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Probabilistic Optimization of 
Multitool Machining Operations 
This paper summarizes the results for one aspect of an ongoing research program con
cerned with the probabilistic nature of tool life and its affect on tool replacement strate
gies and optimum machining conditions. Preventive planned, scheduled and failure re
placement strategies are considered with single and multiple tool systems. When the coef
ficient of variation is constant as the cutting conditions change, the optimal cutting con
ditions using the probabilistic models of tool life are a multiple of the optimum cutting 
conditions obtained by using the classical deterministic model of tool life. The multiply
ing factor is a function of the coefficient of variation, tool change policy and the cost pa
rameters of these replacement policies. 

Introduction 
Tool life variability has long been recognized [1, 2]. The physical 

and metallurgical aspects of tool life variability have been discussed 
extensively by Ramalingam [3, 4, 5]. He identified various hazard 
functions which represent the failure patterns corresponding to dif
ferent environments in which a tool operates. These hazard functions 
were used to develop the tool life distribution models and reliability 
functions. Before this work, Wager [2] and Duncan [6] explored the 
tool life distributions, and in addition, Duncan [6] developed some 
mathematical models for determining optimal tool change policies. 
On the basis of the physics of failure or purely on the basis of statistical 
analysis of tool failure data, the following models have been suggested 
to represent tool life: normal [1], log normal [2,3,5], Weibull [3,6,7], 
gamma [6], extreme value [8], DDS [9] and exponential [4]. These 
models can be used to develop optimal tool change intervals for a given 
tool replacement policy. In the past, attempts were made to develop 
optimal policies and optimal tool change intervals, primarily using 
Monte Carlo Simulation techniques [9,10], other numerical methods, 
using reliability mathematics, were used by Duncan [6] for various 
tool replacement policies. Kendall and Sheikh [12] presented a so
lution for determining the optimal tool replacement interval using 
a Weibull model for tool reliability and a preventive planned re
placement strategy. This work was continued [13] and a number of 
tool replacement strategies were explored and their optimal solutions 
were presented for a large number of reliability models. In a recent 
paper by Sheikh and Kendall [14], the importance of the coefficient 
of variation as an index of tool life variability was emphasized. Zde-
blick and Devor [16] used a normal probability model for tool failure 
in a systems approach to process planning of the machining operation. 
A better understanding of the failure probability model and how it 
can be used to establish to tool replacement interval will help make 
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such systems' studies more precise. This paper will present various 
tool replacement strategies for single tool and multiple tool production 
machines and show how the optimal cutting conditions are affected 
by these tool change policies. In order to develop such relationships, 
the following must be done: 

1 Develop a variable cost model in terms of the tool replacement 
strategy and the cutting parameters of feed, speed and depth of 
cut. 

2 Treat tool life as a random variable and select, using appropriate 
statistical tests, a probability model that defines the tool life varia
tions. 

3 Introduce this probability model into the cost equation. 
4 Find the optimal replacement interval and optimal values for 

the cutting parameters. The general approach to finding such opti
mum values has been reported [15,17]. 

It has been found that the coefficient of variation is an important 
parameter for this optimization procedure [14]. A functional rela
tionship between the coefficient of variation and the machining pa
rameters needs to be defined. Presently, the optimization process has 
been developed for the case where the coefficient of variation is con
stant with respect to these cutting parameters: feed, depth of cut and 
speed. The theory is valid for any tool reliability model; however, in 
this paper, the Weibull model will be used. This work incorporates 
tool reliability models in a way that utilizes information (data) gen
erated in the laboratory and/or production shop at one cutting con
dition and then predicts new (optimal) cutting conditions. This ap
proach requires the use of a functional relationship between tool life 
and the cutting parameters. 

In this paper, this appraoch has been used for the following tool 
change policies; 

1 Preventive planned tool change policy. 
2 Scheduled tool change policy. 
3 Failure replacement policy. 

These tool change policies will be developed for single and multiple 
tool machining systems and is based upon a more detailed develop-
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ment found elsewhere [13]. 
The development in this paper is applicable to the case, where, the 

volume of production is sufficiently large, so that, the tool replacement 
and/or failure cycle is repeated many times. This is s common situa
tion in most of automated production. 

