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ABSTRACT

Sensitivity analysis attacks aim at estimating a watermark from multiple observations of the detector’s output.
Subsequently, the attacker removes the estimated watermark from the watermarked signal. In order to measure
the vulnerability of a detector against such attacks, we evaluate the fundamental performance limits for the
attacker’s estimation problem. The inverse of the Fisher information matrix provides a bound on the covariance
matrix of the estimation error. A general strategy for the attacker is to select the distribution of auxiliary test
signals that minimizes the trace of the inverse Fisher information matrix. The watermark detector must trade off
two conflicting requirements: (1) reliability, and (2) security against sensitivity attacks. We explore this tradeoff
and design the detection function that maximizes the trace of the attacker’s inverse Fisher information matrix
while simultaneously guaranteeing a bound on the error probability. Game theory is the natural framework to
study this problem, and considerable insights emerge from this analysis.

1. INTRODUCTION

Sensitivity analysis attacks belong to the family of watermark removal attacks. Assume that the attacker has
a watermarked signal and unlimited access to the watermark detector. When repetitively probed with signals
chosen by the attacker, the detector leaks information about the watermark. Hence the attacker may construct
test signals that use the leaked information to estimate the watermark. Once the watermark is estimated, it can
be removed from the watermarked signal. A multitude of attack algorithms already exist1–12 for this purpose.
In general, a detector is believed to be secure till someone develops an attack that breaks it. Obviously, this
approach to security is questionable. One would prefer to quantify the vulnerability of a detector independently
of any specific algorithm. In this paper, we provide a model for sensitivity analysis attacks and a complete
framework based on Fisher information14, 15 to understand the behavior of the attacker, the detector, and the
interaction between them. As a result, we obtain a systematic method to design watermark detectors in the
presence of attackers.

There are two problems of interest in the context of sensitivity analysis attacks. The first one is the wa-
termark detection problem and represents the basic function of the detector: deciding about the absence
or presence of the watermark in its input signal. The measure of detection performance is error probability
and classical detection theory and large deviation tools14 are quite handy in analyzing performance. The second
problem is the watermark estimation problem and represents the attacker’s basic task. The natural measure
of estimation performance is the covariance matrix of the estimation error. Moreover, Fisher information matrix
inverse14, 15 is a classical algorithm-independent lower bound on the variance of any estimator in particular the
maximum a posteriori (MAP) estimator. Clearly, the two problems are coupled. The accuracy of the watermark
estimation directly depends on the detector, since it is from its output that the attacker gains information about
the watermark. Dually, the system designer should take into account the attacker’s strategies when choosing a
detector. Therefore, the design criteria must include estimation performance along with detection performance.
We model the coupling between the two problems as a game between two players: the attacker and the detec-
tor. With such a model, the system designer can determine the best attacker’s strategy, and then choose the
detector accordingly. Our analysis is quite general and widely applicable. For illustration, we present an image
watermarking example.

The organization of the paper is as follows. In Section 2, we describe the watermark detection problem
and give bounds on the error probability. The watermark estimation problem is presented in Section 3, where
we define our model for sensitivity analysis attacks and specify the necessary assumptions. In Section 4, we



formulate the game between the attacker and the detector and derive their optimal strategies. Finally, we
conclude in Section 5.

2. WATERMARK DETECTION PROBLEM

In this section, we briefly review some of the material from.11, 12

2.1 Detection model
The watermark W = [W1, . . . , Wn] is a random vector with iid components following a symmetric, unimodal pdf
pW . The watermark is embedded additively into a host signal S = [S1, . . . , Sn] whose samples are iid with pdf pS .
Moreover, S and W are independent. The detector knows the watermark W, receives a signal X = [X1, . . . , Xn],
and decides whether W is present or absent in X. More explicitly, the detector decides which of the following
two hypotheses is correct:

H1 : X = S + W : Watermark is present,
H0 : X = S : Watermark is absent.

The sufficient statistic for detection is the log likelihood ratio

t(X,W) = ln
p1(X)
p0(X)

=
n∑

i=1

ln
pS(Xi − Wi)

pS(Xi)
.

This detection statistic minimizes the probability of error under the above model for H0 and H1. However, if
the attacker is able to test the detector with signals of his own choosing, the above model for H0 and H1 will be
invalid. Therefore, we deliberately assume a mismatched distribution q on the host signal instead of pS in order
to increase the detector’s security against such attacks. In,11, 12 we have shown how to choose a mismatched
distribution to obtain randomized watermark detectors.11, 12 The detection statistic is

t(X,W) =
n∑

i=1

φq(Xi, Wi), (1)

with φq(Xi, Wi) = ln
q(Xi − Wi)

q(Xi)
. (2)

Whenever the detector receives a signal X, it evaluates the test statistic and compares it to a threshold τ to
make a decision:

t(X,W)
H1

>
<
H0

τ.

