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Background. Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly
popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim
was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available
for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. Methods. We evaluated
the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and
multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the
confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Result. Comparing
the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the
most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all
above settings was MMC ≥ EC ≥ CC ≥ ZC. Conclusion. This study highlights advantages of MGLS meta-analysis on UM approach.
The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of
the coefficients.

1. Introduction

Meta-analysis is widely accepted as a systematic combination
procedure using available evidence of independent studies
for the purpose of a single overall result for the treatment of
interest. This statistical procedure is becoming increasingly
popular with medical researchers, particularly in clinical
trials and survival analysis [1, 2]. Survival analysis is per-
formed when the time is as the outcome variable and the Cox
proportional hazardmodel is a famous procedure in this field
[3]. Meta-analysis attempts to achieve a comprehensive result
due to two procedures based on data availability: individual
patient data (IPD) meta-analysis or aggregate patient data
(APD) meta-analysis. It means that if individual’s data from
different studies are available, IPD is preferred, but if it
is impossible to assemble the individual’s raw data, then
the APD should be chosen for combining the results of

different studies. An IPD procedure requires individual data
collection, whereas APD is based on summarized data that is
extracted from published reports. While APD results are not
as desirable as IPD, the majority of meta-analysis work relies
on APD due to time availability and financial restriction [4–
7].

Selection of homogeneous and related studies that
address the same question is the first difficult task in each
APDmeta-analysis and has been debated bymany authors [4,
8]. An additional problem is the fact that primary studies have
diverse methodology and design protocols, such as differ-
ences in sample size and different covariate adjustment [9].Of
course, different covariate adjustment in different studies is a
troublesome issue in anymeta-analysis.Thismis djustment of
covariatesmay occur because of a decision by the analyst. Two
suggested ways that have been used to date are (i) restricting
the analysis to those models that have exactly the same set
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of covariates or (ii) using all available studies but omitting
some important covariates. Both suggested ways lead to
a waste of integrating information. As we know, omitting
important concomitant covariates in nonlinear models leads
to estimation bias and misleading interpretation, while the
power is also decreased for no treatment effect detection even
in primary studies [10–12]. In the Cox model, this covariates’
omission leads to estimation bias toward zero for treatment
effects [13, 14].

Nowadays, in APD, almost all researchers attempt to
achieve the result for the desired variable by UM and
neglect the existence of other covariates in the model. This
could be problematic in meta-analysis. Several researchers
have encountered this problem. With the exception of the
limited number of studies that propose synthesis slopes in
linear regression models [15], the others did not propose
applicable solution methods, especially in nonlinear model
fields. To combine incomparable Cox regression models,
Yuan and Anderson proposed two approaches in 2010 that
use the concomitant covariates in combining incomparable
Cox models but in a UM manner and focused on a single
interested covariate rather than estimating the influences of
other concomitant covariates [16].

A multivariate meta-analysis approach can be one of
the best solutions to overcome the problem of combining
incomparable models by accounting for existences of all
covariates in a meta-analysis simultaneously [17]. By using
this approach in meta-analysis, no covariate or information
is omitted, which leads to a more complete model with the
estimated influences of all covariates to date. In addition to
saving information on all covariates, which had previously
used significant financial collection expenses in the primary
studies, a complete model can be helpful in taking more con-
fident therapeutic decisions. A useful and simple procedure
in the multivariate meta-analysis is a generalized least square
(GLS) estimationmethod. However, performing this method
as a meta-analysis procedure has some difficulties due to lack
of key information required [15, 17].

The main objective of this study is first to apply a MLGS
method of synthesis of incomparable Cox regression slopes
in order to have a complete Cox proportional hazard model
with the effects of all available covariates and then to propose
four new approaches to approximate the covariance matrix
of coefficients as a necessary part of MGLS performance.
We evaluated these four new proposed approaches by some
statistical features. This paper also provides a general insight
into the advantages of MGLS estimation over routine UM
procedures that are usually used in meta-analysis.

2. Materials and Methods

2.1. Review of Conventional Univariate Meta-Analysis. The
popular and used univariate meta-analysis approaches are
based on weighted mean estimator described by A. White-
head and J. Whitehead [18] and DerSimonian and Laird [1].
In a meta-analysis, we encounter two approaches, fixed effect
and random effect analysis. If all the studies are assumed
to have the same common treatment effects and differences
between the studies are assumed to be due to chance, the fixed

effect procedure is suitable, but the final result cannot be
generalized to the population [19]. In the random effect
modeling approach, the overall study variations are divided
in to two parts: between-study variation represented by a
random term (𝑎

𝑖
) and within-study variation represented by

(𝜀
𝑖
) in the model. The results of random effect meta-analysis

can be generalized to the population. The random term (𝑎
𝑖
)

is assumed to have a normal distribution with mean zero and
unknown variance 𝜏2. 𝜀

𝑖
is called measurement error and has

a normal distribution with zero mean and known variance
𝜎
2

𝑖
. Hence, if we denote by 𝜃

𝑖
the treatment effect or estimated

log hazard ratio of the 𝑖th study (𝑖 = 1, . . . , 𝑘) and 𝜃 is the true
overall effect, then a simple model is written as 𝜃

𝑖
= 𝜃 + 𝜀

𝑖

(fixed effects model) and 𝜃
𝑖
= 𝜃 + 𝑎

𝑖
+ 𝜀
𝑖
(random effects

model). We assume that 𝜃
𝑖
is approximately distributed as

𝑁(𝜃, 𝜎
2

𝑖
).

