWERIiC (FI,)  SYM  090+024 084+0.11

extraction strategies. Significantly superior performance for
MaWERIC (p<0.05) was observed for all pairwise comparisons
(hjpt, —h™" Wit — WM hit, — W™, hiE, — hl"). Table 5 shows
the individual x*““and " values (obtained in 25 runs of 3-fold
cross validation) using each set of texture features: first order sta-
tistical (h">"), second order statistical (h22), gradient (h>3), and
Gabor (h™") extracted from T,w MRI for three sets of classifiers
(SVM, RF, PBT). Except in the case of PBT classifier, Gabor (h™")
was found to outperform the other first and second-order statis-
tical and gradient texture features (h'>' h'>2 and h™2) for both
the RF and SVM classifiers.

Experiment 2. Comparing MaWERIC with peak integration/
average MR intensities based COD.

The qualitative results in Figure 3 and box-plots in Figure 4
suggest that MaWERIC (hZ’éA) (Fig. 3f) yields a higher detection
accuracy compared to state-of-the-art COD (h™ Fig. 3d) and
COl (h"" Fig. 3e) strategies.

Table 3 shows the quantitative results that suggest a signifi-
cantly higher CaP detection accuracy of MaWERIC; hj, (V¢
0.89 +0.02, 1*“ = 0.83 £ 0.03) compared to both COD h"™(;AY“=
0.66 +0.02, 1*““ = 0.62 +0.02) and COI, 7" (;*Y“= 0.85 +0.03,
1S = 0.78 +£0.03). MaWERIC results were found to be signifi-
cantly better than the other comparative feature extraction strat-

egies (h™", W™, W™, h7") in the two classifiers (SVM and PBT).

Experiment 3. Comparing PBT with SVM and RF classifiers.

PBT, SVM, and RF showed similar AUC and accuracy results for
all feature combination strategies (h'>, "', h'™, k7", h[,). Both
RF and SVM showed higher 1*Y“ and p*“ for MaWERIC (h,)

Table 4. P-values obtained by pairwise t-test for evaluating
presence of statistically significant differences in AUC for
MaWERIC compared to the 4 strategies (Gabor MRI, meta-
bolic MRS, COI and COD schemes) under evaluation using
an RF classifier
Method MRS Tow MRI

col CcoD

MaWERIC  1.60 x 10?2 4.06 x 102* 0.0017 5.62x 1072
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Table 5. Mean AUC and accuracy values with standard devi-
ation for different texture and wavelet features obtained us-
ing PBT, RF, and SVM classifiers over 25 iterations of 3-fold
cross validation
Classifier Feature Mean AUC  Mean accuracy
PBT Gabor 0.5494+0.019 0.5454+0.017
Gradient 0.560+0.018 0.556 +0.012
First order 0.566 +0.013 0.554+0.016
statistical
Second 0.534+0.016 0.538 +0.021
order
statistical
RF Gabor 0.5544+0.112 0.546+0.014
Gradient 0.547 +£0.115 0.545+0.014
First order 0.534+0.016 0.530+0.017
statistical
Second 0.5444+0.011 0.5374+0.013
order statistical
SVM Gabor 0.5134+0.030 0.659+0.013
Gradient 0.495+0.038 0.499 +0.029
First order 0.493 +£0.026 0.498 +0.027
statistical
Second 0.504+0.041 0.5114+0.033
order statistical

compared to PBT but the results were not found to be statisti-
cally significantly different from each other. Although slightly
higher 1*YC and 1" were obtained using SVM, RF was used
for MaWERIC due to its stable performance over different classifier
iterations. Results from SVM classifier were found to have a high
standard deviation for both accuracy (0.24 for SVM compared to

0.02 for RF) and AUC values (0.11 for SVM compared to 0.03 for RF).

DISCUSSION

To our knowledge, MaWERIC is the first CSS that provides a sys-
tematic framework for the quantitative combination of structural
information from T,w MRI imaging with metabolic information
from MRS for improved CaP detection. The few COIl and COD
based data integration strategies previously explored in the liter-
ature were limited in applicability due to the ad-hoc strategies
used for overcoming dimensionality differences across modali-
ties (18,45). For instance, Simonetti et al. quantitatively combined
MRI and MRS by directly concatenating features obtained from
the two heterogeneous data sources (18). However, the differing
dimensionalities of MRI and MRS features were not accounted
for in that study, suggesting that the classifier could have been
biased towards MRS features (eight MRS versus four MRI fea-
tures). Another approach for combining binary decisions, COI,
makes an unrealistic assumption of independence across the two
data modalities, although complimentary information is acquired
simultaneously from two or more sources about the same disease.

MaWERIC was evaluated on 36 1.5T in vivo MRS and T,w MRI
studies on a per voxel basis and results obtained were compared
with four other feature extraction strategies using: (i) MRS meta-
bolic features; (i) T,w Gabor wavelet features; (iii) a COD method
involving integration of MRS metabolic features with mean
image intensity from T,w MRI; and (iv) a COl method that

combined the independent classification results obtained from
Tow MRI and MRS. We also evaluated three classifiers (SVM,
PBT, RF) across the four strategies to identify the best classifier.
MaWERIC was found to significantly outperform the other four
feature extraction COD and COl strategies for all three classifiers.