The set of signals X such that
t(X,W) = τ

is called the detection boundary. The attacker is assumed to know the distributions pS and pW as well as the
function t(·, ·) and the threshold τ . However, he does not know W.

2.2 Example
Consider the image watermarking application. In this case, the host signal S is an image. As mentioned before,
the family of generalized Gaussian distributions is a good model16, 17 for the DCT coefficients of images. These
coefficients are modeled as iid samples from a generalized Gaussian distribution

qμ(s) =
1

2bΓ (1 + μ−1)
exp

(
−
∣∣∣s
b

∣∣∣μ) with b = σ

√
Γ(μ−1)
Γ(3μ−1)

, (3)



where μ > 0 is the exponent and σ is the standard deviation. It is known16, 17 that distributions with μ ≤ 1
provide a reasonably good model for images. Let μs be the actual parameter of the distribution. Instead, the
system designer chooses a value μ from the set 0 < μ ≤ 1 and evaluates the mismatched log likelihood ratio:

t(X,W) =
n∑

i=1

φqµ (Xi, Wi)

where

φqµ(Xi, Wi) = ln
qμ(Xi − Wi)

qμ(Xi)
(4)

=
1
bμ

(|Xi|μ − |Xi − Wi|μ) . (5)

The choice of μ is based on detection performance and security requirements of the detector.

2.3 Error exponent

Assume that the detection hypotheses H0 and H1 are equiprobable. For a given W, the probability of error
Pe(W) is the average of the probability of false alarm, PF (W), and the probability of miss, PM (W):

Pe(W) =
1
2
PF (W) +

1
2
PM (W)

PF (W) = P (t(X,W) ≥ τ |H0,W) (6)
PM (W) = P (t(X,W) ≤ τ |H1,W) . (7)

The expected value of Pe(W) is denoted by

Pe = E [Pe(W)]

=
1
2

E [PF (W)] +
1
2

E [PM (W)] .

With τ0 = τ
n and r > 0, the large deviation bounds on E [PF (W)] and E [PM (W)] are

E [PF (W)] ≤ exp
[
−n

{
rτ0 − ln E

[(
q(S − W )

q(S)

)r]}]
, (8)

E [PM (W)] ≤ exp
[
−n

{
−rτ0 − ln E

[(
q(S − W )

q(S)

)r]}]
. (9)

Moreover, performing an analysis similar to our previous work,11, 12 we can show the following:

• The necessary and sufficient condition for exponential decay of the probability of error is

E

[
ln

q(S − W )
q(S)

]
< 0.

• The threshold that maximizes the error exponent is τ∗
0 = 0.

• The error exponent for Pe is

β(q) = − inf
r>0

ln E

[(
q(S − W )

q(S)

)r]
(10)

and Pe ≤ e−nβ(q).

The expectations are with respect to pS and pW . For the image watermarking example given in Section 2.2, the
pdf q is replaced by the pdf qμ, and the pdf pS by the pdf qμs .



3. WATERMARK ESTIMATION PROBLEM

In this section, we present the watermark estimation problem, we define our model for sensitivity analysis attacks
with the necessary assumptions for the validity of the model, and finally we evaluate the asymptotic estimation
error.

3.1 Attack model

For sensitivity analysis attacks,8–12 the attacker tries to generate signals on the detection boundary based on the
binary decisions at the detector’s output. Let L be the number of these signals, denoted by Ym = [Y m

1 , . . . , Y m
n ],

1 ≤ m ≤ L. For each test signal Ym, 1 ≤ m ≤ L, the attacker first estimates the test statistic t(Ym,W) using a
search algorithm, e.g., binary search. For reasons to be clarified below, the attacker randomizes the initial step
of the search algorithm. Let K be the number of steps of the search algorithm; in each step the attacker probes
the detector once. Therefore, the total number of detector’s probes is KL. The precision in the measurements
of t(Ym,W) improves exponentially with K. For example, for binary search, if the width of the search interval
is A > 0, after K steps, the precision is 2−KA. This would imply that an infinite number of search steps yields
perfect measurements. However, physical devices have finite precision arithmetic, and there is always noise in
the measurements taken by the attacker. Let σ2

Floor denote the average energy of that noise. The variance of the
total measurement noise is equal to σ2

