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Abstract. As an important differentiated service model, proportional delay dif-
ferentiation (PDD) aims to maintain the queuing delay ratio between different
classes of requests or packets according to pre-specified parameters. This paper
considers providing PDD service in web application servers through feedback
control-based database connection management. To achieve this goal, an approxi-
mate linear time-invariant model of the database connection pool (DBCP) is iden-
tified experimentally and used to design a proportional-integral (PI) controller.
Periodically the controller is invoked to calculate and adjust the probabilities for
different classes of dynamic requests to use database connections, according to
the error between the measured delay ratio and the reference value. Three kinds
of workloads, which follow deterministic, uniform and heavy-tailed distributions
respectively, are designed to evaluate the performance of the closed-loop system.
Experiment results indicate that, the controller is effective in handling varying
workloads, and PDD can be achieved in the DBCP even if the number of concur-
rent dynamic requests changes abruptly under different kinds of workloads.

1 Introduction

It has become an important issue for Internet servers to provide quality of service (QoS)
guarantees to different network applications and clients. Many researchers have high-
lighted the importance of QoS guarantees in web servers under heavy-load conditions,
and there has existed much work focusing on response delay guarantees in web servers
[8][12][3][10]. Response delay is a key performance metric for web applications. From
a client’s perspective, response delay of a request includes three parts, connection de-
lay, processing delay and communication delay. For a dynamic request, processing de-
lay is an important part of users’ perceived response time. Most dynamic requests use
database connections for data access. Under heavy-load conditions, dynamic requests
need to compete for limited number of database connections, which incurs the delay in
the DBCP. In order to implement PDD in the DBCP, we divide dynamic requests into
two different classes according to their priorities and design a controller to adjust the
probabilities for these classes to get idle database connections from the pool. In this
approach, requests with different priorities can be served with different delays.

The rest of the paper is organized as follows. Section 2 describes PDD in the DBCP.
Section 3 presents the system identification, the controller design, as well as the sys-
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tem implementation and extension. Section 4 describes the experiments and gives the
experimental results. Section 5 reviews related work and section 6 concludes the paper.

2 Proportional Delay Differentiation in Database Connection
Pools

2.1 Connection Management in DBCP

It is a resource intensive and time consuming operation to open a database connection.
As to a specified web application, if each http request opens and then closes a database
connection for data access, a significant amount of processing time will be spent on the
connection process, which obviously increases users’ perceived response time. To solve
these kinds of problems, DBCP has been widely adopted in web application servers.
DBCP promotes the performance of web applications by reusing active connections
rather than opening a new connection for each request. DBCP maintains a pool filled
with active connections [11]. Once a new connection request comes in, after checking
if there are any idle connections in the pool, DBCP returns one connection if true. If
all connections in the pool are busy and the maximum pool size has not been reached,
DBCP will create several new connections. When the pool reaches its maximum size, a
newly incoming connection request will be queued up waiting for a connection available
until the pre-specified waiting time is out, no matter how urgent or important the request
is.

2.2 PDD in DBCP

Although DBCP reduces the response time for dynamic requests and enhances the per-
formance of web application servers, it provides service only in a best-effort model
and doesn’t take the priorities of requests into account. For many business websites,
service differentiation becomes necessary because web applications are deployed for
online trading and e-commerce. There have existed many mechanisms [4] [17] [22]for
service differentiation in web server end-systems, but none of them focuses on the delay
differentiation in the DBCP for web application servers. In this paper, we achieve PDD
in a DBCP using classical feedback control theory.

PDD, which was first proposed in [23], has gained much attention in recent years [2][20]
[21][13][12][18]. The basic principle of PDD is that requests or packets with high prior-
ity will receive better performance compared with those with low priority. Suppose that
requests or packets in networks can be classified inton classes. Let̄di be the average
queuing delay of classi andδi be the specified delay differentiation parameter for class
i. PDD aims to ensure that the delay ratio between classi andj equals the ratio between
δi andδj , as is in Eq.(1). The class with a higher priority usually has a smaller delay
differentiation parameter.

d̄i

d̄j
=

δi

δj
, where 1 ≤ i ≤ n, 1 ≤ j ≤ n. (1)

In this paper, dynamic requests in web application servers are classified into two
classes, class A with high priority and class B with low priority. When there is no idle



database connection in the DBCP, each class of requests will queue up to compete for
the next database connection available, as is in Fig.2. According to PDD, the request
from class A will get service in a smaller queueing delay than those from class B, and
the average delay ratio between class A and class B will be kept as a constant value.

