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Synthesizing Parallel Flexures
That Mimic the Kinematics of
Serial Flexures Using Freedom
and Constraint Topologies
The principles of the freedom and constraint topologies (FACT) synthesis approach are
adapted and applied to the design of parallel flexure systems that mimic degrees of free-
dom (DOFs) primarily achievable by serial flexure systems. FACT provides designers
with a comprehensive library of geometric shapes. These shapes enable designers to visu-
alize the regions wherein compliant flexure elements may be placed for achieving desired
DOFs. By displacing these shapes far from the point of interest of the stage of a flexure
system, designers can compare a multiplicity of concepts that utilizes the advantages of
both parallel and serial systems. A complete list of which FACT shapes mimic which
DOFs when displaced far from the point of interest of the flexure system’s stage is pro-
vided as well as an intuitive approach for verifying the completeness of this list. The pro-
posed work intends to cater to the design of precision motion stages, optical mounts,
microscopy stages, and general purpose flexure bearings. Two case studies are provided
to demonstrate the application of the developed procedure. [DOI: 10.1115/1.4024474]
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1 Introduction

Many flexure designers prefer parallel flexure systems to serial
systems. Parallel flexure systems (Fig. 1(a)) consist of a single rigid
stage connected directly to a fixed ground by compliant flexure
elements. Serial flexure systems, on the other hand, consist of se-
quential parallel flexure system constituents stacked together in a
chain-like configuration (Fig. 1(b)). Parallel flexure systems, due to
the presence of a single stage, often possess favorable dynamic
characteristics. Thus, parallel flexure systems may typically be
designed with higher natural frequencies and driven at higher
speeds. Problems inherent to underconstraint may also be avoided
with such systems. Serial flexure systems that possess redundant
DOFs (Fig. 1(b)) are said to be underconstrained [1]. For instance,
if the lower stage in Fig. 1(b) is held fixed, the stage on top will still
be free to translate laterally because both stages possess the same
translational DOF. Such underconstrained systems perform poorly
in both resonant and quasi-static situations. Serial flexure systems
may also suffer from stacked motion errors that accumulate from
the individual errors of its parallel constituents.

Although parallel flexure systems are advantageous to serial
flexure systems in many ways, some latter systems possess certain
DOFs that are not achievable by the former. A stage that possesses
only three translational DOFs (XYZ), for instance, may only be
achieved by serial/hybrid flexure systems (e.g., Fig. 2(a)). Note
here that flexure systems that consist of combinations of parallel
and serial flexure system constituents (often called hybrid sys-
tems) are considered serial systems for the purposes of this paper.
A parallel flexure system cannot achieve three XYZ translational
DOFs because at least one of these DOFs will always be con-
strained by flexure elements arranged in parallel. Even if only one
wire flexure (the most basic flexure element) is applied in parallel,
the system’s translational DOF along the wire’s axis will be con-

strained (Fig. 2(b)). A parallel flexure system’s stage can, how-
ever, exhibit motions that approximate three translational DOFs if
the system’s stage is long enough. As an example, consider the
system in Fig. 2(c). Although this system’s blade flexure elements
enable its stage to move with two rotational DOFs, R1 and R2, and
one translational DOF, T3, the far end of the stage will approxi-
mately move with three translational DOFs, T1, T2, and T3, if the
stage is long enough. Thus, parallel flexure systems with long
stages can mimic the kinematics of serial flexure systems.

The purpose of this paper is to aid the design of long-stage par-
allel flexure systems that mimic the useful DOFs of serial systems
using the principles of the FACT approach [2–4]. In this way,
designers can access the advantages of both parallel and serial
flexure systems. The FACT synthesis approach utilizes a compre-
hensive library of geometric shapes that embody the regions of
space from which designers can visualize a multiplicity of flexure
concepts that achieve desired DOFs. These shapes, which will be
discussed in detail in sec. 2, consist of sets of lines that represent
directions of constraint or motions along or about their axes.
When these shapes are displaced far from the stage’s point of in-
terest, as elaborated in this paper, designers can use these shapes
to visualize a multiplicity of parallel flexure system concepts that
mimic DOFs that are normally only achievable using serial flexure
systems. An example of one such FACT shape is the plane shown
in Fig. 2(d). The blade flexures from this plane represent only one
possible flexure topology that could mimic the three translations
on the top face of the stage, labeled “Point of Interest.” Thus, geo-
metric shapes such as this plane help designers consider many

Fig. 1 Parallel (a) and serial (b) flexure system examples
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novel concepts that achieve the desired kinematics before select-
ing an optimal concept.

The shapes of FACT are visual representations of screw sys-
tems [5] that consist of line geometries [6,7] that embody a sys-
tem’s kinematics. Screw systems have traditionally been applied
to the design and analysis of spatial mechanisms and robotic
manipulators [8–11]. More recently, screw systems have been
used in the design of flexures and compliant mechanisms [12–14].
Adding to the significant contributions of Merlet [15] and Hao
[16], the FACT methodology presents screw systems as intuitive
shapes intended to facilitate efficient synthesis of both parallel
and serial flexure systems [17,18].

In this paper, FACT is applied to the design of parallel flexure
systems with long stages like the one shown in Fig. 2(c) that
mimic the kinematics of serial flexure systems. Many of this
paper’s principles will be explained in the context of this flexure
system (Fig. 2(c)) because its true and mimicked DOFs are easy
to visualize and understand. Although this system may be easily
designed, the fundamental principles of FACT are intended to
enable designers to synthesize other, more complex, flexure sys-
tems, the conception of which may otherwise be difficult.