O p t i m u m C u t t i n g Condi t ions for a S i n g l e Too l 
O p e r a t i o n 

The mean tool life equation for a machining operation (turning, 
milling, drilling, etc.) can be given as 

T = Kfl{Ymfmidm'>) = Ar/(Vmfmi) = (Cr/V)m (1) 

T = Dr/(Nmfmidm*) = GT/(Nmfm^) = (BrlN)m (2) 

where m = 1/n, mi = 1/rei, and mi = l/n.2 are exponents of speed, feed, 
and depth of cut. Constants Kf} Af and Op are related as follows 

AT = Kfd~m" 

Op = [Kf/ifmidm*)]n 

(3) 

(4) 

Equation (2) represents the average tool life in terms of spindle 
speed, feed and depth of cut, and the relationship between Df, Gf and 
Bf is as follows: 

and 

Gf = Drd-

BT = [Dr/(fmidmi)]n 

(5) 

(6) 

Because of the assumption that the coefficient of variation, K, remains 
independent of V (or N), f and d, equations similar to (1) and (2) will 
hold true for any tool life fractile £/, (or tq). These new equations will 
be obtained by replacing T by £& (or tq) in equations (1) and (2). 
Similarly, relationships can be developed for fractiles tp, ts, etc. as 
shown in Table 1. For a discussion on this development, see references 
[13, 14] where a special case of equations (1) and (2), VTn = Op, is 
discussed using a probabilistic approach. This approach is shown in 
Fig. 1. Fig. 1 also illustrates that when the coefficient of variation is 
constant with respect to velocity, the exponent n remains constant 
with respect to velocity for any tool life fractile. Others who have re
ported variability in both n and C, as the cutting conditions are 
changed, are basing their conclusions on cutting conditions where K 
was not necessarily independent of V, f, and/or d [18]. 

Preventive Planned Tool Replacement Strategy. The tool has 
a preventive planned replacement interval, tp, and failure replace
ment is made if the tool fails during the time interval (0 — tp). If 
preventive planned replacement is made, a cost of Cp ($/cutting edge) 
occurs, and if a failure replacement is made, a cost of C/($/cutting 
edge) will occur, where Cp < Cf. 

In large volume production, where the tool replacement cycle is 
repeated many times, it is appropriate to establish the tool replace
ment policy for steady state conditions. The expected value of the 
variable portion of machining cost per component ($/component) for 
the steady state conditions is given by [13]: 

E[C(tp)] = x[tc + E[Br(tp)]tc (7) 

where 

•Nomenc la tu re . 

T, random variable tool life failure (i.e., time 
to failure of cutting tools) 

frit) = /(*)• probability density function of 
random variable T 

RT(t) = R(t) = Pr(T > t) = St"f(t)dt, reli
ability function of T 

FT(t) = F(t) = Pr(T < t) = 1 - Rit) = Jo ' 
fit)dt, cumulative function of T 
hT(t) = hit) = f(t)IR(t), hazard function of 
_ T 
T = J o " R(t)dt = fo"°tfit)dt, expected value 

o f T 
<r2 = So" it - T)2 fit)dt, variance of T 
tq = solution to: Jatifit)dt = q, tool life cor

responding to the probability of failure q, 
tq is also known as tool life fractile 

K, coefficient of variation of cutting tools, K 
= a/T 

/3, shape parameter of a Weibull reliability 
function 

r\, characteristic life of T for a Weibull 
model 

ti, a generalized symbol to prepresent the 
characteristic life of T for any reliability 
model 

T = T/tL, dimensionless random variable 
/T(T) = / ( T ) , density function of dimen-

sionaless random variable T 
RT(T) = -R(r), reliability function of T 
hTir) = hir), hazard function of T 
tp, planned replacement interval 
tp, optimum value of planned replacement 

interval 
ts, scheduled tool replacement interval (also 

tool life fractile ts) 
ts , optimum scheduled tool replacement in

terval 
Hrit) = H it), mean number of failures that 

occurs up to the instant t, or value of the 
renewal function of T at instant t 

Hrits) = Hits), mean number of failures (or 
renewals) up to the instant ts 

Hrit) = Hit), renewal density function of 
T 

HTir) = Hir), renewal function of nondi-
mensional random variable T 

HTir) = Hir), renewal density function of 
T 

x, cost of one machine minute, $/machine 
minute 

Cp, cost of preventive planned replacement 
of a cutting edge, $/cutting edge 

Cf, cost of failure replacement of a cutting 
edge, $/cutting edge 

Cs, cost of scheduled replacement of a cutting 
edge, $/cutting edge 

8P = Cp/x, cost of a preventive planned re
placement of a cutting edge in time units, 
machine minutes/cutting edge 