3 Design of A Feedback Controller

3.1 System Identification

As is shown in Fig. 2, let̄dA(k) andd̄B(k) denote the average queuing delays for class
A and B in thekth sampling period. LetPA(k) andPB(k) denote the probabilities for
class A and B to get idle database connections in thekth sampling period. Suppose that
the DBCP can be approximately modeled as amth order linear time-invariant system,
which can be described as

Y (k) =
m∑

i=1

[aiY (k − i) + biX(k − i)] (2)

where

Y (k) =
d̄A(k)
d̄B(k)

X(k) =
PB(k)
PA(k)

PB(k) + PA(k) = 1.

We need to decide the orderm and the parameter vectorθ, i.e.(a1, · · ·, am, b1, · · ·, bm)T

of the model.
The test-bed is described in section 4. Experimental setup is as follows. The total

number of worker threads is configured to be100, and the pool size is set to be20. Two
client machines, one with high priority and the other with low priority, are started to
simulate50 real clients to send dynamic requests. Requests are classified into class A
or B by the classifier according to their source IP, as is shown in Fig. 2. White noise
input has been widely used for system identification. In our experiment, we generate a
white noise input sequence according to

ε(k) = [ε(k − p) + ε(k − q)]mod 2 (3)

wherep = 8, q = 5 and the sequence period is 255. At thekth sampling instant,X(k)
is set to be1 if ε(k) = 1, or else1.5. The experiment lasts for40 minutes.

We calculateθ using the recursive least square (RLS) estimation algorithm [14].
According to RLS,θ can be calculated by Eq. (4).Suppose thatθ0 = 0 andP0 = 15I,
we can calculateθ under different orderm(1 ≤ m ≤ 6).

θN+1 = θN +
PNϕN+1

ϕT
N+1PNϕN+1 + 1

Y4(N + m + 1) (4)



where

PN+1 = PN − PNϕN+1ϕ
T
N+1PN

ϕT
N+1PNϕN+1 + 1

ϕN+1 = (Y (N + m− 1), · · · , Y (N),
X(N + m− 1), · · · , X(N))T

Y4(N + m + 1) = Y (N + m + 1)− ϕT
N+1θN

And then we decide the orderm usingF − test method [14]. We define a loss
functionJ(m), as is shown in Eq. (5), to describe the error betweenθ and the real pa-
rameter vector when the system order ism, and we also construct a statisticV (n1, n2),
as is shown in Eq. (6), to evaluate the variation ofJ(m) when the system order is
changed fromn1 to n2. According toF − test, V (n1, n2) follows the distribution
F (2(n2 − n1), L − 2n2) whenn2 > n1 ≥ m andL is large enough, whereL is the
length of experimental samples.

J(m) =
m+N∑

k=m+1

{
Y (k)−

m∑

i=1

[aiY (k − i) + biX(k − i)]

}2

(5)

V (n1, n2) =
J(n1)− J(n2)

J(n2)
N − 2n2

2(n2 − n1)
(6)

Through the experiment, we get that, whenn2 = 2 andn1 = 1,V (1, 2) < F0.05(2, 80)
holds with the confidence of95%. It means that, when the system order is changed from
1 to 2, there is no significant reduction of the loss function. Som = 1, and the DBCP
can be modeled as a first order linear time-invariant system with a parameter vector

θ = (−0.0172, 0.7463)T . (7)

3.2 Controller Design

We design a PI controller for the approximate linear model to implement PDD in a
DBCP. Integral control is able to eliminate the steady state error and PI controller is
easy to be implemented in programme. We can use transfer functions, as are shown in
Eq. (8)(9)(10), to describe the PI controller, the linear model given by Eq. (2), and the
closed-loop system, which is shown in Fig.1. Performance specifications the closed-
loop system should meet are as follows. The steady state error is zero and the settling
time is no more than 300 seconds.