The specific contributions of this paper are:

(1) An intuitive approach is introduced and coupled with the
traditional mathematics of screw theory to generate a com-
prehensive list of FACT shapes (i.e., screw systems) that
mimic the kinematics represented by other FACT shapes
when displaced far away in all directions.

(2) A systematic, step-by-step approach is provided to guide
designers in using this list of shapes to consider every par-
allel flexure system concept that mimics the DOFs of serial
flexure systems.

(3) Guidelines are established to evaluate how well the parallel
flexure systems designed using this approach mimic their
intended DOFs.

The long-stage parallel flexure systems of this paper possess
unique advantages and challenges. Their measurement errors, for
instance, can be minimized by placing the sensors close to the
stage’s point of interest due to the availability of extra space. The
reason for this extra space is that the systems’ flexures and actua-
tors are located far from the stage’s point of interest. Actuators
attached to long-stage parallel flexure system, on the other hand,
cannot be isolated without the addition of decoupling flexural ele-
ments [19–21]. Moreover, the dynamic characteristics of such sys-
tems suffer because their stages are long and bulky and thus cause
the system to possess lower natural frequencies. Thus, unneces-
sary mass should be removed from the stages of these systems
without compromising their rigidity. The void at the center of the
stage shown in Fig. 2(d) was conceived for this reason.

It is important to evaluate how accurately the long-stage paral-
lel flexure systems approximate their intended DOFs. Consider
again the system from Fig. 2(c), which achieves its intended trans-
lation, T3, but only approximates its translations T1 and T2. The
accuracy of these translations, which are mimicked by rotations
R1 and R2, improves with the length of the stage (i.e., the longer
the stage, the more accurately these rotations mimic their transla-
tions). To quantify this accuracy, consider the parameters defined
in Fig. 3. As the stage rotates about point O, the point of interest,
I, translates a distance D while simultaneously dipping down a
distance E, referred to as the parasitic error. If a designer wished
the point of interest to translate over a desired range of 2D (the
total distance in both directions) while not allowing it to dip below
a certain threshold E, the length of the stage, L, will be con-
strained by the following condition

L � D2 þ E2

2E
(1)

For instance, if a designer desires the system in Fig. 2(c) to pos-
sess a range of 1 mm (D¼ 0.5 mm) while simultaneously restrict-
ing the parasitic error to 1 lm over its full stroke, the length of the
stage should be greater than or equal to 12.5 cm. Practical upper
limits on the length of the stage also exist based on issues relating
to cost, size, and fabrication feasibility, which can be determined
by the designer.

The sec. 2 reviews the background principles of FACT. Section 3
describes the novel contributions pertaining to how the shapes of
FACT, which represent certain DOFs, may be displaced to mimic
other DOFs. Section 4 outlines the process enabling the concepts in
Sec. 3 to be utilized for synthesizing parallel flexure systems that
mimic the kinematics of serial flexure systems. Two parallel flexure
systems are synthesized as case studies using this process.

2 Background Principles

We first review the mathematics necessary to model general
DOFs so that we can later synthesize parallel flexure systems that
mimic the DOFs of serial flexure systems. All DOFs can be mod-
eled as 6 x 1 vectors called twists [5]. A twist can be visualized as
a line about or along which a stage may rotate and/or translate.
The pitch of a twist is defined as the ratio of the distance a stage
translates along the twist’s axis to the coupled rotation about this
axis. A general displacement twist, T, is defined as

T ¼ Dh Dd½ �T¼ Dh ððc� DhÞ þ p � Dh Þ½ �T (2)

where DH is a 1� 3 vector that points along the twist’s axis. The
magnitude of DH represents the angle through which the stage
rotates. The 1� 3 vector, Dd, is the linear displacement of the ori-
gin of the chosen coordinate system. The location vector, c, is a
1� 3 vector that points to any point along the twist’s axis from
the origin. The twist’s pitch is p. These twist parameters are
depicted in Fig. 4(a). If the twist’s pitch is zero or infinite, the
twist describes a purely rotational or translational motion,

Fig. 3 Parameters for quantifying the approximation errors of
parallel flexure systems that mimic the kinematics of serial flex-
ure systems

Fig. 2 Three DOF (XYZ) serial flexure system (a), wire flexure
removes one translation (b), parallel flexure that mimics XYZ
translations (c), and geometric shapes used to synthesize flex-
ure elements (d)
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respectively. Otherwise, the twist describes a screw motion. In
this paper rotations are depicted as red lines, translations are
depicted as black arrows, and screws are depicted as green lines.

Consider the 3-DOF system constrained by four flexure blades
shown in Fig. 4. The parallel flexure configuration possesses two
rotational DOFs, T1 and T2, shown in Figs. 4(b) and 4(c) and a
single translational DOF, T3, shown in Fig. 4(d). If the origin is
defined at the center of the stage as shown in Fig. 4(e), a possible
location vector, c, for all three twists is a zero vector. The vectors,
DH1 and DH2, that point along the axes of T1 and T2, respec-
tively, are

Dh1 ¼ Dh1 0 0½ � (3)

Dh2 ¼ 0 Dh2 0½ � (4)

where DH1 and DH2 are the magnitudes of the two rotational
DOFs of the stage. The vector DH3 that points along the axis of
T3 is a zero vector since it represents a pure translation. Recogniz-
ing that the pitches of T1 and T2 are zero and that the pitch of T3

is infinite, these twists may be constructed using Eq. (2) as

T1 ¼ Dh1 0 0 0 0 0½ �T (5)

T2 ¼ 0 Dh2 0 0 0 0½ �T (6)