To overcome concerns about bias and overfitting of the data, we
iteratively divided 36 studies into training and testing sets by a
three-fold cross validation method. 1Y and 1 values over 25
iteration runs were then reported for all 15 combinations of fea-
ture extraction, classifier, and data fusion strategies (Table 3). In
the following subsections, we discuss the detection results of
MaWERIC with respect to feature extraction, data fusion, and
classification strategies considered in this work.

Experiment 1: Comparing MaWERIC with unimodal classifiers
T,w MRI and MRS.

MaWERIC was found to significantly outperform a unimodal
classifier trained on Gabor features for T,w MRI. MaWERIC also
outperformed an MRS unimodal classifier trained on clinically
used metabolic MRS features. Our results were consistent with
several multimodal integration studies (45,63-67) that have sug-
gested that combining orthogonal complementary pieces of in-
formation from different modalities can improve classification
accuracy compared to unimodal data channels (5,13-16,68).

Our results show that MRS metabolite peak area and ratio fea-
tures yield better classifiers at a meta voxel level compared to a
Gabor texture based Tow MRI classifier. This is consistent with
(35), where 1U“of 0.68 was obtained using T,w MRI compared
to 1*U“of 0.80 obtained using MRS; the metabolic peaks having
been identified by visual inspection of two expert readers. In a
related study, MRS ratios of metabolite concentrations
(1*Y°=0.89) were shown to outperform visually identified hypo-
intense T,w MRI features (u"Y“=0.85) for CaP detection in 65
studies (69). Note that in these studies, the AUC evaluation was
done on a per patient basis as opposed to a voxel based evaluation,
as in our study. Our findings (Figs. 4a and 4b) suggest that T,w MRI
texture features alone might not be sufficient to identify CaP sig-
natures in the prostate. Our findings are also consistent with re-
cent 1.5T and 3T multi parametric clinical studies that reported
sensitivity at the patient level in the range of 0.45-0.55 and spec-
ificity in the range of 0.80-0.90 from T,w MRI (70-72).

Experiment 2. Comparing MaWERIC with other data fusion
strategies.

MaWERIC versus decision combination (COI)

MaWERIC outperformed a decision level combination approach in
terms of (*Y“and 1" (32,45). The decision level classifier was
obtained by combining the binary class decisions (AND operation)
from the individual unimodal classifiers. Decision level integration,
while helping to overcome the curse of dimensionality (since all
the input information was reduced to a scalar valued decision),
tends to implicitly treat the data channels as independent. More
specifically, in T,w MRI and MRS, data is acquired simultaneously,
providing complementary (structural and metabolic) information
from each spatial location about the same disease. Decision level
fusion strategies might therefore be unable to exploit the syn-
ergy between these complimentary data streams. By contrast,
data level fusion strategies not only exploit the complementary
information spread in the different modalities but are also able
to leverage the cross talk between the data channels (26).
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MaWERIC versus data integration using metabolic MRS and
MRI intensity features (COD)

To our knowledge, the only other study where MRI and MRS fea-
tures were quantitatively combined at data levels was for brain
tumor detection (18). However, in that study, MRS features
obtained by PCA, ICA, and quantification were directly combined
with four intensity features from multiprotocol MRI, possibly
causing the classifier to be biased towards MRS features. Al-
though MaWERIC was only compared to the best performing
COD strategy (quantification + MR intensities), one of four pre-
sented in (18), our results suggest that directly aggregating mul-
timodal heterogeneous data from different sources without
accounting for differences in feature dimensionality and relative
scaling can adversely impact classifier performance (26). This is
especially true if the constituent classifier features are high di-
mensional or unevenly scaled. The superior classifier accuracy
of MaWERIC compared to a COD meta classifier trained using
only T,w MR image intensities and metabolic peak area features
(Figs. 3a and 3b) could be attributable to the uniform scaling and
data representation provided by the MaWERIC framework.

Since high dimensional data could be embedded into a re-
duced space of arbitrary dimensions, we evaluated MaWERiC
across different numbers of eigenvectors, m €{15,20,25,30}.
The MaWERIC classifier was found to consistently outperform
the COD classifier across different values of m (18). m=15 was
chosen as the number of low dimensional embedding vectors
on which to project the high dimensional T,w MRI and MRS fea-
tures, since it accounts for up to 93% of the variance in the data.
Note that no significant differences in *““and 1 for MaWERIC
classifier were observed for m € {15, 20, 25, 30}; these values ac-
counting for >93% of variance in the data. Figure 5 shows the
variations in pU (y-axis) and p*“ (x-axis) of MaWERIC using a
RF classifier across different values of MRS dimensions from
m=5 to 40 (m=40 captures 99.8% variance for MRS) with di-
mension for T,w MRI fixed at m=15 (captures 99.8% T,w MRI
variance). As seen in Figure 5, the highest AUC and accuracy
were obtained when dimensions (m =15) were the same for both
T,w MRI and MRS. It is important to note that our choice of the
number of eigenvectors was based of maximizing classifier accu-
racy while using a minimal number of attributes based on the
guiding principle of Occam’s razor (73).
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Figure 5. 3-D plot showing variations of AUC (y-axis) and accuracy
(z-axis) values of MaWERIC across different PCs (x-axis) for MRS (m is fixed
as 15 for T,w MRI as it captures 99.8% MRI variance). Note that the high-
est AUC and accuracy values were obtained when the same number of
dimensions were used for both T,- MRl and MRS at m =15.