D(z) = KP +
KIT (z + 1)

2(z − 1)
(8)

G(z) =
∑m

i=1 biz
m−i

zm −∑m
i=1 aizm−i

(9)

GC(z) =
D(z)G(z)

1 + D(z)G(z)
(10)

4x(k) = x(k)− x(k − 1)

= KP [(1 +
TKI

KP
)e(k)− e(k − 1)] (11)



To construct a system that satisfies the pre-specified performance, we use Root Lo-
tus tool in MATLAB to place the closed-loop poles and get the parametersKP and
KI for the PI controller. According to the incremental algorithm, we can get the out-
put increment of the controller at thekth sampling time by Eq. (11) and finally we get
4x(k) = 0.42e(k)− 0.1e(k − 1).

� � �
��

�
�

Fig. 1.Feedback control diagram with a PI controller

3.3 The Closed-loop System

We give a description of the closed-loop system components from the perspective of
control theory. As is shown in Fig.2, at thekth sampling instant, the monitor is invoked
to calculate the average queueing delaysd̄A(k) and d̄B(k) during the last sampling

interval for two classes of requests. Then the controller compares the delay ratiod̄A(k)

d̄B(k)

with the desired valueδA

δB
, and calculates a new probability ratioPB(k)

PA(k) according to

the error measured. According to Eq.(11), we can getPB(k)
PA(k) = 4x(k) + PB(k−1)

PA(k−1) .

Suppose thatPB(0)
PA(0) = 1, we can getPB(k)

PA(k) = 1 +
∑k

i=14x(i). The scheduler acts as
an actuator. Once a database connection is available, the scheduler generates a random
sampler from the uniform distributionU(0, 1). If r ≤ PA(k) = 1

2+
∑k

i=1
4x(i)

, class

A gets the connection, or else class B. To reduce the overhead for generating random
samples, a sequence of random samplesS, can be generated and stored in the scheduler
before it works.

3.4 System Implementation and Extension

We firstly introduce the implementation of the closed-loop system based on the Tomcat
application server [1]. As a standard JSP/Servlet container, Tomcat supports data access
using JSP pages and java classes of Servlet based on DBCP. When a dynamic request,
which is mapped to a JSP page or a Servlet class, calls the functiongetConnection(),
the classifier puts the request into a virtual queue, Queue A or Queue B, as is in Fig.2,
according to its source IP. At the same time the monitor records its arrival time at the
queue. When a database connection becomes available, the scheduler decides which
queue will get the connection and makes the functiongetConnection() return from the
queue. When the request at the queue head gets the connection available, the monitor
will record its departure time and get its queueing delay. When a request finishes data
access by callingcloseConnection(), a connection immediately becomes available for

reusing. Periodically, the monitor will recalculated̄A(k)

d̄B(k)
, and the PI controller, which
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Fig. 2.Control loop for PDD

is implemented as a java thread, will changesPB(k)
PA(k) according to Eq.(11). Member

functions, such asSetReferenceV alue(), are also implemented in the DBCP. All of
our implementation, which just needs to modify the code of the DBCP, is transparent to
web application developers and website managers. It also brings convenience for us to
deploy the DBCP in other web application servers.

Secondly, we discuss how our implementation for two classes of requests can be
extended to the general case forn (n ≥ 2) classes. We can dividen classes inton− 1
overlapped groups where groupj(1 ≤ j ≤ (n − 1)) includes classj andj + 1. Each
group has a PI controller and some pre-specified delay differentiation parameters. PDD
for each group is the case for two classes, just as described in above. Suppose that at the
kth sampling time, the average delay for classi(1 ≤ i ≤ n) is d̄i(k), and the probability
for classi to get connections isPi(k) (Σn

i=1Pi(k) = 1), the controller outputxj(k+1)
for groupj can be calculated according to Eq.(11). We can getP1(k+1), . . . , Pn(k+1)
by solving Eq.(12).In this way, the DBCP can provide PDD service for more than two
classes of dynamic requests.