T3 ¼ 0 0 0 0 0 Dd3½ �T (7)

where Dd3 is the magnitude of the translational DOF of the stage.
Although the three independent twists represent the system’s

DOFs, they do not represent all permissible motions of the system’s
stage. If the three DOFs were actuated simultaneously and the rela-
tive ratio of their magnitudes was controlled, the stage would rotate
about other lines that lie on the surface of the plane shown in
Fig. 4(e). This plane of rotation lines and the perpendicular transla-
tion arrow is the system’s freedom space [2–4]. A freedom space is
the geometric shape that visually represents the kinematics of a sys-
tem (i.e., all the twists that the flexure system’s constraints permit).
The freedom space of a system may be represented mathematically
using a single twist vector, TFS, which is the linear combination of
the system’s DOFs. For the system in Fig. 4, therefore, TFS may be
found using Eqs. (5)–(7) according to

TFS ¼ T1 þ T2 þ T3 ¼ Dh1 Dh2 0 0 0 Dd3½ �T (8)

where DH1, DH2, and Dd3 are all independent, real, and finite.
Every parallel flexure system’s freedom space uniquely links to

a complementary or reciprocal constraint space [2–4] as shown
in Fig. 4(f). From screw theory, this well-known principle is
called duality [8–11,22]. Constraint space is a geometric shape
that represents the region from which compliant flexure elements
must exist that enable the system’s DOFs. The constraint space
of the system from Fig. 4 is a plane. This plane is coplanar with
the plane of the freedom space. Note that the four flexure blades
that connect the system’s stage with the ground lie on this con-
straint space plane as shown in Fig. 4(g). All other parallel flex-
ure systems that possess the same three DOFs as this system are
expected to be constrained by compliant flexure elements that
also lie on a similar constraint space plane. Examples of two
such parallel flexure concepts are shown in Figs. 4(h) and 4(i).
Thus, identification of a system’s constraint space helps design-
ers visualize various parallel flexure concepts that achieve a
desired set of DOFs. This observation is fundamental to the com-
prehensive nature of the FACT synthesis approach employed in
this paper.

All flexure systems can be synthesized using 50 freedom and
constraint space pairs, called types in this paper. These types,
which are described, derived, and classified in Hopkins [17,18],
are shown in Fig. 5. Others have classified similar screw systems
in the past for various applications using different criteria. Gibson
and Hunt [23,24] introduced a new method for classifying screw
systems based on projective geometry. Rico and Duffy [25,26]
proposed a comprehensive classification based upon the theory of
orthogonal spaces and subspaces [27] by examining the character-
istics of the reciprocal basis of screw systems. The geometric
shapes in Fig. 5 provide a comprehensive classification of screw
systems that enables designers, familiar or not with screw theory,
to rapidly visualize and compare parallel and serial flexure system
concepts that achieve any desired set of DOFs.

The library in Fig. 5 depicts how the freedom and constraint
spaces are organized with an emphasis on the “Parallel Pyramid”
(i.e., the pyramid outlined with a thick, black line). The shapes
outside of this pyramid represent DOFs that can only be achieved
by serial flexure systems. A detailed explanation of this content is
provided in Hopkins [18]. Note that all types belong to one of
seven columns. Each column pertains to the number of DOFs that
the type’s freedom space possesses. Within each column, the free-
dom and constraint space pairs (or types) are numbered. Within
the parallel pyramid, the freedom space of each type is shown to
the left of a double-sided arrow. The constraint space of the same
type is shown to the right of this arrow. Note that the freedom and
constraint space pair of the parallel flexure system from Fig. 4(f)
is type 1 in the 3 DOF column of Fig. 5. The freedom spaces of
the types lying outside the parallel pyramid do not link to a com-
plementary constraint space. These are the freedom spaces that
represent DOFs that can only be achieved by serial flexure sys-
tems. For instance, the freedom space that represents three transla-
tional DOFs (XYZ) from the example of Fig. 2(a) is among these
freedom spaces and is depicted as the sphere of black translation
arrows shown as type 20 in the 3 DOF column of Fig. 5. We re-
emphasize that (i) the freedom spaces that lie within the parallel
pyramid link to constraint spaces that are used to synthesize paral-
lel flexure systems and (ii) the freedom spaces that lie outside of
the pyramid do not link to constraint spaces and may thus only
be achieved by serial flexure systems that consist of stacked par-
allel flexure modules. The goal of this paper is to thus demon-
strate how parallel flexure systems may be synthesized using the
constraint spaces within the parallel pyramid to mimic the useful
kinematics of the freedom spaces that lie outside of the pyramid.
In this way, new parallel flexure systems may be synthesized
that possess the advantages of both parallel and serial flexure
systems.

Fig. 4 Twist parameters defined (a), DOFs of a parallel flexure
system (b), (c), (d), freedom space (e), complementary shapes
(f), constraint space (g), and other flexure concepts (h), (i)

Journal of Mechanisms and Robotics NOVEMBER 2013, Vol. 5 / 041004-3

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



3 Mimicking DOFs by Displacing Freedom Spaces

This section utilizes the principles of projective geometry [28]
and screw theory to describe how a freedom space displaced far
away may mimic another freedom space. An intuitive, visual
approach is developed to predict what freedom spaces will result
when other freedom spaces are displaced to infinity. A follow-on
logic-based approach is also developed to deduce every freedom
space that results from displacing any freedom space to infinity in
every direction. Finally key observations that pertain to displacing
freedom spaces to infinity are provided.