In conventional weighted mean approaches, using the
reciprocal of variance estimation as the weight, the total 𝜃 is
estimated as 𝜃 = ∑𝑘

𝑖=1
𝑤
𝑖
𝜃
𝑖
/∑
𝑘

𝑖=1
𝑤
𝑖
with var (𝜃) = (1/∑𝑘

𝑖=1
𝑤
𝑖
),

where 𝑤
𝑖
is the weight given to study 𝑖.

An approximate of 𝑤
𝑖
under the fixed effects assumption

is 𝑤
𝑖
= 1/𝜎

2

𝑖
and, under the random effects, reciprocal

of between-study variances is added to the weights: 𝑤
𝑖
=

(𝑤
−1

𝑖
+ 𝜏
2
)
−1. Thus, studies with smaller variance are given

more weight than those with large variances. Attribution of
any weight to individual study is permitted, but since this
weight is reported to provide the highest precision for total
treatment effect [20], almost all meta-analysis researchers
have used it.

The famous statistics to test the homogeneity of treatment
effect across all studies is Cochran’ 𝑄 statistic [21], which
is constructed based on differences between the pooled
estimate effect and each study effect.

Under the null hypothesis of homogeneity of treatment
effect across all studies, 𝜃

1
= 𝜃
2
= ⋅ ⋅ ⋅ 𝜃

𝑘
, 𝑄 follows 𝜒2

distributionwith (𝑘−1) degrees of freedom.𝑄 test is reported
to have a low power, especially when the number of primary
studies is small [22].

Another measurement of heterogeneity is provided by
referring to 𝐼2 index as follows: 𝐼2 = Max(0, (𝑄 − (𝑘 −

1))/𝑄 × 100%). The percentage of total variability due to
between-study variability is interpreted by 𝐼2 index. Recently,
𝐼
2 has become more well known in meta-analysis, because
it indicates the percentage magnitude of heterogeneity
[23].

2.2. MGLS in Meta-Analysis with Cox Models. Recently, the
synthesis of regression slopes has received more attention in
meta-analysis [24]. We illustrate synthesis of the incompara-
ble Cox regression model slopes based on MGLS approach,
presented by Becker and Wu previously [15].

Suppose that we have 𝑝 covariates in whole 𝑘 studies
that participate in meta-analysis and suppose that 𝑋

1
is the

interested variable that existed in 𝑘 studies and the other 𝑝−1
covariates exist only for adjustment. It means that each study
has someof the covariates, not all of them. Furthermore, there
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is no treatment by covariate interaction. A full adjustment
Cox model is as follows:

ℎ (𝑡, 𝑋) = ℎ0 (𝑡) exp (𝛽1𝑥1 + ⋅ ⋅ ⋅ + 𝛽𝑝𝑥𝑝) . (1)

For convenience, we illustrated MGLS estimation method
in combining incomparable Cox models. Suppose that we
want to combine the results of three studies of Cox models
in MGLS approach and we have four covariates besides
𝑋
1
which is the interested variable in whole 𝑘 studies. In

the first study, we have the coefficients of these covariates
(𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑋
4
), in the second study (𝑋

1
, 𝑋
3
, 𝑋
5
), and in the

last one (𝑋
1
, 𝑋
5
). For each covariate, an indicator variablewas

defined that takes the value of 1 if those covariates exist in
the study and zero otherwise. Here we assume coefficients
as responses and construct a multivariate format. In fact,
we want to estimate the influence of all covariates, not the
hazards in different times, so the multivariate approach is
acceptable. The MGLS for the above example can be shown
in a matrix form as follows:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑏
11

𝑏
21

𝑏
31

𝑏
41

⋅ ⋅ ⋅

𝑏
12

𝑏
32

𝑏
52

⋅ ⋅ ⋅

𝑏
13

𝑏
53

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 1 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 0 0 0 0

0 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜀
11

𝜀
21

𝜀
31

𝜀
41

⋅ ⋅ ⋅

𝜀
12

𝜀
32

𝜀
52

⋅ ⋅ ⋅

𝜀
13

𝜀
53

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎
11

𝑎
21

𝑎
31

𝑎
41

⋅ ⋅ ⋅

𝑎
12

𝑎
32

𝑎
52

⋅ ⋅ ⋅

𝑎
13

𝑎
53

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(2)

In above matrix form, 𝑏
𝑖𝑗
is the coefficient of covariate 𝑗

in study 𝑖 (𝑖 = 1, . . . , 𝑘), (𝑗 = 1, . . . , 𝑝). An alternative
writing of the above model is 𝑏 = 𝐻𝛽 + 𝑒 + 𝑎, where 𝑏 is
a vector of all covariate coefficients from entire studies, 𝐻
is a matrix that contains 1 and 0 in each row representing
covariate existence in each study and the columns contain all
covariates (here 𝑝 covariates) in meta-analysis, 𝑒 is a vector

of sampling errors, and 𝑎 is a vector of random effects that is
computed from between-coefficient variability. As we know,
the best linear unbiased estimator of 𝛽withMGLS procedure
is 𝛽 = (𝐻Σ

