
An Extension of Ukkonen’s Enhanced
Dynamic Programming ASM Algorithm

HAL BERGHEL
University of Arkansas

and

DAVID ROACH
Acxiom Corporation

We describe an improvement on Ukkonen’s Enhanced Dynamic Programming (EHD) approxi-
mate string-matching algorithm for unit-penalty four-edit comparisons. The new algorithm has
an asymptotic complexity similar to that of Ukkonen’s but is significantly faster due to a
decrease in the number of array cell calculations. A 42% speedup was achieved in an application
involving name comparisons. Even greater improvements are possible when comparing longer
and more dissimilar strings. Although the speed of the algorithm under consideration is
comparable to other fast ASM algorithms, it has greater effectiveness in text-processing applica-
tions because it supports all four basic Damerau-type editing operations.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms; H.3. 1 [Information Storage and Retrieval]: Content Analysis and
Indexing; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval;
H.4. 1 [Information Systems Applications]: Office Automation; 1.7.1 [Text Processing]: Text
Editing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Approximate string matching, dynamic programming,
enhanced dynamic programming, similarity relations

1. INTRODUCTION

Approximate string matching (ASM) refers to a class of techniques that
associate strings of symbols with one another on the basis of some criterion of
similarity. It is convenient to classify such similarity relations between
strings by means of Faulk categories [Faulk 1964]: positional similarity (the
degree to which matched symbols are in the same respective positions),

This work was supported in part by matching grants from the Acxiom Corporation and the
Arkansas Science and Technology Authority,
Authors’ addresses: H. Berghel, Computer Science Department, SCEN 230, University of
Arkansas, Fayetteville, AR 72701; D. Roach, Acxiom Corporation, 301 Industrial Blvd., Conway,
AR 72032.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribu~ to lists, requires prior specific permission and/or a fee,
O 1996 ACM 1046-8188/96/0100-0094 $03.50

ACM Transactions on Information Systems, Vol. 14, No. 1, Janusry 1996, Pages 94-106

An Extension of Ukkonen’s Algorithm . 95

ordillai sin)ilurity (whether they are in the same order), and material simi-
larit,v (the degree to which they consist of the same symbols). Most modern
ASM techniques use more than one type of similarity measure since single-
measure techniques tend to be narrow or too broad (for example, anagrams
are materially identical, whereas “fox” and “ox” have nothing in common,
positionally).

One historically significant multiple-relation similarity test is the Leven-
shtein Metric [Levenshtein 1966] which calculates the difference between
strings in terms of an edit distance, or the minimum number of basic editing
operations that can transform one string into the other. Typical basic editing
operations are insertion, deletion, substitution, and adjacent transposition.
These particular operations are especially important in text-processing appli-
cations [Berghel 1987] because they represent the most common forms of
typing errors [Damerau 1964]. Such edit distance algorithms classify strings
as similar when their edit distance is less than some threshold, k. Not
surprisingly, this problem is commonly called the k differences problem in the
literature. This problem is also known as the ewlutionary distance problem
in the context of molecular biology [Sellers 1974] and the string-to-string
(w-rcction problenl in text-processing circles [Wagner and Fischer 1974].
There are also several variations on this general theme, including the k

misnzatchr.s problcn~ which locates all occurrences of a string in a corpus that
have TIO more than k mismatches. For excellent surveys of the underlying
ASM algorithms, see Galil and Giancarlo [1988] and Ukkonen [1985].

With the dynamic programming approach, the edit or “Levenshtein” dis-
tance between two strings is represented as a path through a directed graph
whose nodes d(i, j) are connected with horizontal, vertical, and diagonal
edges representing the penalty or “cost” of an edit operation. For the edit
operations insertion, deletion, substitution, and adjacent transposition with
unit penalties, the edit distance between strings s ~ = c’,c~ ““” c, and ,Sz=
~i~~ .‘. c’, may be defined recursively as follows:

(i(o.o) = o
d(i, j) = min[d(i, j – 1) + 1,

d(i – l,j)+ 1,
d(i – l,j – 1) + u(c,, c~),
d(i – 2,,/–2)+ U(C, ,, C~)+L’(C,, C~ ,)+ 1]

where

P(c, ,c;)=o-c, =c; and U(c, ,c;)= l-c, +(-;,

and the boundary conditions are d(i, O) = i and d(O, j) = j.
Figure 1 shows the d(i, j) array for determining the edit distance between

the strings “AVERY and “GARVEY.”
Although there are many interesting aspects of approximate string match-

ing based upon edit distances, the current study focuses on the search for the

ACM Transactions on Information Systems, Vu] 14, No 1, January 1996.