N = σ2
Floor + 4−KA2 for binary search. It is enough for the attacker to use

K = a + log2

A

σFloor
,

for σ2
N to be approximately equal to σ2

Floor, where a > 1 is some constant. We therefore propose the following
model for sensitivity analysis attacks. We first define ρ as the number of measurements per component of W:

ρ � L

n
. (11)

The attacker generates signals Ym, 1 ≤ m ≤ L, and takes noisy measurements of the detection statistic:

Tm = t(Ym,W) + Nm, 1 ≤ m ≤ L = ρn, (12)

where Nm is the measurement noise whose statistics are modeled below. By randomizing the initialization step
of the search algorithm, the attacker also randomizes the noise due to both sources, finite number of steps of the
search algorithm and finite precision arithmetic of real devices. Note that the attacker has interest in random
instead of deterministic noise, to obtain diverse measurements Tm in (12) even for the same probing signal
Ym = Y. Combining these measurements, the attacker reduces the noise and results in a finer measurement of
t(Y,W). Finally, having all the measurements in (12), the attacker then estimates the watermark. This model
naturally lends itself to analysis based on classical estimation theory tools.

Assume∗ that the watermark components Wi, 1 ≤ i ≤ n, can be estimated one at a time using the fol-
lowing procedure. The attacker generates a series of signals Ym, 1 ≤ m ≤ ρ. Each signal Ym has only one
nonzero component at location i, i.e., Ym = [0, . . . , 0, Y m, 0, . . . , 0]. From (1) and (12), the attacker takes noisy
measurements of the form

Tm = φq(Y m, W ) + Nm, 1 ≤ m ≤ ρ. (13)

Here, we denoted the ith component of the watermark by W instead of Wi for notational simplicity. The
signal-to-noise ratio of the measurement channel in (13) is given by

1
σ2

N

E

[
(φq(Y, W ))2

]
. (14)

Additionally, we make the following assumptions:
∗We address the more general case in Section 5 and we discuss it in details in our journal paper,13 currently in

preparation.



(A1) The random variables Y m, 1 ≤ m ≤ ρ, are independent of W and iid generated from a pdf pY with
variance σ2

Y .

(A2) The measurement noise Nm, 1 ≤ m ≤ ρ is iid Gaussian, with mean zero and variance σ2
N . Moreover, the

noise is independent of t(Ym,W), 1 ≤ m ≤ ρ.

The randomness of the initial search step justifies the independence assumption of the noise in (A2).

3.2 Estimation error

Define T 1:ρ � {Tm, 1 ≤ m ≤ ρ} and Y 1:ρ � {Y m, 1 ≤ m ≤ ρ}. The MAP estimator of W given T 1:ρ and Y 1:ρ is

Ŵρ = argmax
w

ln p(w|T 1:ρ, Y 1:ρ)

= argmin
w

(
1

2σ2
N

ρ∑
m=1

(Tm − φq(Y m, w))2 − ln pW (w)

)
, (15)

and is the solution to a regularized nonlinear least squares problem. The variance of the estimation error for
any estimator of W is bounded below by the inverse of the total Fisher information,14, 15 denoted as Jtotal,ρ. In
particular, the variance of the MAP estimation error Ŵρ − W is bounded as

Var
[
Ŵρ − W

]
≥ 1

Jtotal,ρ
. (16)

As ρ → ∞, the normalized total Fisher information converges to the limit

lim
ρ→∞

1
ρ
Jtotal,ρ = J, (17)

J � 1
σ2

N

E

[(
d

dW
φq(Y, W )

)2
]

. (18)

Therefore, for a large number ρ of measurements per component, we approximately have from (16) and (17)

Var
[
Ŵρ − W

]
≥ 1

ρJ
. (19)

The lower bound in (19) is achieved by the MAP and the ML estimators in the limit as ρ → ∞, in which case
precise estimation of W is guaranteed. Hence, J is a fundamental measure of the accuracy of the estimate Ŵρ.
The attacker and the detector have conflicting goals. The attacker wants J to be as large as possible, while the
detector wants the opposite.