There are many ways to represent the displacement of a free-
dom space mathematically. One approach is to apply a transfor-
mation matrix [8–11,29,30] to change the reference frame of the
freedom space. A transformation matrix, [N], is a 6� 6 matrix
defined by

N½ � ¼ n1 n2 n3 0 0 0

L� n1 L� n2 L� n3 n1 n2 n3

� �
(9)

where n1, n2, and n3 are 3� 1 orthogonal unit vectors that repre-
sent the axes of the new coordinate reference frame, 0 is a 3� 1
zero vector, and L is a 3� 1 location vector that points from the
origin of the old coordinate system to that of the new reference
frame. The twist vector of the freedom space, TFS, may be
expressed in the new reference frame as T0FS according to

T0FS ¼ N½ ��1
TFS (10)

Consider, for instance, the freedom space of Fig. 4(e) shown again
in Fig. 6(a). According to the coordinate system labeled in the fig-
ure, the freedom space’s twist vector, TFS, is the same as the vec-
tor from Eq. (8). If, however, this twist vector is expressed in a
different reference frame with a coordinate system centered in the

middle of the stage (Fig. 6(a)) with the unit vectors, n1, n2, and
n3, along the x0, y0, and z0 axes, respectively, the appropriate trans-
formation matrix [N] is

N½ � ¼

I3�3½ � 03�3½ �
0 �d 0

d 0 0

0 0 0

2
64

3
75 I3�3½ �

2
6664

3
7775 (11)

where [I3�3] is a 3� 3 identity matrix, [03�3] is a 3� 3 zero ma-
trix, and d is the magnitude of the location vector L that points
from the old coordinate system to the new coordinate system (i.e.,
L¼ [0 0 d]). The freedom space expressed with this new coordi-
nate frame, T0FS, can be calculated by substituting Eqs. (8) and
(11) into Eq. (10) as

T0FS ¼ Dh1 Dh2 0 Dh2d �Dh1d Dd3½ �T (12)

Fig. 6 A planar freedom space of rotation lines and an orthog-
onal translation (a) displaced to infinity in the direction of the
translation manifests as a sphere of pure translations (b)

Fig. 5 Comprehensive library of freedom and constraint spaces for flexure synthesis. For details, refer to Ref. [18].
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As this freedom space is displaced infinitely far away from the
stage such that d approaches infinity, the only way for all the com-
ponents of the vector from Eq. (12) to remain finite is to allow
DH1 and DH2 to approach zero such that

T0FS ¼ 0 0 0 Dd2 �Dd1 Dd3½ �T (13)

where Dd2, Dd1, and Dd3 are all independent, real, and finite val-
ues (components of any twist must remain finite to represent
physically meaningful DOFs). The form of the twist vector in Eq.
(13) reveals that the planar freedom space displaced an infinite
distance away along the z axis, behaves as a freedom space that
represents pure translations in all directions as shown by the
sphere of arrows from Fig. 6(b). Note from Eqs. (8) and (13) that
a positive rotation of DH1 about the x axis manifests itself as a
translation along the y0 axis in the negative direction (i.e.,�Dd1).
Likewise, a positive rotation of DH2 about the y axis manifests as
a translation along the x0 axis in the positive direction (i.e., Dd2).
Furthermore, a positive translation of Dd3 along the z axis mani-
fests as the same translation along the z0 axis. Intuitively, every
other rotation line on the plane of the original freedom space man-
ifests as a single translation within the sphere of the new freedom
space. Thus, when the type 1 freedom space from the 3 DOF col-
umn of Fig. 5 is displaced to infinity in the direction perpendicular
to its plane, the freedom space manifests itself as the type 20 free-
dom space from the same column.

As another example, consider the freedom space shown in Fig.
7(a). This space may be generated by linearly combining two in-
dependent twists, T1 and T2, as shown. In relation to the coordi-
nate system depicted, the twist vector that describes this entire
freedom space, TFS, is given by

TFS ¼ T1 þ T2 ¼ Dh1 Dh2 0 0 0 0½ �T (14)
where DH1 and DH2 represent the independent, real, and finite
rotational magnitudes of T1 and T2. If we express this freedom
space in a different reference frame with its coordinate system
centered in the middle of the stage shown in Fig. 7(a) with its x0,
y0, and z0 axes pointing along the directions of the unit vectors n1,
n2, and n3, the transformation matrix [N] is

N½ � ¼

I3�3½ � 03�3½ �
0 0 �d

0 0 0

d 0 0

2
64

3
75 I3�3½ �

2
6664

3
7775 (15)

where d is the magnitude of the location vector L that points from
the old coordinate system to the new coordinate system (i.e.,
L¼ [0 �d 0]). The freedom space expressed with this new coor-
dinate frame, T0FS, can be calculated by substituting Eqs. (14) and
(15) into Eq. (10) as

T0FS ¼ Dh1 Dh2 0 0 0 �Dh1d½ �T (16)

As d approaches infinity (i.e., the freedom space is displaced infin-
itely far away from the stage), all of the components within the
vector from Eq. (16) can be finite only if DH1 approaches zero
such that

T0FS ¼ 0 Dh2 0 0 0 �Dd1½ �T (17)

where Dh2 and Dd1 are again independent, real, and finite values.
This twist reveals that the disk-like freedom space displaced an in-
finite distance away along the y axis, behaves as a freedom space
that represents every rotation line on a common plane parallel to
the line of T2 and a translation that is orthogonal to that plane as
shown in Fig. 7(b). Note from Eqs. (16) and (17) that a positive
rotation of DH1 about the x axis manifests itself as a translation
along the y0 axis in the negative direction (i.e., �Dd1). Further-
more, note that a positive rotation of DH2 about the y axis mani-
fests as the same rotation about the y0 axis. The fact that a disk of
rotation lines displaced to infinity manifests itself as a plane of
parallel rotation lines is expected as, according to projective ge-
ometry, all lines that are parallel to one another intersect at the
same point at infinity. Thus, when the type 1 freedom space from
the 2 DOF column of Fig. 5 is displaced to infinity along any axes
of its rotation lines, the freedom space manifests itself as the type
2 freedom space from the same column.