Of = Cflx, cost of a failure replacement of a 
cutting edge in time units, machine min
utes/cutting edge 

8s - Cs/x, cost of a scheduled replacement 
interval in time units, machine minutes/ 
cutting edge 

TP = Cp/Cf = dp/6f, cost ratio in preventive 
planned replacement policy 

7s = C5/Cf = dsl&f, cost ratio in scheduled 

replacement policy 
E[Cit)], expected value of the variable por

tion in machining cost per component, 
$/component 

E[6(t)] = E[C(t)]/x, expected value of the 
variable portion of machining cost (in time 
units) per component, machine minutes/ 
component 

E[6ritp)], expected tool replacement cost in 
machine minutes per unit of time 

D, diameter of shaft in inches 
L, length of cut in inches 
d, depth of cut in inches 
/, feed in inches/revolution 
N, spindle speed, rpm 
V, velocity of workpiece (or cutting velocity) 

in surface feet per minute 
tc = L/ifN) = DL/il2fV), machining time 

per component in minutes 
T = iOflV)m, Taylor's tool life model, rep

resenting mean tool life, T, as a function of 
cutting velocity V 

T = iBr/N)m, Taylor's tool life model rep
resenting mean tool life, T, as a function of 
spindle speed N 

m = 1/n, slope of Taylor's line [i.e., T = 
iOf/V)"1 = iBr/N)"1] on log X log paper 

Cf, Taylor's constant (i.e., cutting velocity in 
ft/minute) corresponding to one minute of 
mean tool life 

Bf, Taylor's constant (i.e., spindle speed in 
rpm) corresponding to one minute of mean 
tool life 
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LOGeN 
TAYLORIZED 

REGION 
Fig. 1 Sample Function Representing the Causal Relationship, T'= (S j / 
N)m. 

E[Br(tp)] = [d/FAtp) + dpRT(tp)\l £PR(t)dt (8) 

:ing the transformation T = T/ti it can be shown [13], that RT(r) 
At), 

FT{T)=FT(t), andtz. C" RT{T)CLT = C" RT(t)dt (9) 
Jo Jo 

Assuming that the coefficient of variation of cutting tools, K, re
mains unchanged with respect to cutting parameters (velocity, feed, 
and depth of cut), it can be shown that the shape parameters of a re
liability model (in dimensionless form [13]), and the dimensionless 
random variable, T, both remain independent of these cutting pa
rameters; therefore, FT(TP), RT(TP) and So0

Tp RT(T)CIT, all remain 

independent of these cutting parameters for any known fractile TP 

[13]. 
Using equations (8) and (9), equation (7) can be rewritten as fol

lows: 

E[C(tp)\ = x tc + 
6fFT{Tp) + dpRT(Tp) J tc 

s; R(T)dr 
tL 

(10) 

Normally the depth of cut is pre-selected at the time of process 
selection, and variables to be optimized are V(or N), f, and rp . After 
substituting tc = L/fN and tr, from Table 1, equation (10) will be
come 

E[C(tp)} = xL\f-±N-i + f 3(Tp)/<"'i-i>iV<'"-1>/GtL] (11) 

where 

UrP) = [6fFT(Tp) + 6PRATP)]/ £"R(r)dT (12) 

Equation (11), in functional form, can be written as follows: 

E[C(tp)] = iM/WW) + h(Tp)Mf)MN) (13) 

where 

Table 1 Relationship Between Various Tool Life 
Fractiles and Machining Parameters 

t. = D„ /(N f d ) 
L fcL 

t = D /(H f 'd ) 
P 

t s = Dt /CM f d ) 

= G /(N f ) 
L 

= Gt /(H f ) 
P 

= Gt /(« f ) 
s 

= (B t /N)m 

- (B£ /N)m 

P 

= <Bt /H)m 

W/) = 1//. MW = 1/N, Mf) = fmi~\ and foW = Nm~\ 
and faiTp) 

is given by equation (12). Equation (11) or (13) may be optimized by 
solving the following. 