−1
𝐻)
−1

𝐻Σ
−1
𝑏 and the covariance matrix of

cov(𝛽) = (𝐻Σ
−1
𝐻)
−1 with a large sample 𝛽 is asymptotically

normally distributed: 𝛽 ∼ 𝑁 (𝛽, cov(𝛽)). If we consider the
𝑞th diagonal element of cov(𝛽) as 𝑐

𝑞𝑞
and if 𝑏 is a multivariate

normal, then the confidence interval and hypothesis test for
each 𝛽 is available: 𝛽

𝑖
± 𝑧
1−𝛼/2√𝑐𝑞𝑞, where 𝑧1−𝛼/2 is the upper

tail 1 − 𝛼/2 critical value of standard normal distribution.
A homogeneity test of all coefficients across studies under

the normality assumption for 𝑏 is given as follows.
𝑄 = (𝑏−𝐻𝛽)Σ

−1
(𝑏−𝐻𝛽)which has a large sample𝜒2 with

(𝑘 − 1)𝑝 degrees of freedom, where 𝑘 and 𝑝 are the number
of studies and covariates in all studies, respectively.

As we can observe clearly, all the estimations depend on
the blockwise diagonal covariance matrix of coefficients (Σ).
Without having a complete coefficients covariancematrix (Σ)
or a suitable estimated coefficients covariance matrix (𝑆), all
MGLS estimates have computation problems. For instance,
the covariance matrix of coefficients in the above example is
as follows:

Σ

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

[
[
[
[
[
[

[

𝛿
2

1
𝛿
12
𝛿
13
𝛿
14

𝛿
21

𝛿
2

2
𝛿
23
𝛿
24

𝛿
31
𝛿
32

𝛿
2

3
𝛿
34

𝛿
41
𝛿
42
𝛿
43

𝛿
2

4

]
]
]
]
]
]

]

0

0

0

0

0

0

0

0

0

0

0

[
[
[

[

𝛿
2

1
𝛿
13
𝛿
15

𝛿
31

𝛿
2

3
𝛿
35

𝛿
51
𝛿
53

𝛿
2

5

]
]
]

]

0

0

0

0

0

0

0

[

𝛿
2

1
𝛿
15

𝛿
51

𝛿
2

5

]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[

[

cov (𝑏
1
) 0 0

0 cov (𝑏
2
) 0

0 0 cov (𝑏
3
)

]
]
]

]

.

(3)

𝑏
1
, 𝑏
2
, and 𝑏

3
are three covariate coefficient vectors of three

primary studies. The major limitation and problem that
has been presented previously is lack of actual complete
coefficients covariancematrixes fromprimary studies [17, 19].
Themultivariate coefficients covariance matrix is a blockwise
diagonal that includes the variance of covariate coefficients
on its diagonal, which can almost always be found in the
Cox model results and between-coefficients covariances on
off-diagonal parts which are rarely reported even in recently
published papers.

We attempted to propose approximations for the covari-
ance of covariate coefficients and construct a covariance
matrix as close as possible to the actual Σ to have the MGLS
coefficients estimates finally.
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2.3. Four New Approaches. Suppose that, in one of the
primary Cox models, we have coefficients 𝑏

1
and 𝑏
3
. From

basic statistical laws, the covariance of these two coefficients
can be obtained by cov(𝑏

1
, 𝑏
3
) = Corr(𝑏

1
, 𝑏
3
)SE(𝑏
1
)SE(𝑏
3
);

this can be generalized to all coefficients in whole studies:

cov (𝑏
𝑖𝑗
, 𝑏
𝑖𝑗
) = Corr (𝑏

𝑖𝑗
, 𝑏
𝑖𝑗
) SE (𝑏

𝑖𝑗
) SE (𝑏

𝑖𝑗
) (4)

(𝑖 = 1, . . . , 𝑘), (𝑗 = 1, . . . , 𝑝). So if we have a correlation
value between each paired coefficients, the covariance can
be calculated simply. Therefore, we propose four approaches
for the correlation calculation to approximate coefficients
covariances, which is one of the main purposes of this study.

2.3.1. Zero Correlation (ZC). We can assume that the authors
during primary studies reported a very qualified model
in the initial studies that completely checked for lack of
multicollinearity. We can ignore the correlations and take
them as zero in (4), so 𝑆matrixes are a diagonal that has only
actual available variance of the coefficient on its diagonal.

2.3.2. Common Correlation (CC). Lack of multicollinearity
is rather unlikely, even when considered optimistic. In a
very qualified model, a little multicollinearity is unavoidable.
Therefore, we can take a little common correlation value
among all coefficients in all 𝑘 studies. For example, we can
assume Corr(𝑏

𝑖𝑗
, 𝑏
𝑖𝑗
) = 0.3. This assumption does not have

any influence in calculation of 𝑆, because it is a common value
for all coefficients. By substitution of this common value in
(4), all covariances can be calculated.