{
Pj(k+1)

Pj+1(k+1) = xj(k + 1), (1 ≤ j ≤ (n− 1))
Σn

i=1Pi(k + 1) = 1
(12)

Thirdly, we discuss how to reduce the average delay for each service class by us-
ing the shortest-job first (SJF) scheduling policy. In the closed-loop system in above,
dynamic requests of each class are served in a first-come-first-serve (FCFS) manner.
For static requests, it has been proven that shortest-remain-processing-time (SRPT)
scheduling policy can reduce the mean response time by nearly a factor of ten [25].
However, job sizes for dynamic requests are always unknown in advance and many dy-
namic requests can not be interrupted. As a result, SRPT scheduling policy can not be
used directly in the DBCP. In [24], SJF scheduling policy was implemented for web
sites interactions processing. In our implementation of PDD in the DBCP, the sizes of
dynamic requests are generated in advance and SJF scheduling policy may bring per-
formance improvement for dynamic requests processing when providing PDD service
meanwhile.



4 Experiments

4.1 Test-bed and Workloads

Our test-bed consists of a dispatcher, a back-end server, and three client machines,
each with a 2.80GHz Pentium processor and 512 MB RAM. Three client machines run
Linux-2.4.18 and generate web traffic using the modified SURGE [7] workload gener-
ator, which can simulate a number of real-world clients to send dynamic requests. The
back-end server runs Tomcat 5.5.17 and Oracle9i for handling dynamic requests. The
feedback control-based DBCP works in Tomcat. On the dispatcher machine, Apache
2.0.53 works as a load balancer and uses Modjk [1]communicating with the back-
end server. In such a scalable architecture, static requests can be processed by the cache
module in Apache, and more back-end servers can be added to share the dynamic work-
load of the whole system according to pre-specified load-balancing strategies.
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Fig. 3.Architecture of the server system

Previous researchers have illustrated that, the processing time of a static request
is approximately linear with the size of the requested file [3], which follows the well-
known heavy-tailed distribution. However, it is difficult to find out the distribution of the
processing time for dynamic requests because most of them are CPU-intensive or I/O-
intensive. For this reason, we designed three kinds of workloads for our experiments.
The first workload designed follows a deterministic distribution, where all the dynamic
requests have the same processing time, 350ms. The second one fits a uniform distri-
bution, where the processing time of a request ranges from 0 to 700ms. The third one
follows a bounded Perato distribution, as is in Eq. (13), which is a typical heavy-tailed
distribution with an upper bound. In practice, we generate the third workload using an
equivalent bimodal distribution [16], as is in Eq. (14) wherexa = 50, xb = 6050,
α = 0.95, that corresponds to the bounded Pareto distribution.

F (x) = 1−(m/x)γ

1−(m/M)γ

where M À m, M ≥ x ≥ m, γ ∈ (0, 2)
(13)

f(x) = αδ(x− xa) + (1− α)δ(x− xb)

where α ≈ 1, δ(x) =
{

1, x = 0;
0, else

(14)



4.2 Experimental Setup and Results

Three kinds of experiments are conducted to evaluate the performance of the closed-
loop system. Firstly, we want to compare the impacts of different sampling periods on
the closed-loop system and choose the best sampling periodT . From the perspective
of control theory, the settling time of a closed-loop discrete system is related to its
sampling period. In principle, a smaller period leads to a shorter settling time. However,
a too small sampling period may make the system enter an oscillatory state and cannot
settle down. The experimental setup is as follows. The total number of worker threads
is configured to be100, and the pool size is set to be15. The reference value is0.5, i.e.
d̄A

d̄B
= 1

2 . We conduct experiments three times under the uniform workload, and each
time with a different sampling period. At the beginning of each experiment, two client
machines are started to simulate50 clients to generate dynamic requests, one with high
priority and the other with low priority. The third client machine with low priority is
started at200 seconds to send requests for10 minutes, which simulates100 clients to
generate bursty traffic. Each experiment lasts for30 minutes.