It is important to note that a single freedom space may mimic
multiple freedom spaces depending on the direction in which the
freedom space is displaced. Consider the freedom space from Fig.
7(a) shown in Fig. 8(a). When substituting its twist vector from
Eq. (14) and the transformation matrix from Eq. (11) into Eq. (10)
and allowed the magnitude, d, of vector L shown in Fig. 8(a) to
approach infinity, the resulting twist vector is

T0FS ¼ 0 0 0 Dd2 �Dd1 0½ �T (18)

where Dd2 and Dd1 are independent, real, and finite displacement
values. This twist reveals that the freedom space displaced an infi-
nite distance away along the z axis, behaves as a freedom space
that represents a disk of translation arrows. These arrows point in
the same directions as the axes of the rotation lines as shown in
Fig. 8(b). Note from Eq. (18) that a positive rotation of DH1 about
the x axis manifests itself as a translation along the y0 axis in the
negative direction (i.e., �Dd1). Furthermore, note that a positive
rotation of DH2 about the y axis manifests as a translation along
the x0 axis in the positive direction (i.e., Dd2). Thus, the type 1
freedom space from the 2 DOF column of Fig. 5 also manifests
itself as the type 10 freedom space from the same column when it
is displaced to infinity in a direction perpendicular to the plane of
its disk. Note also that this type 10 freedom space lies outside the
parallel pyramid of Fig. 5 and may, therefore, only be achieved by
stacking parallel modules in series or by using a parallel flexure
system like those discussed herein that mimic its kinematics.

It is also important to note that freedom spaces may be dis-
placed to infinity in any direction—not only along the x, y and z
axes. Consider the freedom space from Figs. 7(a) and 8(a) shown
again in Fig. 9(a). Using the mathematical approach presented
here, this disk-like freedom space of rotation lines displaced to in-
finity along the axis of vector L, manifests itself as another disk of
translations as shown in Fig. 9(b). This disk of translations is

Fig. 7 A disk of rotation lines (a) displaced to infinity along
one of the axes of its lines manifests as a plane of parallel rota-
tion lines and an orthogonal translation (b)

Fig. 8 A disk of rotation lines (a) displaced to infinity in a
direction perpendicular to its plane manifests as a disk of trans-
lation arrows (b)
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oriented differently than it is in Fig. 8(b) because of the different
direction in which the disk of rotations is displaced. One of the
translation arrows of the freedom space points in the [1 0 0]
direction and another translation arrow points in the [0 �1 �1]
direction in reference to the coordinate system shown in Fig. 9.

Although the freedom space in Fig. 9 did not manifest as a new
freedom space when displaced to infinity in an off-axis direction
(i.e., the space manifest as another disk of translation arrows simi-
lar to Fig. 8), some freedom spaces do manifest as new spaces
when they are displaced in directions that are not along their coor-
dinate system axes. An example is the type 7 freedom space from
the 3 DOF column of Fig. 5. This freedom space consists of (i) a
single set of rotation lines that lie on the surface of a circular
hypberboloid centered about the origin of the coordinate system
shown in Fig. 10(a), (ii) a disk of screws with a common pitch
value that lie on the x–y plane, and (iii) a screw that is coincident
with the z axis and possesses a pitch value that has an opposite
sign to the pitches within the disk. This freedom space also con-
tains other screws (not shown) that lie within cylindroids as
described in Hopkins [17]. When this freedom space is displaced
along the x, y, or z axes, it will manifest as the type 18 freedom
space from the 3 DOF column of Fig. 5 shown in Fig. 10(b). This
freedom space consists of a disk of translations and a box of
screws that are orthogonal to the direction of the translations in
the disk. All of these screws have the same pitch value. When,
however, the freedom space of Fig. 10(a) is displaced to infinity
along the direction of any of its rotation lines (i.e., the lines on the
surface of the circular hyperboloid), it manifests as the type 2
freedom space from the 3 DOF column of Fig. 5 shown in
Fig. 10(c). This freedom space is similar to the freedom space of
Fig. 10(b) except that instead of consisting of parallel screws, it
consists of parallel rotation lines.

There are an infinite number of directions along which any
given freedom space can be displaced to infinity. However, it is
possible to use the analysis in this section to displace any freedom
space in finitely many directions to deduce every resulting free-
dom space and its orientation with respect to the direction of dis-
placement. Recall the three different directions in which the
freedom space in Figs. 7(a), 8(a), and 9(a) were displaced. One
may deduce from Fig. 7(b) that if the freedom space is displaced
along the direction of any of its rotation lines—and not just the y
axis, it manifests as a plane of rotation lines that are all parallel to

the direction along which the disk is displaced, as well as a trans-
lation that is orthogonal to this plane. Also, from Figs. 8(b)
and 9(b), if the freedom space is displaced in any other direction,
it manifests as a disk of translation arrows, all perpendicular to the
direction in which the freedom space is displaced. By considering
these few directions of displacement and through intuition and
logic, we successfully deduce every freedom space that can mani-
fest by displacing the disk-like freedom space of rotations to infin-
ity in every direction.