2.3.3. Estimated Correlation (EC). In this approach, we can
extract all similar coefficients from all studies that partici-
pated in meta-analysis. After extracting, we must put similar
coefficients in the same 𝑏

𝑗
vectors (𝑗 = 1, . . . , 𝑝).Therefore, we

have some 𝑏
𝑗
vectors, but with different lengths, because some

of the covariates may participate in fewer studies than others.
Then, the correlation between these vectors can be used as
the correlations part in (4). The benefit of this approach is
the fact that we use completely real available information in
correlation computation instead of zero or common values
based on educated guesses that have been used in two
previous approaches. This approach also has a drawback
and limitation; it is useful only in those meta-analyses that
have many primary studies. The reason is described in the
following paragraph.

One important point that should be paid attention to
is that we must extract the covariate coefficients that has
similar concomitant coefficients along themselves in the same
study. For example, if there are two studies with (𝑏

1
, 𝑏
2
, 𝑏
3
)

and (𝑏
1
, 𝑏
3
, 𝑏
5
), these two 𝑏

1
coefficients cannot be in the same

𝑏
1
vector because they have different concomitant covariate

coefficients with each other that have influence on their
values. For a more detailed illustration, assume that we have
only eight primary studies in a meta-analysis where 𝑏

1
exists

in all of them as a desired variable and the other four
covariates (2, 3, 4, and 5) participated randomly in each of
the models as follows:

Study 1: (𝑏
1
, 𝑏
5
, 𝑏
4
).

Study 2: (𝑏
1
, 𝑏
2
, 𝑏
5
)∗.

Study 3: (𝑏
1
, 𝑏
3
, 𝑏
4
).

Study 4: (𝑏
1
, 𝑏
5
, 𝑏
3
).

Study 5: (𝑏
1
, 𝑏
2
, 𝑏
5
).

Study 6: (𝑏
1
, 𝑏
2
, 𝑏
5
)∗.

Study 7: (𝑏
1
, 𝑏
4
, 𝑏
3
).

Study 8: (𝑏
1
, 𝑏
2
, 𝑏
5
)∗.

In the above example, we have only 3 𝑏
𝑖
vectors, 𝑏

1
=

(𝑏
12
, 𝑏
15
, 𝑏
18
), 𝑏
2
= (𝑏
22
, 𝑏
25
, 𝑏
28
), and 𝑏

5
= (𝑏
52
, 𝑏
55
, 𝑏
58
), the

elements of which come from the second, fifth and eighth
studies, so the three correlations coefficients are computable.
As we can observe, the other coefficients in other studies have
different concomitant coefficients with themselves; therefore,
they cannot be in the same vectors and cannot have cor-
relation. In fact, in this example, we have five coefficients
in whole 8 studies (𝑏

1
, 𝑏
2
, 𝑏
3
, 𝑏
4
, 𝑏
5
), but we can calculate the

correlations, only between three of them (𝑏
1
, 𝑏
2
, 𝑏
5
). For the

other coefficients, we take their correlation values as zero.
Logically, when we have more studies, this problem does not
occur and we can obtain 𝑏

𝑖
vectors with longer lengths for all

coefficients and therefore all correlations are calculable.

2.3.4. Multivariate Multilevel Correlation (MMC). The final
suggestion is to look at the studies and covariate coefficients
as a multivariate multilevel model. Goldestein has explained
thatmultivariate response data are conveniently incorporated
into multilevel models by creating an extra level below the
original level 1 to define multivariate structure. There are
several interesting features of this model. This model does
not have level 1 variability because level 1 exists only to define
multivariate structure. Level 2 variances and covariance are
the between-studies variation. Another important feature
is the fact that the multivariate multilevel estimates are
statistically efficient even where some responses are missing
in meta-analysis of some studies that do not have some of the
coefficients [25]. We have two levels: covariates coefficients
as level 1 are nested in studies as level 2. Each response was
formulated as follows:

𝑏
𝑖𝑗
= 𝑏
𝑗
+ 𝑢
𝑖𝑗
, (5)

where 𝑖 is the index for the study (𝑖 = 1, . . . , 𝑘) and 𝑗 is for
covariates in all studies (𝑗 = 1, . . . , 𝑝) and 𝑢

𝑖𝑗
is the random

term of the responses.We have a covariance and a correlation
matrix for the random part between all 𝑝 covariates. Each
response or each coefficient was formulated separately. For
example, for two coefficients, the formulas are as follows:

𝑏
𝑖1
= 𝑏
1
+ 𝑢
𝑖1

𝑏
𝑖2
= 𝑏
2
+ 𝑢
𝑖2
.

(6)

So these random parts are as follows:

[

𝑢
𝑖1

𝑢
𝑖2

] ∼ 𝑁 (0, 𝜑) , 𝜑 = [

𝛿
2

𝑖1
𝛿
12

𝛿
21

𝛿
2

𝑖2

] . (7)



Computational and Mathematical Methods in Medicine 5

From this covariance matrix, the correlations between coef-
ficients can be calculated and substituted in (4) and then 𝑆
matrix obtained finally.

MLwiN 2.3 is software for doing multivariate multilevel
analysis that is linked to R software recently and all above
calculations can be done using this software.

2.4. Mean Absolute Percentage Error (MAPE). Several statis-
tics for model checking are available, but when we have lack
of sufficient information, for example, in a meta-analysis,
MAPE can be a suitable choice.