4. GAME BETWEEN ATTACKER AND DETECTOR

In this section, we investigate the game18 between the attacker and the detector and derive their optimal
strategies. Under the necessary regularity assumptions, we explicitly express the dependency of J in (18) on the
distributions pY and q and we denote it as

J(pY , q) =
1

σ2
N

E

[(
d

dW
φq(Y, W )

)2
]

, (20)

which is viewed as the utility function for the watermark estimation problem. The utility function for the
watermark detection problem is the error exponent of the detector in (10):

β(q) = − inf
r>0

ln E

[(
q(S − W )

q(S)

)r]
. (21)



The attacker plays a role only in the watermark estimation problem and affects directly the first utility function,
J(pY , q). The choice of the detector is critical for both the watermark estimation and detection problems. We
model the dynamics of the relation between the attacker and the detector as a zero sum game with cost functions
J(pY , q) and β(q). We formulate the game as

min
q: β(q)≥β∗

max
pY

J(pY , q), (22)

where β∗ > 0 is a lower bound on the error exponent. The detector is the leader in this game: he chooses and
reveals q publicly, and the attacker responds by choosing his strategy which depends on q. The attacker wants
to construct the best estimator of W and chooses p∗Y (q) that maximizes J(pY , q). All choices of p∗Y (q) satisfying
the assumptions in Section 3.1 are feasible. The system designer wants the opposite. He therefore chooses q
that minimizes J(p∗Y (q), q) = maxpY J(pY , q) under the constraint β(q) ≥ β∗. The bound on the error exponent
guarantees a specified level of detection performance.

4.1 Optimal attacker’s strategy

First, we assume that the following expectation is finite surely (pW ):

gq(Y ) � 1
σ2

N

E

[(
d

dW
φq(Y, W )

)2
∣∣∣∣∣Y
]

< ∞

=
1

σ2
N

E

[(
d

dW
ln q(Y − W )

)2
∣∣∣∣∣Y
]

, (23)

where the last equality follows from (2). Defining

hq(t) � 1
σ2

N

(
d

dt
ln q(t)

)2

=
1

σ2
N

(
q̇(t)
q(t)

)2

, (24)

we have from (2) and (23) that

gq(Y ) = E [hq(Y − W )|Y ] (25)
= (pW ∗ hq) (Y ).

If q is symmetric, then hq and gq are also symmetric. We rewrite (20) as

J(pY , q) =
∫ ∞

−∞
pY (y)gq(y)dy. (26)

From (26), the utility function is the expected value of the function g̃q with respect to pY and the attacker’s
maximization problem in (22) takes the form

max
pY

∫ ∞

−∞
pY (y)gq(y)dy.

The function gq is the result of the convolution of the unimodal symmetric function pW with the symmetric
function hq. When hq is unimodal, respectively, gq is unimodal and the optimal distribution p∗Y (q) for the
attacker in the game (22) is equal to an impulse at zero. The resulting value of J(p∗Y (q), q) is gq(0).
Example. Let us revisit our image watermarking example in Section 2.2. The utility function in (20) becomes

J(pY , qμ) = E [gμ (Y )] (27a)

where gμ(Y ) � E [hμ(Y − W )| Y ] , μ > 0.5 (27b)

hμ(t) =
μ2

σ2
N b2μ

|t|2μ−2, ∃ ∀t 	= 0. (27c)
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Figure 1: (a) Plots of hμ for μ ≥ 1. (b) Plots of g̃μ for μ ≥ 1, Gaussian pW ∼ N(0, 0.11).
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Figure 2: (a) Plots of hμ for μ ≤ 1. (b) Plots of g̃μ for μ ≤ 1, Gaussian pW ∼ N(0, 0.11).

Clearly, both gμ and hμ are positive and symmetric.

For μ = 1, it is straightforward to show that gμ(Y ) = J(pY , q) = 2
σ2

N σ2 (constant) independently of the
attacker’s choice of pY . For μ > 1, hμ(t) is symmetric and strictly increasing for t > 0 (please see Figure 1a).
The resulting gμ(Y ) is nondecreasing for Y > 0, and therefore is not guaranteed to be bounded. For example, it
is straightforward to check that sup gμ(Y ) = ∞, for Gaussian pW (see Figure 1b). In this case, J(pY , qμ) does
not admit a maximum since it is unbounded. For 0.5 < μ < 1, hμ is symmetric unimodal (see Figure 2a), and
the best attacker’s strategy is p∗Y (q) is an impulse at zero, and J(p∗Y , qμ) = gμ(0).

4.2 Optimal detector’s strategy

As mentioned in the previous section, for symmetric unimodal hq(t), the maximum value of J(pY , q) the attacker
can attain is J(p∗Y (q), q) = gq(0). Therefore, the detector chooses q∗ minimizing gq(0) subject to β(q) ≥ β∗.
Moreover, we know that the error exponent β(q) is maximized at q = pS, the matching distribution. Therefore,
β(q) is concave for q in a small neighborhood around pS . In the following example, we consider the particular
family of GGD detectors.