96 . Hal Berghel and David Roach

GA RVE’f

A

v

E

R

Y

ins
()+1 2 3

11
\

1‘%2

2222

3333

4

3

\
2

3

5

4

3

\
2

6

5

4

3

+ del

4443433

\
5554443

Fig. 1. d(i, j) matrix with minimal path identified.

shortest weighted path (i.e., the path with the least cumulative “cost”) with a
minimum of computational effort. Since penalties are cumulative, the cost is
inversely related to the degree of string similarity. The minimal path is
identified by arrows in Figure 1. The value in cell cK5, 6) is the edit distance,
which in this case equals 3. (Unless otherwise noted, the basic edit operations
of insertion, deletion, substitution, and adjacent transposition are assumed
throughout).

The efficiency of the dynamic programming approach for determining edit
distances was improved by Ukkonen [1985; 1983]. Where the earlier algo-
rithm of Wagner and Fischer [1974] was implemented in time 0(n2), Ukko-
nen’s algorithm runs in 0(s * n) time, for edit distance s and string length n.
The improvement results from a reduction in the range of values in an
(m + I)-by-(n + 1) array (d(i, j)) that must be calculated in order to deter-
mine the edit distance (d(rn, n)).

Ukkonen observed that the d(i, j) values form a nondecreasing sequence
along any given diagonal, that is, for every i, j,

d(i, j) - 1 <d(i– l,j– l)<d(i, j).

On this account, the k th diagonal, for – m s k s n, consists of the sequence
of d(i, j) cells for which j – i = k. Ukkonen’s observation is that we need
only determine those d(i, j) values, p, for which i is the highest numbered
row in which p occurs on diagonal k (for a restricted range of k to be
specified). The value i is a function of k and p such that f(k, p) = O the

ACM Transactions on Information Systems, Vol. 14, No. 1, January 1996,

An Extension of Ukkonen’s Algorithm . 97

largest index i such that d(i, j) = p and d(i, j) is on diagonal k. Conse-
quently, the edit distance d(m, n) is equal to p such that f(n – m, p) = m.

Wu et al. [1990] improved on Ukkonen’s basic approach by further restrict-
ing the range of c-Xi, j) values calculated. Let a and b be two strings of length
m and n, respectively, where n > m., s is the edit distance between them,
and p = 1/2s – 1/2(n – m). This algorithm has a worst-case running time
of 0(n * p) and an expected running time of O(n + (p * s)). When a is a
subsequence of b, the running time is 0(n). This time complexity is accom-
plished by evaluating only the narrow band of values in the d(i, j) array from
–p to (n – m) + p. However, the only edit operations recognized by this
algorithm are insertion and deletion, which makes it impractical for many
text-processing applications.

The algorithm we present in the remaining sections has time complexity
and experimental ef%ciency comparable to the algorithm of Wu et al. How-
ever, it has a very different operational behavior and illustrates yet another
way that the number of computed penalty array cells can be reduced.
Additionally, it incorporates a wider range of edit operations including substi-
tution and adjacent transposition. The algorithms of Wagner and Fischer,
Ukkonen, and the authors are referred to a WF, UK, and BR, respectively, in
the discussion to follow.

2. THE ALGORITHM KERNEL

The kernel of algorithm UK which with minor modifications is shared by BR
computes f(k, p) for strings a = al,a~ and b = bl,bn. lt is recur-
sively defined as follows:

t= f(k,p-l)+l;
t2 := t;

bifatat+l =bk+t+l ~+t then
t2:=t+l;

t:=max(t, f(k-l, p-l), f(k+l, p-l) +1, t2);
while at+l =bt+l+~ andt < min(m, n – k) do

t:=t+l;
f(k, p) = t;

There are two terminating conditions on the recursion:

(1) ifp=lkl - 1 then
if k < 0 then

f(k, p) := Ikl - 1;

else
f(k, f)) = – 1 ;

endelseif
end if

(2) if p < Ikl – 1 then
f(k, p) = – X:

endif

ACM Transactions on Information Systems, Vol. 14, No. 1, January 1996

98 . Hal Berghel and David Roach

The iterative version requires an array for holding f(k, p) values. We
define a two-dimensional array (called F’KP) having MAX.K rows whose
indices correspond to d(i, j) array diagonal numbers and MAX-P columns
whose indices range from – 1 to the largest possible d(i, j) array cell value.
The f(k, p) array cell values represent rows in the d(i, j) array. f(k, p) array
row MAX-K/2 (referred to as row ZERO_K) always corresponds to the Oth
diagonal of d(i, j). By “anchoring” the Oth d(i, j) array diagonal to row
ZERO-K of the f(k, p) array, a one-time initialization of the f(k, p) array is

all that is required before successive string comparisons. The initialized cells
are unaffected as strings of differing lengths are compared. Those cells are
initialized in which the relationship between k and p is as defined by the
recurrence terminating conditions. The following algorithm performs the
necessary initialization.

for k := – ZERO_K to MAX_K – ZERO_K
for p:= –lto MAX-P-2

if p = Ikl – 1 then
if k <0 then

FKP[k + ZERO-K, p] := Ikl -1 ;
else

FKP[k + ZERO-K, p] := – 1;
endelseif

else if p < Ikl then
FKP[k + ZERO-K, p] = – X;

endelseif
endfor

end for

(The areas to the left of the arrows in later f(k, p) array figures are the
initialized areas.) Notice that algorithms UK, WM, and BR operate on an
f(k ,p) array rather than the cl(i, j) array used in the original dynamic
programming algorithm (wF). However, since each f(k, p) array has a d(i, j)
counterpart which is often more readily understandable, we will often com-
pare the output of the algorithms in terms of their d(i, j) arrays.

The recursive evaluation of f(k, p) values in UKS kernel is changed to
simple array lookups in BR.

t := FKP[k + ZERO-K, p – 1] + 1;
t2 := t;
ifata~+l =b~+t+lb~+t then

W:=t+l;
t := max(t, FKP[k – 1 + ZERO-K, p – 1],

FKP[k+ 1 +ZERO-K, p – 11+ l,t2);
while at+, = bt+l+~ and t < min(m, n – k) do

t:=t+l;
FKP[k + ZERO_K, p] := t;

ACM Transactions on Information Systems, Vol. 14, No. 1, January 1996.

An Extension of Ukkonen’s Algorithm . 99

3, THE DRIVER ALGORITHM

As noted by Ukkonen [1985; 1983], the range of /’(k, p) values calculated can
be further reduced by incorporating into the algorithm the observation that a
necessary (but not sufficient) condition for d(i, j) being on a minimizing path
from d(O, O) to d(i’, j’) is that

cf(i’, j’) >d(i, j) +[j’ –i’ –(j–i)[fori <i’, j<j’. (1)

If we let d(i‘, j’) equal the edit distance d(m, n) then

d(rn, n)>d(i, j)+ln-rn-(j-i)l. (2)

The proof that (1) states a necessary condition for cell (i, j) being on a
minimizing path is found in Ukkonen [1983]. It is possible to construct an
algorithm that never evaluates any d(i, j) that does not satisfy (1) even in a
worst-case comparison where the edit distance s = d(m, n) = max(m, n).

In order to relate (1) and (2) more clearly to the algorithm, we can restate
them in terms of k, p, and s, beginning with (2). Clearly, d(m, n) = s and
d(i, j) = p for ~(j – i, p) = i. In – m – (j – i)l represents the distance be-
tween the diagonal n – m on which d(m, n) lies and the diagonal j – i on
which d(i, j) lies. We can let the (J” – i)th diagonal be identified by k. Thus,
the formula becomes

s > p + In – m – kl (restatement of (2)). (3)

The Ukkonen formulation shows that the relation also holds between a given
p and certain other values p‘ < s, that is,

where k‘ is the diagonal associated with p‘
p’>p+lk’–kl

(restatement of (1)).
(4)

The formula restricts the range of p for a given k beyond that of UK. As a
result, BR, which enforces the formula’s constraints, calculates on the aver-
age fewer, and never more f(k, p) values than UK. Algorithm BR is as
follows:

p ,= k;

repeat
inc := p;
for temp-p := O to p – 1

if I(n – m) – incl s temp–p
f((n – m) – inc, temp-p);

endif
if I(n – m) + incl s temp_p

f((n – m) + inc, temp-p);
endif
inc := inc – 1;

end for
f(n – m, p);
p:=p+l;

ACM Transactions on Information Systems, Vol. 14, No. 1, January 1996.