Every freedom space from the comprehensive library of Fig. 5
has been displaced in adequate directions to deduce which result-
ing freedom spaces will manifest and how they will be oriented
depending on the direction of displacement. Appendix summaries
this information in a comprehensive way that helps designers syn-
thesize parallel flexure systems that mimic the DOFs of serial
flexure systems. This Appendix provides a complete list of which
freedom spaces manifest as others are displaced to infinity, but it
does not contain information on the orientations or the directions
in which these other spaces are displaced. To include this informa-
tion, each of the 50 freedom spaces would require a detailed dis-
cussion similar to that on the freedom space in Figs. 7(a), 8(a),
and 9(a), which is avoided here for brevity. Sufficient information
is, however, provided in Appendix to help designers consider all
the freedom space options that could be used to mimic any desired
freedom space from the comprehensive library of Fig. 5. It is then
up to the designer to apply the procedure in this section to deter-
mine the appropriate directions and orientations of these displaced
freedom spaces.

The following important observations are noted from the con-
tent of Appendix:

(1) Some freedom spaces displaced to infinity in certain direc-
tions manifest as themselves. For example, if the freedom
space from Figs. 4(e) and 6(a) was displaced to infinity
along the x or y axes instead of the z axis (as labeled), the
resulting freedom space would remain unchanged, i.e., it
would mimic itself.

(2) Different freedom spaces displaced to infinity can manifest
as the same freedom space. For example, the type 17 free-
dom space from the 3 DOF column of Fig. 5 consists of a
translation perpendicular to a plane of screws that share the
same pitch value. If this freedom space were displaced
infinitely far away from a stage along the axis of its transla-
tion, the stage would also behave as the spherical freedom
space of pure translations from Fig. 6(b). In fact, per Ap-
pendix, there are 18 freedom spaces that when displaced to
infinity in various directions, manifest as this spherical free-
dom space of translations (i.e., type 20 from 3 DOF column
of Fig. 5).

(3) A freedom space (of n DOFs) displaced to infinity from
within a particular DOF column in Fig. 5 can only manifest
itself as another freedom space that belongs to the same
column (n DOFs). This observation seems intuitive as
DOFs cannot be generated or reduced by merely shifting
the position or orientation of a freedom space.

(4) Some freedom spaces represent DOFs that cannot be
achieved or mimicked by any parallel flexure system even
when freedom spaces are displaced far away. The DOFs of
such freedom spaces are exclusively achieved by serial
flexure systems. An example is type 6 in the 4 DOF column
of Fig. 5. This freedom space lies outside of the parallel
pyramid and no freedom space displaced to infinity in any
direction will manifest itself as this freedom space.

4 Principles Applied to Flexure Synthesis

The foregoing principles are applied in this section to the
design of parallel flexure systems that mimic the DOFs of serial
flexure systems. The design process consists of five systematic
steps, which are adapted from the original steps of the FACT
methodology. Two case studies on the design of parallel flexure

Fig. 10 Type 7 (a), type 18 (b), and type 2 (c) freedom spaces
from the 3 DOF column of Fig. 5

Fig. 9 A disk of rotation lines displaced to infinity in a direc-
tion not along the coordinate system’s axes (a) manifests itself
as a disk of translation arrows oriented perpendicular to the
direction in which it is displaced (b)
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systems are presented to demonstrate the application of these
steps. For the first study, the flexure system from Fig. 2(c) is
synthesized.

Step 1: Identify the parallel flexure system’s desired DOFs. For
this case study, the desired DOFs of the parallel flexure sys-
tem are three orthogonal translations.

Step 2: Identify the freedom space that represents the desired
DOFs from the first step. This freedom space will result
from the linear combination of the DOF twists from step 1.
The freedom space that represents the three translations is
the sphere of black arrows shown as type 20 in the 3 DOF
column of Fig. 5 and in Fig. 6(b).

Step 3: Use the list from Appendix to select and place a freedom
space that mimics the freedom space from the second step
when displaced far away in a particular direction. Per Ap-
pendix, type 20 in the 3 DOF column from Fig. 5 can be
mimicked by displacing types 1, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 20, 21, or 22 from the same column to in-
finity in various directions. The 3 DOF type 1 freedom space
is a good selection for this case study. This is because its
constraint space is likely to yield an elegant, symmetric, and
easily fabricated design. The freedom and constraint spaces
of 3 DOF type 1 are shown in Fig. 4(f). To mimic the free-
dom space of 3 DOF type 20, the freedom space of 3 DOF
type 1 can be displaced in the direction of its translation as
shown in Fig. 6(b).

Step 4: Design a rigid stage long enough to span between its
point of interest (i.e., the point on the stage intended to ap-
proximate the desired DOFs) and the freedom space
selected and placed from the third step. The length of this
stage should be the distance that the freedom space is dis-
placed in step 3. Equation (1) may be used to quantify how
well the final design will approximate the desired DOFs
from step 1 for the chosen stage length of this step. For this
example, a long rigid stage is designed that connects the
point where the stage mimics the three translations to the
freedom space of 3 DOF type 1 as shown in Fig. 11(a).

Step 5: Select flexure elements from within the complementary
constraint space of the freedom space selected and placed
in the third step. These flexure elements should connect the
rigid stage designed in the fourth step to a fixed ground. For
more information on how to select the appropriate number
and kind of flexure elements from within a constraint space
to (i) ensure that the resulting system will only permit the
desired DOFs, and (ii) control the system’s constraint char-
acteristics (i.e., exact or overconstraint), see Hopkins
[2,3,16]. For this example, blade flexures are selected from
the plane of the constraint space of 3 DOF type 1 as shown
in Fig. 11(b).