Example. For the image watermarking example of Section 2.2, the detector’s designer seeks the exponent
μ∗ that minimizes the cost J(p∗Y (qμ), qμ), subject to β(qμ) ≥ β∗. As explained in Section 4.1, the optimal
exponent μ∗ must be in the range 0.5 < μ∗ ≤ 1. To illustrate what J(p∗Y (qμ), qμ) and β(qμ) look like, we
consider Gaussian distribution pW ∼ N(0, σ2

W ). Obviously, pW is unimodal symmetric. From Section 4.1, the
best attacker’s strategy is p∗Y (q) is a point mass concentrated at zero and the attacker’s value of the game is
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Figure 3: (a) Error exponent versus μ for μs = 0.6. (b) Attacker’s Fisher information J(p∗Y (qμ), qμ) versus μ.

gμ(0). From (25) and (27c), gμ(0) is given by

gμ(0) = (pW ∗ hμ) (0)

=
μ2

σ2
N b2μ

√
2πσ2

W

∫ ∞

−∞
|t|2μ−2 exp

(
− t2

2σ2
W

)
dt,

for 0.5 < μ ≤ 1. We evaluate the above integral19 and we conclude that the payoff is

J(p∗Y (qμ), qμ) =
2μ2

√
2πσ2

N b2μ

Γ (2μ − 1)

σ
2(1−μ)
W

D−2μ+1(0), (28)

where 0.5 < μ ≤ 1, and D−2μ+1(x) is a parabolic cylinder function.19 Assume that the actual GGD exponent
is μs = 0.6 and for an embedding signal-to-noise ratio of approximately 20 dB, let σ2 = 10 and σ2

W = 0.11.
Also let the variance of the measurement noise be σ2

N = 0.2× 10−2. From Figure 3a, the largest error exponent
β(qμs) = 6.99 × 10−3 is achieved by the matched detector, i.e., with μ = μs = 0.6. Regarding estimation
accuracy, Figure 3b shows that J(p∗Y (qμ), qμ) decreases with μ. Hence the system designer is motivated to select
the largest possible μ as μ∗, not necessarily the same μ = μs. The floor β∗ on the error exponent β(qμ) results
in an upper bound on μ as seen in Figure 3a. Therefore, if β∗ < β(qμs ), then the designer sets μ∗ equal to the
above upper bound. For β∗ equal to the maximum exponent β(qμs), we have μ∗ = μs, and the payoff of the
game is J(p∗Y (qμs), qμs) = 3183.1 (see Figures 3a and 3b). However, for smaller exponents β∗

1 = 6.58× 10−3 and
β∗

2 = 6.93 × 10−3, the best choices for the detector are respectively qμ∗
1

and qμ∗
2

with μ∗
1 = 0.8 and μ∗

2 = 0.68,
and the payoffs of the game are respectively J∗

1 = 411.2 and J∗
2 = 1204.2.

5. DISCUSSION AND CONCLUSION
In Section 3, the attacker generates one-dimensional signals Ym. A more general case is when the signals Ym, 1 ≤
m ≤ L, have dimension n. More specifically, the attacker draws the n components of Ym = [Y m

1 , . . . , Y m
n ] for

1 ≤ m ≤ L, iid from a distribution pY . Combining (1) and (12), the attacker’s measurements are

Tm =
n∑

i=1

φq(Y m
i , Wi) + Nm, 1 ≤ m ≤ L = ρn. (29)

Denoting ŴL as the MAP estimator, we conclude that in the asymptotics, the variance of the estimation error
per component is given by

1
n

trace
(

Cov
[
(ŴL − W)

])
� 1

ρJ ′ (30)

where J ′ � 1
σ2

N

Var
[

d

dW
φq (Y, W )

]
.



Comparing J ′ with J in (18), the only difference is that J ′ has the variance of d
dW φq(Y, W ) in its expression while

J has the second order moment. Consequently, the variance of estimation error for one-dimensional signals is
less or equal than the variance for multidimensional signals. This result is expected: For the first type of signal,
the only degradation in the measurement channel (13) for a watermark component W is the noise Nm. For the
second type of signal, there is interference in (29) from the other watermark components Wj , 1 ≤ j 	= i ≤ n,
in addition to the noise Nm, when estimating Wi for some i ∈ {1, . . . , n}. Refer to our paper13 for the a more
thorough analysis.

In conclusion, we designed a model for sensitivity analysis attacks. Leveraging tools from estimation, detec-
tion, and game theory, we developed a framework that includes the goals and the strategies of the attacker and
the detector, in addition to the interaction between these players. The analysis in the paper is fairly general
and is not constrained to specific scenarios. With the results of our analysis, the trade-off between security and
detection performance can be well understood. Moreover, the detector’s designer can expect the worst behavior
of the attacker, and choose the detector’s specifications accordingly.
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