The coverage probability of 95% of Wald (W) and Bon-
ferroni (B) CI was also calculated as another evidence for
comparing the efficiencies of the four new approaches. The
number of time that all 95% BCI cover real coefficients values
of all coefficients simultaneously among 2000 simulations
were also calculated for each of the four approaches. The
MAPE and WCI and BCI formulas are presented in the
Appendix.

2.5. Simulation Studies. We explore some statistical proper-
ties of four new approaches in terms of MSE, estimation
bias, the amount of reduction in MAPE, and the coverage
probability of 95%WCI and BCI in R software. We simulated
survival times as the first required part in a simulation of
the Cox model based on the procedure described by Blender
and his coworkers in 2011 and Austin in 2010 [26, 27]. We
generated a Cox model with five covariates similar to that
observed in the male breast cancer clinical trials, as an
example of a rare cancer for which we had survival data on.
Our simulation design for obtaining Cox beta coefficients
followed the procedure used by Yuan and Anderson in
2010 [16]. We assumed and generated Cox models with five
covariates.

ℎ (𝑥, 𝑡)

= ℎ
0 (𝑡) exp (𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5) .

(8)

To simulate covariates similar to those observed in a male
breast cancer,𝑋

1
was generated from a Bernoulli distribution

with 𝑃 = 0.5 to represent a treatment indicator, 𝑋
2
was

generated as a covariate of centered age from a normal
distribution with mean 0 and variance 100,𝑋

3
was generated

as a covariate of tumor size of 𝜒2 distribution with four
degrees of freedom, and 𝑋

4
was generated from a Bernoulli

variable with 𝑃 = 0.5 as an indicator of auxiliary lymph
node involvement. 𝑋

5
stands for the number of lymph

nodes involved with male breast cancer, generated from an
exponential distributionwith the rate of 1/4, rounded up to an
integer and amodification applied to them because a negative
nodal status (𝑋

5
) would occur in roughly 40% of patients. To

generate the survival times, the values coefficients of𝑋
1
to𝑋
5

were set to

𝛽 = (𝛽
1
, 𝛽
2
, 𝛽
3
, 𝛽
4
, 𝛽
5
) = (−0.2, −0.1, 0.1, 0.54, 0.7) (9)

based on real values similar to those observed in male
breast cancer patients. 𝑋

1
exists in all 𝑘 studies, but other

covariates were chosen without replacement from 𝑋
2
to 𝑋
5
.

The survival times were randomly censored with probability
0.1.The baseline failure time is generated from an exponential
distribution with 𝜆

0
= 0.2. The number of primary studies

was set in turn to 20, 25, 30, 35, 40, and 45. The number
of patients in each study was randomly picked up from 100
to 500 and survival times for each study were censored with
probability randomly chosen between 0.1 and 0.4.

After extracting covariates coefficients from different
simulated Cox studies,𝐻matrix was constructed by arrang-
ing all𝐻

𝑖
from different studies under each other.

𝑆 matrix was constructed based on the four proposed
methods and substituted in the MGLS estimation formula. If
the heterogeneity of studies was rejected, then the variance
between each pair of coefficients (as a random parts of
the model) is added to the diagonal elements of 𝑆 matrix.
Then the final covariate coefficient was estimated from the
MGLS procedure. We generated 2000 random data sets for
each simulation scenario and all statistical settings are the
average of these 2000 simulations.Themultivariatemultilevel
covariancematrixs were calculated by the R2MLwiN package
in R software, like all other simulation procedures.

3. Results

Table 1 shows the bias, standard deviation (SD), and MSE of
four proposed methods under different number of studies
(𝑘 from 20 to 45), each for 2000 simulations. The result
of ZC method is similar to the traditional weighted mean
meta-analysis that is used routinely in meta-analysis work,
especially for 𝛽

1
that exists in all studies.

The first notable point that can be seen in this table is
the fact that multivariate methods (CC, EC, and MMC) are
preferable to the conventional weighted mean method (ZC)
for 𝛽
1
, according to MSE, SD, and bias. In terms of the lowest

MSE, bias, and also SD for the all estimated coefficients, the
fourmethods are generally ranked asMMC ≤ EC ≤CC ≤ ZC.

Figures 1 and 2 illustrate the above results again more
clearly.

As we can observe in Figure 1, the MMC method has a
much smaller MSE relative to the other three methods for all
MGLS estimated coefficients.

Figure 2 shows that the MMC method has almost the
smallest estimated bias values among the four proposed
methods for all MGLS estimated coefficients, too. When the
number of studies is rather small (relative to our number of
studies) (𝑘 = 20, 25), the lowest value of both mentioned
statistics belongs to the MMC and CC, respectively; as 𝑘
increased (𝑘 = 30, 35), the bias and MSE of the EC method
decreased moderately and its values became as close as CC
method. Indeed, when 𝑘 was larger (𝑘 = 40, 45), EC
method showed smallerMSE and bias than CC and its results
became closer to those of theMMCmethod.This can be seen
obviously in Figure 1 for the MSE curves.

Table 2 shows the coverage probability for 95% WCI and
95% BCI for all coefficients and the percentage of times
that the simultaneous BCIs cover all five true values of beta
coefficients in the whole of 2000 simulations (%BCI).