Experiment 3. Comparing RF with SYM and PBT classifiers.
The three classifiers considered in this study, PBT, RF, and SVM,
are all relatively new state-of-the-art classifier ensembles that
have been shown to be useful in different medical imaging
applications (3,29-31,40,74,75). The advantage of these classi-
fiers is that they are easily able to incorporate information from
multiple channels and data sources. RF was used as the ensem-
ble of choice within MaWERIC due to its improved and stable
performance over SVM and PBT (Table 2). RF is known to reduce
data variance and therefore it is able to provide substantial perfor-
mance improvement over other ensemble classifier strategies (28).
RF classifiers have also shown to be relatively more stable in differ-
ent levels of noise compared to other classifier ensembles (28).

It was observed that ;*““obtained by hjy, was statistically and
significantly different from h"", h’2, K’ and, k7" across all three
classifiers (Table 3), although no statistically significant difference
was observed across the classifiers (results not shown). These
results suggest that detection performance was more a function
of the choice of the feature set and/or fusion strategy (data or
decision level) rather than choice of classifiers.

Although the results obtained by MaWERIC significantly out-
performed many state-of-the-art feature extraction and fusion
strategies for MRS and T,w MRI, we acknowledge some limita-
tions in our study. (1) The spectra belonging to scale 3 (identified
by the expert as being indeterminate) and voxels identified as
atrophic (A) were not considered for classification. We believe
that spectra classified as intermediate could provide clinical
insights about the disease specific features, a topic that will be
explored in future work. (2) Alternative wavelet based (apart
from Haar and Gabor) and other feature extraction strategies
(e.g., ICA (30,40)) were not considered. However, our choice of
Haar wavelets for MRS and Gabor wavelets for T,w MRI was mo-
tivated by previous demonstrations of their successful use in
building accurate classifiers for CaP detection (22,24). (3) While
PCA was used to obtain a uniform homogeneous space for rep-
resentation of the different modalities, newer NLDR strategies
have shown to yield better low dimensional data representations
compared to PCA (33,76,77). However, these NLDR strategies are
highly sensitive to parameter selection and selecting the optimal
parameters for two modalities would have been a challenge. (4)
Ground truth for evaluation was delineated on a per MRS voxel by
an expert after considering the disease extent mapped on the ra-
diological imaging from corresponding histopathology. Another
method of more robustly and accurately estimating spatial extent
of disease on MRI is by spatially co-registering ex vivo whole
mount radical prostatectomy sections with corresponding
in vivo preoperative MRI. Our group has previously developed
elastic registration algorithms for handling deformations between
ex vivo histology and preoperative MRI (78). However, in this
study, this strategy could not be leveraged due to the non avail-
ability of digital pathology resources for digitization of whole
mount histology glass slides.

CONCLUSIONS

While data integration strategies for combining image based
modalities have been previously presented, analogous strategies
for combining imaging and non imaging are not extant in the lit-
erature (2,3,42). In this study, we presented a novel data combi-
nation method, multimodal wavelet embedding representation
for data combination (MaWERIC) specifically geared towards
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quantitative integration of imaging and non-imaging data.
MaWERIC is comprised of two transformation modules: wavelet
transformation and principal component analysis that together
provide a platform for uniform and homogeneous data integra-
tion across modalities. The homogeneous low dimensional rep-
resentation of disparate data sources obtained by MaWERIC
was then combined in the eigen space. A random forest classifier
ensemble was used in conjunction with the combined eigenvec-
tor representation of T,w MRl and MRS channels to identify pros-
tate cancer in vivo. Three-fold cross validation performed over 25
iterations and the corresponding pairwise t-test performed on a
total of 36 1.5 Tesla in vivo T,w MRI and MRS studies show that
MaWERIC significantly outperforms (i) either modality individu-
ally, (ii) decision combination obtained by combining individual
classifier decisions from both modalities, and (iii) a classifier com-
bining metabolite peak area and ratio features from MRS and
Tow MR image intensities.

In conclusion, MaWERIC provides a general framework for po-
tentially integrating any combination of heterogeneous data
modalities independent of scales and dimensions. Future work
will examine the application of MaWERIC in the context of other
biomedical applications such as integration of -omics with imag-
ing data for improved disease characterization.
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