100 . Hal Berghel and David Roach

until FKP[(n – m) + ZERO_K, p – 11= m;
S:=p–l;

procedure f(k, p)
begin

t := FKP[k + ZERO_K, p – 11 + 1;
t2 := t;

bifatat+l ‘bk+t+l k+t then
t2:=t+l;

t := max(t, FKP[k – 1 + ZERO-K, p – 1],
FKP[k + 1 + ZERO_K, P – 1] + l,t2);

while at+, = bt+l+k and t < min(m, n – k) do
t:=t+l;

FKP[k + ZERO-K, p] := t;
end

As the outer repeat loop increases p (the array column index), the for loop
increases the range of array rows whose cell values are calculated to ensure
that for O s i s p, k is within i of f(n – m, p – i) with the restriction that
p > In – ml. BR is correct with respect to UK since it ensures that f(k, p – 1),

t(k -1, P - 1), and f(k + 1, P - D are computed before evaluating f(k, p)
and terminates only when f(n – m, p) = m. This also satisfies Ukkonen’s
minimizing path relation (4) and thus (3).

4. COMPARISON OF UK AND BR

We can obtain a formula for the number of f(k, p) array cells whose values
are calculated by segmenting the array into regions, ascertaining the number
of filled cells for each region, and obtaining a sum (cf. the core (darkened) cell
values in Figures 3 and 5).

First, the row of the f(k, p) array that corresponds to diagonal k = n – m
in the Levenshtein array will contain (s – (n – m) + 1) filled cells. There
will also be n – m other rows in the f(k, p) array with the same number of
filled cells. Thus, this portion of the array contains (s – (n – m) + 1)*(n –
m i- 1) filled cells.

The remaining upper and lower portions of the array will contain rows of
cells definable by the progressions 1,3,5 . . . or 2,4,6 In the case of the odd
progression, the number of rows in each of the upper and lower regions will
be (s – (n – m))/2. In the case of the even progression, the number of rows
in the upper and lower regions will be (s – (n – m) – 1)/2. The number of
cells in these regions is thus determinable by the arithmetic series formula
R/2 *(2 a + d(R – 1)) where R in this case is the number of rows previously
defined; a is the starting value in the progression; and d is the increment.
For the odd progression, there are therefore R2 cells above and below or 2R2
total cells. For the even case, there are R2 + R cells in each region, or
2(R2 + R) in total.

Substituting for R our formulas for the number of rows in the preceding,
we have (s – (n – m))2/2 cells in the odd case or ((s – (n – m))2 – 1)/2

ACM Transactions on Information Systems, Vol. 14, No. 1, January 1996.

FG

012

A112

B222

c 33

D :-

E“:

H

3

3

3

4

An Extension of Ukkonen’s Algorithm . 101

IJ

Fig. 2. Worst-case d(i, j) matrix: BR:.
versus UK.

4-

4-

5

cells in the even. If we ignore division remainders in the even case, we may
generalize the formula (s – (n – m))2 /2 for both cases.

The total number of cells filled is then ((s – (n – rn))2\2) + ((s – (n – m)
+ l)*(rz – m + l)). This simplifies to (((s2 – (n – rn)2)/2) + s + 1). When
string a is a subsequence of string b, the algorithm is linear since only
n – m + 1 cells are filled.

The formula for Ukkonen’s algorithm can be obtained in a related manner,
Assuming that)2 == m, the number of cells filled is simply (s + 1)2 { – m if
s = n, since the final column is not completely filled when s = n). This is due
to the symmetry of the fill region about row n – m. However, in the cases
where n + m, the fill region becomes asymmetrical, and we must subtract
from the total of filled cells the number that are on rows too far from row
n – m to be considered by the algorithm. The number of cells in this region of
the array is ((n – m)2 + (n – m))/2. Thus the number of cells calculated by
UK is (S + 1)2 – (((n – m)2 + (n – m))/2) {–m if s = n). A comparison of
these formulas suggests that BR would be considerably faster. This is evi-
denced by the difference in the dominant factors, s2/2 for BR versus (s + 1)2
for UK.