Our findings reveal that all the 95% confidence intervals
that were constructed with the MMC proposed method had
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Table 1: Bias, SD, and MSE of each beta coefficient in different model for different number of studies (𝑘).

𝑘 Coef. ZC CC EC MMC
Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

20

𝛽
1

0.056 0.046 0.005 0.038 0.034 0.003 0.050 0.039 0.004 0.023 0.021 0.001
𝛽
2

0.099 0.077 0.016 0.088 0.074 0.013 0.088 0.077 0.014 0.070 0.072 0.010
𝛽
3

0.050 0.033 0.004 0.031 0.026 0.002 0.042 0.026 0.002 0.020 0.016 0.001
𝛽
4

0.099 0.099 0.019 0.089 0.086 0.015 0.089 0.099 0.018 0.045 0.072 0.011
𝛽
5

0.090 0.179 0.041 0.050 0.174 0.033 0.072 0.178 0.037 0.040 0.155 0.030

25

𝛽
1

0.071 0.029 0.006 0.046 0.027 0.003 0.049 0.028 0.003 0.032 0.019 0.001
𝛽
2

0.082 0.083 0.014 0.069 0.072 0.009 0.072 0.069 0.010 0.052 0.057 0.006
𝛽
3

0.085 0.029 0.008 0.062 0.019 0.004 0.066 0.023 0.005 0.039 0.011 0.002
𝛽
4

0.096 0.072 0.015 0.072 0.063 0.009 0.080 0.064 0.010 0.056 0.056 0.006
𝛽
5

0.063 0.198 0.043 0.054 0.159 0.028 0.066 0.164 0.031 0.041 0.147 0.023

30

𝛽
1

0.064 0.030 0.005 0.038 0.025 0.002 0.034 0.026 0.002 0.022 0.018 0.001
𝛽
2

0.076 0.064 0.009 0.069 0.063 0.009 0.074 0.061 0.009 0.068 0.060 0.008
𝛽
3

0.054 0.019 0.003 0.036 0.018 0.002 0.038 0.017 0.002 0.022 0.015 0.001
𝛽
4

0.092 0.076 0.014 0.086 0.072 0.013 0.092 0.068 0.013 0.079 0.066 0.011
𝛽
5

0.049 0.148 0.024 0.034 0.146 0.022 0.035 0.147 0.023 0.030 0.144 0.022

35

𝛽
1

0.055 0.026 0.04 0.043 0.021 0.002 0.032 0.017 0.001 0.022 0.014 0.001
𝛽
2

0.079 0.062 0.010 0.065 0.051 0.007 0.064 0.050 0.007 0.062 0.044 0.006
𝛽
3

0.050 0.018 0.003 0.039 0.016 0.002 0.035 0.014 0.001 0.033 0.012 0.001
𝛽
4

0.081 0.057 0.009 0.075 0.052 0.008 0.071 0.053 0.008 0.066 0.051 0.007
𝛽
5

0.042 0.119 0.016 0.031 0.116 0.014 0.042 0.113 0.014 0.033 0.106 0.012

40

𝛽
1

0.069 0.026 0.005 0.038 0.022 0.002 0.034 0.021 0.002 0.023 0.016 0.001
𝛽
2

0.089 0.069 0.013 0.076 0.052 0.008 0.069 0.045 0.007 0.052 0.049 0.005
𝛽
3

0.085 0.017 0.008 0.049 0.016 0.003 0.037 0.015 0.002 0.029 0.013 0.001
𝛽
4

0.098 0.064 0.014 0.077 0.065 0.010 0.074 0.064 0.009 0.066 0.064 0.008
𝛽
5

0.049 0.141 0.022 0.049 0.134 0.020 0.047 0.134 0.020 0.036 0.132 0.019

45

𝛽
1

0.061 0.026 0.004 0.039 0.023 0.002 0.035 0.021 0.002 0.029 0.021 0.001
𝛽
2

0.076 0.073 0.011 0.051 0.054 0.006 0.041 0.053 0.004 0.022 0.033 0.002
𝛽
3

0.073 0.019 0.006 0.047 0.018 0.002 0.033 0.016 0.001 0.022 0.013 0.001
𝛽
4

0.086 0.082 0.014 0.077 0.052 0.009 0.071 0.045 0.007 0.047 0.036 0.003
𝛽
5

0.062 0.128 0.020 0.041 0.123 0.017 0.042 0.121 0.016 0.018 0.113 0.013
The bias, SD, and MSE for MMC procedure in different coefficients are highlighted by bold font.

a higher probability of covering true values of beta coefficient,
both in WCI and BCI, which are highlighted by bold font in
Table 2.

Indeed, when the numbers of studies were small, CC
showed better coverage, but as 𝑘 increased, EC could substi-
tute CC again. In addition, according to the MAPE statistic
for the adequacy of model checking, the MMC method
showed the lowest value among the four methods in different
number of studies and therefore had a better model fitting.