The final design is depicted in Fig. 11(c). For small motions,
the top of the stage mimics three translations. The longer the
stage, the better these motions mimic pure translations according

to Eq. (1). The final design is planar, monolithic and requires no
assembly.

4.1 Another Case Study. A second case study further dem-
onstrates the proposed design process. Recall that the first step is
to identify the desired DOFs of the parallel flexure system. Here,
the intent is to design a stage that possesses four DOFs—three or-
thogonal translations and a rotation as shown in Fig. 12(a).

The second step is to identify the freedom space that represents
the desired DOFs from the first step. The freedom space that rep-
resents the three translations and the rotation for this example is
that of type 10 in the 4 DOF column of Fig. 5. This freedom space
consists of a sphere of black translation arrows that point in all
directions and a box of infinite extent that contains every red rota-
tion line that is parallel and points in a common direction as
shown on the left of Fig. 12(a). The freedom space also consists
of green screws of all pitch values that are parallel to the rotation
lines as shown on the right of the figure. Note that the freedom
space shown in Fig. 12(a) is oriented differently than the type 10
freedom space shown in the 4 DOF column of Fig. 5. This is
because the DOFs selected from the first step must lie within the
freedom space from the second step. Note also that this freedom
space lies outside the “Parallel Pyramid” and therefore does not
possess a constraint space. The desired DOFs in this example
may, therefore, be mimicked only by parallel flexure systems of
the kind proposed in this paper.

The third step is to use the list from Appendix to choose and
place a freedom space that mimics the freedom space from the
second step when displaced far away. According to Appendix,
type 10 in the 4 DOF column from Fig. 5 can be mimicked by dis-
placing types 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 from the same column
to infinity in various directions. The 4 DOF type 1 freedom space
is a proper choice for this example as its constraint space is likely
to yield an elegant, symmetric, and easily fabricated design. The
freedom and constraint spaces of 4 DOF type 1 are shown in
Fig. 12(b). Its freedom space, shown on the left side of this figure,

Fig. 11 Freedom space displaced far from the point of interest
(a), flexure elements selected from the constraint space (b), par-
allel flexure system that mimics XYZ translations (c)

Fig. 12 Freedom space that contains the desired motions (a),
4 DOF type 1 freedom and constraint spaces (b), approximate
freedom space displaced to infinity (c), a long stage enables
the freedom space to mimic the desired motions (d), selecting
constraints from the constraint space (e), final parallel flexure
concept (f), serial concept that achieves the same kinematics
(g), and parts that make up the two concepts (h)
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consists of (i) a sphere of red rotation lines that intersect at a com-
mon point, (ii) every red rotation line that lies on a plane that
passes through this point, (iii) a single black translation arrow that
is perpendicular to the plane of rotation lines, and (iv) green screw
lines that lie on the surfaces of nested circular hyperboloids. The
constraint space of 4 DOF type 1 is a disk of blue constraint lines
and is shown on the right of Fig. 12(b). To mimic the freedom
space of 4 DOF type 10, the freedom space of 4 DOF type 1 can
be displaced in the direction shown in Fig. 12(c). The red rotation
plane mimics the sphere of black arrows, the red sphere of rotation
lines mimics the red box of parallel rotation lines and the green
circular hyperboloids of screw lines mimic the green box of paral-
lel screw lines.

The fourth step is to design a rigid stage long enough to span
between the point of interest that will approximate the desired
DOFs and the freedom space selected and placed from the third
step. For this example, a long rigid stage is designed such that it
connects the point where the stage mimics the four desired DOFs
to the freedom space of 4 DOF type 1 as shown in Fig. 12(d).

The fifth step is to select compliant flexure elements from
within the complementary constraint space of the freedom space
selected and placed in the third step. These constraints should con-
nect the rigid stage designed in the fourth step to a fixed ground.
For this example, wire flexures are selected from the disk of the
constraint space of 4 DOF type 1 as shown in Fig. 12(e).

The final design is shown in Fig. 12(f). The stage achieves the
desired rotational and translational DOFs that are coincident with
its axis. The top of the stage mimics the other two translational
DOFs that are perpendicular to this axis.

For comparison, a serial version of this parallel flexure system
is shown in Fig. 12(g). This serial system achieves the same set of
DOFs that the parallel system from Fig. 12(f) mimics. For finite
displacements, however, the serial system will also only mimic
the same two translational DOFs because the stage will dip down
with a parasitic error along a curved path as the wire flexures
deform. Moreover, the rotational DOF will also pull the stage
downward with an undesired displacement as it rotates through a
finite angle. This rotation induced parasitic error is not an issue
for the parallel version of Fig. 12(f). FACT can be implemented to
design other serial versions that would not possess these parasitic
errors, but such designs would tend to be underconstrained, com-
plex, and very difficult to fabricate. Although the serial version in
Fig. 12(g) is not underconstrained, its two rigid bodies undergo
unnecessarily complex dynamics, which can be avoided by using
a parallel flexure system. Finally, note that the serial version in
Fig. 12(g) consists of more parts, which require more fabrication
and assemble than the parallel version in Fig. 12(f), as shown in
Fig. 12(h).

Although the parallel design in Fig. 12(f) does possess a num-
ber of attributes that are advantageous in comparison to the serial
design of Fig. 12(g), it is not to suggest that the proposed proce-
dure will consistently produce better parallel alternatives to serial
designs of similar kinematics. Rather, the intent is to demonstrate
that the procedure will consistently provide designers with more
concepts to consider and compare during the early stages of
design such that the best design may ultimately be selected based
on the desired functional requirements.