Figure 2 overlays the d(i, j) arrays that result from a comparison of
“ABCDE” and “FGHIJ” using algorithms UK and BR, The outlined values
are those calculated by UK but not BR. As shown in Figure 3, BR calculates
fewer cells since it does not calculate cell values as far off diagonal n – m as
UK for higher values of P.

UK was tested on a database of 5000 randomly selected last name pairs.
(This work was motivated by a need to identify duplicate name/address
records with corruptions.) Table I lists some sample names and edit dis-
tances.

Iterative versions of WF, UK, and BR were run on the same data. Of
course, all three algorithms calculated the same edit distances. However,

ACM Transactions on Information Systems, Vol. 14, No 1, January 1996.

102 . Hal Berghel and David Roach

-5

-4

-3

-2

-1

K()

1

2

3

4

5

P

-1012345

3

3

3

2

1

4

45

3-

-

.

Fig. 3. Worst-case f(k, p) matrix: BR versus UK,

Table 1. Sample Last Name Pairs and Edit Distances.

Name 1 Name 2 Edt Distance
ADCROFT ADDESSI 5
BAIRD BAISDEN
BOGGAN BOGGS ;
CLAYTON CLEARY 5
DYBAS DYCKMAN 4
EMINETH EMMERT 4
GALANTE GALICKI 4
HARDIN HARDING
KEHOE KEHR ;
LOWRY LUBARSKY 5
MAGALLAN MAGANA 3
MAYO MAYS 1
MOENY MOFFETT 4
PARE PARENT
RAMEY RAMFREY i

ACM Transactions on Information Systems, Vol. 14, No. 1, January 1996.

An Extension of Ukkonen’s Algorithm . 103

Table II. Summary of Timings in System Clock Ticks,

Algorithm Time Speedup (Wft WF) Speedup (Wll UK)
WF 90

33 63%
K 19 79% 42%

GA RVEY

o------

All l--- -

v 22 ---

E 2-

R---

Y------ 3

Fig. 4. d(i, j) matrix: BR versus UK.

there are significant differences in the resulting run-times. Table II shows
the relative run-times and percentage improvements of BR over UK. UK is
635ZCfaster than WF. BR is 42Yc faster than UK, making it 797. faster than
WF. Of course, these improvements are accomplished with no loss of accu-
racy.

Figure 4 contains the combined UK and BR d(i, j) arrays resulting from a
comparison of the strings “AVERY” and “GARVEY.” It illustrates how fewer
d(i, j) values are calculated by BR for the sample strings.

Figure 5 shows the corresponding f(k, p) arrays. As the region to the right
of the arrows illustrates, BR converges toward d(m, n) (p = 3) by focusing on
the diagonal n – m. In contrast, UK diverges by considering an increasing
range of k for higher values of p. We point out that the improvement in
efficiency is directly proportional to the decrease in the number of f(k, p)
values calculated, because procedure f(k, p) is called each time an f(k, p)
value is to be obtained.

5. CONCLUSION

The efficiency of our algorithm results from (1) an iterative implementation
that requires a one-time initialization of an f(k, p) array and (2) a more-
restricted range of calculated d(i, j) values based on a minimizing path
formula. Performance comparisons of iterative versions of the basic dynamic
programming algorithm, Ukkonen’s algorithm, and ours reveal that ours is

ACM Transactions on Information Systems, Vol. 14, No 1, January 1996.

104 . Hal Berghel and David Roach

P

-3

-2

Fig. 5. f(k, p) matrix for “AVERY”
and “GARVEY’: UK versus BR. -1

KO

1

2

3

-1

-w

-00

-co

-1

-co

-00

-w

0123

-00-00 2

-m

o 1 2 :;

-00

-co-m

42% faster than Ukkonen’s. Further, it is comparable in efilciency to the
two-edit algorithm of Wu et al., while more effective in VLDB applications
involving name comparisons that require the support of a broader range of
basic edit operations.

AFTERWORD

Two new ASM algorithms have been reported in the literature since the
submission of this manuscript. They do not alter the reported results, but
they do change the perspective in which our results should be placed.