4. Discussion

In summary, our results showed that, based on the estimation
bias, MSE, coverage probability for 95%CI, andMAPE value,
the MMC method is more efficient than the other three
methods, followed by CC for small 𝑘 and EC for large 𝑘. In
the APD setting, where we only observe summarized model
information from different studies, UM as a completely
well-known meta-analysis procedure has a reputation and

universal position in statistical literature. Weighted mean has
the highest usage among other meta-analysis procedures.
In this method, the weights are factors that bring primary
study characteristics into meta-analysis results. In fact, they
are representative of initial study features. In this established
popular procedure, the influences of concomitant covariates
that exist only for adjustment and do not have main role
are often neglected. In a meta-analysis, combining estimates
of different studies that are adjusted for different sets of
covariates is problematic. Therefore, besides the loss of their
information, neglecting of these covariates introduces bias
and inefficiency in interpretation of results, especially in
nonlinear models [9–13].

To the best of our knowledge, no previous study has
completely paid attention to a multivariate procedure in
meta-analysis in order to solve the above problem [15, 16].
Yuan takes into account the existence of other concomitant
variables in incomparable Cox models but did not esti-
mate the comprehensive effect for them. He proposed two
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Figure 1: Comparisons of the estimatedMSE in the four proposedmethodswith different numbers of studies.Thehorizontal axis indicates the
four proposedmethods. ZC: zero correlation; CC: common correlation; EC: estimated correlation; MMC:multivariate multilevel correlation.
Each point on the graph is averaged over 2000 simulation realizations.

approaches for adjusting the influences of all covariates in
estimating the effect of the variable of interest. Despite his
attention to a single variable, the two proposed methods
showed more precise effects than the familiar UM method.
Becker and Wu also used the GLS multivariate method as
a meta-analysis approach but did not express an applicable
way for constructing the coefficient covariance matrix as a
necessary part in applying GLS for meta-analysis [15].

Our findings also show the advantages of using a mul-
tivariate approach on UM. The MGLS has this benefit
over Yuan method in that it estimates all coefficients affect
simultaneously not only the variable coefficient of interest. As
we can observe from Tables 1 and 2 and Figures 1 and 2, ZC,

which gives the same result asUM, especially for 𝑏
1
coefficient

that exists in all 𝑘 studies, has the highest bias, MSE, MAPE,
and the minimum 95% CI coverage among other mentioned
multivariate procedures. Therefore, the MGLS procedure is
preferred to UM in this situation due to its greater precision
even for 𝑏

1
.

Our simulation results in all tables and figures show that,
according to the computed statistics here, MMC gives more
accurate final covariate coefficient estimations for all five
covariates. The ZC procedure is not recommended because
ignoring the correlations between coefficients is not logical
at all. Of course, this procedure is the simplest one as
recommended previously by Becker and Wu [15], but as we
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Figure 2: Comparisons of the estimated bias in the four proposedmethods with different numbers of studies.The horizontal axis indicates the
four proposedmethods. ZC: zero correlation; CC: common correlation; EC: estimated correlation; MMC:multivariate multilevel correlation.
Each point on the graph is averaged over 2000 simulation realizations.

can see it leads to the lowest precision in the final results. Little
multicollinearity even in the precise model fitting cannot be
completely neglected.

The CC procedure, which used a common correlation
value between all coefficients, showsmore precise results than
theZCapproach.Of course, a common correlation value does
not have any special influence on the final results, because it is
common and fixed value between all coefficients, but its usage
leads to applying real coefficient variances in estimations. It
is completely acceptable and logical that the real variance
application can improve the precision of the result compared
to educated guesses, like zero in ZC.

The CC procedure has better results than EC when the
numbers of studies are small. This reduced precision in EC
is due to a large number of studies which its estimation
needs. As we mentioned in Materials and Methods, the EC
procedure needs similar studies according to covariates to
find the same coefficient with the same concomitant covari-
ates along them. In fact, coefficients cannot be considered as
variables because they are effects. Their omission influences
the other coefficient calculations in primary studies. As the
results indicated, when the number of studies increased,
EC precedes CC in precision. This result is also acceptable,
because the EC computation relies more on real information
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Table 2: MAPE, the coverage probability for 95% W and B, CI, and MSE and %BCI of each estimated beta coefficient in the four proposed
methods for different number of studies (𝑘).