Fig.4 shows the results under different sampling periods. When the sampling period
T is changed from10 seconds to15 seconds, the measured curve of delay ratio becomes
much more smooth. But whenT is changed from15 seconds to20 seconds, there is no
significant improvement. To make a tradeoff between stability and response rate, we
select15 seconds as the sampling period for the rest of our experiments.
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Fig. 4.PDD under different sampling periods



Secondly, we focus on PDD in the DBCP under different kinds of workloads. Pa-
rameters of the closed-loop system are configured as in the first kind of experiments.
We conduct two experiments, which are under deterministic and heavy-tailed workload
respectively. All client machines work as in the first kind of experiments, and there is
also a traffic burst during200 seconds and800 seconds generated by the third machine.
Each experiment lasts for half an hour.

Fig.5 shows the results under different workloads. The figure also includes the re-
sult from the first kind of experiment under uniform workload. The DBCP achieves
PDD successfully under different workloads, although the average delay for each class
is fluctuated all the time. Compared with the other two workloads, heavy-tailed work-
load makes the average delay for each class vary much more quickly. That is maybe
the result of workload distribution. According to Eq. (14), the size of large requests is
nearly 121 times of the size of small ones. A large request will significantly increase
the service demand in the web application server. However, when the number of con-
current requests changes, the controller reacts quickly to the load variation and ensures
that requests with high priority are served with small delays, no matter under what kind
of workload.
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Fig. 5.PDD under different workloads

Thirdly, we want to compare the performance of the closed-loop systems with
different scheduling policies. The experiment lasts for 20 minutes. As can be seen
from Fig.6, under the uniform workload, the average delay for each service class with



SJF scheduling policy is smaller than that with FCFS scheduling policy. The feed-
back control-based DBCP is capable of providing PDD service no matter what kind
of scheduling policy is used.
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5 Related Work

Many researchers have highlighted the importance of integrating resource management
with quality of service in server systems. In [5], a CPU scheduling algorithm has been
proposed to dynamically allocate CPU cycles to Apache processes. In [6], resource
containers were proposed as as a kernel mechanism to provide service differentiation
by accurate accounting of resource usage. In [8], an observation-based approach was
proposed for QoS guarantees at the kernel level by handling bottleneck resources, the
CPU cycles and the accept queue. Other kernel-based resource allocation mechanisms
for service differentiation can be found in [17]. In [4], a feedback control framework
was proposed to guarantee relative/absolute delay in web servers at the connection level
and controllers were designed to allocate service threads to clients with different pri-
orities. To reduce latencies and overhead from closing and re-establishing connections,
persistent connections are supported as a default by HTTP/1.1. A persistent connec-
tion can transmit a sequence of requests, so connection delay just affects the response



time of the first request over the connection and request level QoS becomes necessary.
Many researchers focused on other QoS metrics e.g. relative hit ratio of web cache [15],
relative rejection ratio of requests [9] and system slowdown [19].

Our solution differs from the above works in many respects. Firstly, most of their
work only addresses workloads with static requests, whereas this paper fundamentally
focuses on dynamic requests and database-driven websites. Secondly, compared with
existing work, our work focuses on providing differentiated service at a request level
rather than a connection level, and important dynamic requests can get high priority
when being handled. Thirdly, in our solution, we implement the controller in the DBCP
rather than in the kernel of an operating system, and the DBCP can be deployed in other
web application servers besides Tomcat conveniently.

6 Conclusion

It is a great challenge for Internet servers to provide service differentiations in an un-
predictable and highly-dynamic environment. Proportional differentiated service is an
important service model and response delay is the key performance metric for web
application servers. This paper describes the approach for proportional delay differen-
tiations in web application servers through feedback control-based database connection
management. We implement a PI controller in a real DBCP for web application servers
and design three kinds of workloads for simulation of the closed-loop system. We ex-
perimentally demonstrate that, the controller is effective in handling different kinds of
workloads and the feedback control-based DBCP is capable of providing service differ-
entiation. Feedback control theory presents its potential for better resource management
and QoS guarantees in web application servers.
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