5 Conclusions

In this paper we adapted the FACT approach such that its prin-
ciples are used to synthesize parallel flexure systems that mimic
the kinematics of serial flexure systems. An intuitive approach is
introduced that utilizes screw theory to determine which freedom
spaces (i.e., screw systems) can be mimicked by displacing other
freedom spaces far from the stage’s point of interest in various
directions. A complementary systematic approach is also provided
that guides designers in using these displaced freedom spaces and
their reciprocal constraint spaces to consider every parallel flexure

system concept that mimics the DOFs of serial flexure systems.
Guidelines are also established to characterize how well such par-
allel flexure system concepts mimic these DOFs. Two parallel
flexure systems are designed as examples to demonstrate the effi-
cacy of this adapted FACT approach.

The main advantage of the approach proposed in this paper is
that it is intuitive and requires little to no knowledge of screw
theory. Furthermore, the approach is comprehensive in that (i) ev-
ery geometric shape is determined to synthesize both parallel and
serial flexure systems and (ii) the resulting manifestations of every
FACT shape are determined when displaced to infinity in every
direction. The main limitation is that parallel flexure systems
designed using this approach require long stages to accurately
mimic the desired kinematics of serial flexure systems. Such
bulky stages affect the dynamic characteristics of the system
adversely. Work is underway, however, to utilize screw theory to
analyze and optimize the dynamic characteristics of such flexure
systems [31].
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Appendix: Freedom Spaces That Mimic Other

Freedom Spaces at Infinity

This Appendix provides a complete list of freedom spaces that
mimic other freedom spaces when displaced to infinity in every
direction. The freedom spaces of the types labeled with asterisks
represent DOFs that are not achievable by parallel flexure systems
directly but may be mimicked by parallel flexure systems using
the theory of this paper.

0 DOF Column of Fig. 4
Type 1 is mimicked when type 1 is displaced to infinity.
1 DOF Column of Fig. 4
Type 1 is mimicked when type 1 is displaced to infinity.
Type 2 is mimicked when type 2 is displaced to infinity.
Type 3 is mimicked when types 1, 2, and 3 are displaced to infinity.

2 DOF Column of Fig. 4
Type 1 cannot be mimicked by displacing anything to infinity.
Type 2 is mimicked when types 1, 2, 3, and 6 are displaced to

infinity.
Type 3 cannot be mimicked by displacing anything to infinity.
Type 4 cannot be mimicked by displacing anything to infinity.
Type 5 is mimicked when types 3, 4, 5, 6, and 7 are displaced

to infinity.
Type 6 cannot be mimicked by displacing anything to infinity.
Type 7 cannot be mimicked by displacing anything to infinity.
Type 8 is mimicked when type 8 is displaced to infinity.
Type 9 is mimicked when type 9 is displaced to infinity.
Type 10* is mimicked when types 1, 2, 3, 4, 5, 6, 7, 8, 9, and

10 are displaced to infinity.

3 DOF Column of Fig. 4
Type 1 is mimicked when type 1 is displaced to infinity.
Type 2 is mimicked when types 2, 3, 4, 7, 8, 9, 10, 12, and 13

are displaced to infinity.
Type 3 cannot be mimicked by displacing anything to infinity.
Type 4 cannot be mimicked by displacing anything to infinity.
Type 5 cannot be mimicked by displacing anything to infinity.
Type 6 is mimicked when types 6 is displaced to infinity.
Type 7 cannot be mimicked by displacing anything to infinity.
Type 8 cannot be mimicked by displacing anything to infinity.
Type 9 cannot be mimicked by displacing anything to infinity.
Type 10 cannot be mimicked by displacing anything to infinity.
Type 11 cannot be mimicked by displacing anything to infinity.
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Type 12 cannot be mimicked by displacing anything to infinity.
Type 13 cannot be mimicked by displacing anything to infinity.
Type 14 cannot be mimicked by displacing anything to infinity.
Type 15 is mimicked when type 15 is displaced to infinity.
Type 16 is mimicked when type 16 is displaced to infinity.
Type 17 is mimicked when type 17 is displaced to infinity.
Type 18* is mimicked when types 5, 7, 8, 9, 10, 11, 12, 13, 14,

18, and 19 are displaced to infinity.
Type 19 cannot be mimicked by displacing anything to infinity.
Type 20* is mimicked when types 1, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 20, 21 and 22 are displaced to infinity.
Type 21* is mimicked when types 4, 5, and 21 are displaced to

infinity.
Type 22* is mimicked when types 4, 5, and 22 are displaced to

infinity.

4 DOF Column of Fig. 4
Type 1 cannot be mimicked by displacing anything to infinity.
Type 2 is mimicked when types 1, 2, 3, and 6 are displaced to

infinity.
Type 3 cannot be mimicked by displacing anything to infinity.
Type 4 cannot be mimicked by displacing anything to infinity.
Type 5* is mimicked when types 3, 4, 5, 6, and 7 are displaced

to infinity.
Type 6 cannot be mimicked by displacing anything to infinity.
Type 7 cannot be mimicked by displacing anything to infinity.
Type 8 is mimicked when type 8 is displaced to infinity.
Type 9 is mimicked when type 9 is displaced to infinity.
Type 10* is mimicked when types 1, 2, 3, 4, 5, 6, 7, 8, 9, and

10 are displaced to infinity.

5 DOF Column of Fig. 4
Type 1 is mimicked when type 1 is displaced to infinity.
Type 2 is mimicked when type 2 is displaced to infinity.
Type 3* is mimicked when types 1, 2, and 3 are displaced to

infinity.

6 DOF Column of Fig. 4
Type 1 is mimicked when type 1 is displaced to infinity.
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