𝑘 Model MAPE %BCI CI 𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

20

ZC 0.236 0.49 W 0.88 0.91 0.72 0.90 0.89
B 0.74 0.84 0.59 0.83 0.99

CC 0.229 0.63 W 0.91 0.95 0.87 0.94 0.99
B 0.77 0.85 0.68 0.85 0.99

EC 0.233 0.60 W 0.89 0.94 0.82 0.93 0.99
B 0.72 0.84 0.60 0.82 0.98

MMC 0.220 0.65 W 0.92 0.95 0.91 0.94 0.99
B 0.78 0.88 0.88 0.87 0.99

25

ZC 0.218 0.51 W 0.86 0.90 0.75 0.90 0.98
B 0.69 0.82 0.51 0.79 0.97

CC 0.216 0.56 W 0.88 0.92 0.81 0.93 0.99
B 0.74 0.84 0.60 0.82 0.98

EC 0.217 0.52 W 0.86 0.91 0.73 0.89 0.98
B 0.68 0.82 0.50 0.79 0.98

MMC 0.212 0.62 W 0.89 0.92 0.78 0.94 0.99
B 0.75 0.85 0.65 0.84 0.99

30

ZC 0.219 0.52 W 0.81 0.90 0.64 0.85 0.96
B 0.63 0.82 0.39 0.78 0.97

CC 0.214 0.63 W 0.86 0.94 0.71 0.90 0.98
B 0.68 0.83 0.49 0.81 0.98

EC 0.215 0.62 W 0.84 0.93 0.68 0.89 0.98
B 0.66 0.82 0.47 0.79 0.98

MMC 0.206 0.68 W 0.88 0.95 0.75 0.91 0.99
B 0.68 0.84 0.51 0.82 0.98

35

ZC 0.208 0.57 W 0.79 0.90 0.61 0.90 0.96
B 0.56 0.78 0.36 0.78 0.97

CC 0.198 0.66 W 0.83 0.92 0.70 0.93 0.98
B 0.64 0.82 0.44 0.82 0.98

EC 0.197 0.68 W 0.84 0.92 0.72 0.94 0.98
B 0.65 0.84 0.46 0.87 0.98

MMC 0.194 0.71 W 0.85 0.94 0.81 0.94 0.99
B 0.67 0.84 0.54 0.83 0.98

40

ZC 0.197 0.52 W 0.76 0.90 0.56 0.89 0.96
B 0.57 0.81 0.39 0.77 0.95

CC 0.174 0.61 W 0.87 0.95 0.76 0.95 0.98
B 0.75 0.87 0.53 0.85 0.98

EC 0.170 0.67 W 0.89 0.98 0.78 0.95 0.99
B 0.79 0.88 0.58 0.87 0.98

MMC 0.162 0.69 W 0.92 0.98 0.85 0.96 0.99
B 0.85 0.88 0.61 0.89 0.99

45

ZC 0.201 0.27 W 0.73 0.89 0.47 0.89 0.92
B 0.52 0.77 0.22 0.75 0.97

CC 0.177 0.55 W 0.86 0.92 0.73 0.94 0.98
B 0.72 0.83 0.46 0.84 0.97

EC 0.168 0.68 W 0.88 0.94 0.78 0.95 0.98
B 0.73 0.85 0.48 0.84 0.98

MMC 0.162 0.73 W 0.90 0.95 0.82 0.95 0.99
B 0.89 0.86 0.54 0.90 0.99

TheMAPE and the true coverage probability for 95%W and B and%BCI values for MMC procedure are highlighted by bold font.
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that is available from initial studies compared to the CC
procedure. As we move toward real available information in
our procedures, estimations becomemore precise.This point
shows the importance of actual information that whenwe use
more realistic data, we observe more accurate results.

Our study results emphasized the fact that MMC is
the most precise and accurate covariance approximation
method in MGLS meta-analysis among the four new pro-
posed methods. The MMC procedure uses a multivariate
multilevel technique in coefficient correlation estimation.The
advantages of this procedure are the fact that real available
information is completely used in a logical manner for
correlation estimation. In fact, the MMC procedure looks
at initial coefficients as responses that are nested in studies
as the second level. This is the logical way of consideration
and the correlations are completely estimated by a familiar
logical procedure (multivariate multilevel method). In this
study, MMC is suggested as the recommended procedure to
overcome the lack of a covariance matrix.

As theMMCprocedure needs specialized packageswhich
may not be readily available, we suggest CC for a small
number of 𝑘 (𝑘 ≤ 30) and EC for a large number (𝑘 ≥ 35)
as a suitable substitution.

Of course, the quality of all meta-analysis procedures can
improve by encouraging authors to report more information,
like coefficient covariance matrix. In that case, there will be
no need for these approximate procedures in future. In fact,
undoubtedly due to the huge number of published papers,
meta-analysis will become a more useful method in future
and authors should believe it and be more forthcoming in
reporting of information.

5. Conclusion

Combining Cox regression coefficients in a multivariate
meta-analysismanner, besides offering to represent an overall
treatment effect, gives us a full Cox model as a complete
risk factor model in medical decision making. The MMC is
the accurate procedure in the covariance approximation in
applying MGLS in meta-analysis.

Appendix

The mean absolute percentage error (MAPE) function is as
follows:

MAPE = 1
𝑛

𝑛

∑

𝑡=1



𝐴
𝑡
− 𝐹
𝑡

𝐴
𝑡



. (A.1)

𝐴
𝑡
are observed values and 𝐹

𝑡
are forecasted values of

each model. In our study, we take real coefficient values as
observed value and GLS estimated coefficients as forecasted
values of the model.

Wald confidence interval formula is as follows:

𝑏
𝑙
± 𝑡 (1 −

𝛼

2
, 𝑛 − 𝑝) . (A.2)

𝑏
𝑙
is coefficient for each of 𝑙 covariates and 𝑛 and𝑝 are number

of studies and covariates, respectively. 𝛼 is a critical value that
is taken as 0.05 for 95% CI.

Simultaneous Bonferroni CI formula is as follows:

𝑏
𝑙
± 𝑡 (1 −

𝛼

2𝑔
, 𝑛 − 𝑝) 𝑆 (𝑏

𝑙
) . (A.3)

𝑔 is the number of beta or covariates coefficients that we want
to have 95% CI simultaneously and in our study it takes 5,
becuase we have 5 covariates. 𝑆(𝑏

𝑙
) is the standard deviation

of 𝑏
𝑙
. 𝑛, 𝑝, and 𝛼 have the same expressions as the aboveWCI.
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