First, an alternative formulation of our algorithm, one which uses two
nested for loops instead of a conditional test within one for loop, was sug-
gested by one of the anonymous reviewers. Although slightly slower in our
application because the overhead of the for loop exceeds the overhead of the
conditional statements, it is nonetheless an interesting alternative. Its behav-
ior is perspicuous, and it cleverly anticipates the distance that p – i extends
down the diagonals n – m ~ i. It should be noted that this algorithm calcu-
lates the same flh, p) values as our algorithm, but it does so in a different
order.

Here is the algorithm as provided by the reviewer. Assume that n z m,

p:=n–m–l;

repeat
p:=p+l;

for i := (p – (n – m)) div 2 downto 1 do
f(n–m+i, p– i);

ACM Transactions on Information Systems, Vol. 14, No. 1, January 1996.

An’Extension of Ukkonen’s Algorithm . 105

for i := (n – m + p) div 2 downto 1 do
f(n–m–i, p– i);

f(n – m, p)
until FKP(n – m + ZERO–K, p) = m

Second, Wu and Manber [1992] reported a new three-edit, k-mismatch
algorithm which has performance similar to ours and Ukkonen’s. Although it
is only a three-edit algorithm, it appears to be easily extensible to a wide
variety of input formats and may be extended in a limited way to accommo-
date nonuniform mismatch penalties. It is currently embedded in an exten-
sion of the UNIX utility, grep.

In addition to these two new algorithms, we have developed an interactive,
algorithmic animator that demonstrates the behavior of Ukkonen-style ASM
algorithms. The animator simultaneously displays the f(k, p) and d(z, j) (or
“Levenshtein”) arrays as they are filled by the algorithms reported in this
article, It also features a “step-through” toggle that activates the display of
the current variable assignments, the temporary stack contents, and string
position pointer locations as the algorithm proceeds. The program, called “the
String Thing,” is available via anonymous ftp at cavern. uark.edu/people/
hlb/prototypes/approx_ string_ matching, or through the Worldwide Web via
the first author’s home page at http: //www.acm.org/ ~ hlb by selecting the
“FTP site” link. The String Thing, which runs under ins-DOS 4.0 or higher,
microsoft Windows, and 0S/2, comes in three executable versions and com-
pares various combinations of ASM algorithms mentioned in this article.

ACKNOWLEDGMENTS

We wish to thank David Andrews, Gordon Beavers, Daniel Berleant, Ed Fox,
Bernard Moret, Esko Ukkonen, and several anonymous referees for many
useful comments on earlier drafts of this article.

REFERENCES

BWK;HM,, H, 1987, A logical framework for the correction of spelling errors in electronic
documents. lnf Process. Manage. 23, 477-494,

DAhlEIU(”, F. .J. 1964. A technique for computer detection and correction of spelling errors.
Comrnun. ACM 7, 171 176,

F.4L’I.~, R, 1964. An inductive approach to language translation. Cornmun. ACM 7, 647-653.

IGAI.iL, Z. ANI) GIANCAW), R. 1988. Data structures and algorithms for approximate string
matching. ,J, Complexity 20, 33-72.

Ltiv~sswrtt\~, V. 1966. Binary codes capable of correcting deletions. insertions, and reversals.
SO. Phy.,, [)ok[. 10, 707 710.

Si+I.I.EI/S, P. 1974. On the theory and computation of evolutionary distance.. SIAM .3. Appl.
,Math, 26, 787-793,

UK{)x~hx, 1?. 1983. On approximate string matching. In Proceedings of the Internatmnal
(’onfiren,v on Foundations of Cotnputation Theory (Borgholm. Sweden, Aug.). 21 27.

~i~K(lxKx, E. 1985. Algorithms for approximate string matching lnf Contr. 6’4, 100118.

ACM Transactions on Information Systems, Vol. 14, No 1, .January 1996.

106 . Hal Berghel and David Roach

WACNER, R. AND FISCHER, M. 1974. The string-to-string correction problem. J. ACM 21,
168-178.

WU, S. ANDMANBER, U. 1992. Fast text searching allowing errors. Commun. ACM 35, 83-91.
Wu. S., MANBER, U., MYERS, G., AND MILLER, W. 1990. An O(NP) sequence comparison

algorithm. ln~ Process. Lett. 35, 317 –323.

Received December 1991; revised June 1994; accepted June 1995

ACM Transactions on Information Systems, Vol. 14, No. 1, January 1996