dE[C(tp)]/dTp = ais(Tp)/dTp = 0 (14) 

to obtain rp , where TP is the optimum replacement fractile (interval) 
in nondimensional form. Substitution of T P = T P into equation (11) 
or (13) results in 

E[C(tp)]\Tp='Tp = f i (W 2 (N) + MrP)Uf)MN). (15) 

For obtaining the cutting conditions for minimum expected cost per 
component, the following conditions should be satisfied: 

d/dN[E[C(tp)]\rp=*Tp] = 0 

a/df[E[C{tp)]\Tp-ip] = 0 

(16) 

(17) 

From the condition expressed in equation (14) and provided h(r) 
is an increasing function of r, the following result is obtained [13]: 

h <'->/.' 

where 

R(r)dT + R(TP) = 1/(1 - yp) (18) 

h(Tp)=f(Tp)IR{Tp) (19) 

yP = Cpicf 

f(r) = tLf(t) (20) 

h{r) = tLh(t) (21) 

Generally, for most total reliability models, a numerical solution 
of equation (18) is required to obtain TP . Substituting TP = rp into 
equation (12) and simplifying, the follwing is obtained [13]: 

MrP) = [Of ' ep]h(rp) (22) 

Satisfaction of equation (16) results in 

1 = (m - 1)[0/(1 - yp)h(Tp)\N™f"^/GtL (23) 

and satisfaction of equation (17) results in 

1 = (mi - l)[fl/(l - yPMrp)]N"i^/GtL (24) 

Unless m = mi, equations (23) and (24) cannot be solved simulta
neously and a unique minimum does not occur. In general, m j^ m\\ 
therefore, one of the variables, N or /, has to be preselected and then 
the optimal value of the other variable can be determined from either 
equation (23) or (24). There is substantial evidence [19] that mx < m; 
therefore, one approach would be to preselect the feed to be as large 
as possible to avoid breakage and/or meet a surface roughness spec
ification, then solve equation (23) to obtain the optimal spindle speed. 
This approach will be used by letting / = f0 in equation (23) to ob
tain 

N = (GtL/f0^n(m - 1)6/(1 - yp)h{T„)]-" (25) 

If 

then 

(GtL/fomi)n = BtL (26) 
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ft = BtL/[(m'~ l)0f(l - yp)h(jp)}-" (27) T ~ 1.00 

Equation (27) can also be obtained directly from equations (10), 
(11), or (13) by substituting tL = (BtL/N)m and then optimize the 
objective function with respect to T P and N(or V). In this case the 
objective function (i.e., expected cost/component) is given by 

E[C(tp)) = (xL//)[JV-i + ^ 3 ( r p ) N m - V B t L " (28). 

Differentiating equation (28) with respect to T P will result in equations 
(18) and (22). With / constant, d/dNlE[C{tp)]\r='Tp)] = 0 gives 
equation (27). 

In cases where the spindle speed is fixed, such as in transfer lines, 
the only variable which can be optimized is the feed. By substituting 
N = No in equation (24), the following expression for/ is obtained 

/ = (GtJNo^Mdm - 1)0,(1 - yP)h(rp)]~^ (29) 

Equation (28) will be used in all further analyses with \j/a{Tp) and/or 
BtL being replaced with the appropriate expression for the tool re
placement strategy being studied. An optimal value of T P and ft will 
be obtained for each tool change strategy. Even though equation (28) 
will be used, the relationships for the optimum spindle speed can be 
converted to relationships for optimum feed by making the following 
changes in the equations for ft: 

ft-**f, (1/n = m) - (1/m = nu), BtL = (GtL/fomi)n 

-* (GtJN0 ")»i, or BT = (Gr/fo mi)n ~* (G?/N0
 m)"i 

The validity of this interchange is demonstrated by comparing 
equations (27) and (29). Since 

tL = (CJV)™ = (BJN)" (30) 

and 

T = (CT/V)"> = (Br/N)m (31) 

Dividing equation (30) by (31) the following expression is obtained 

BtL = Bf/(T/tLr (32) 

Substituting equation (32) into equation (27), the optimal spindle 
speed for the preventive planned tool replacement policy is given 
by 

ft = l(T/tL)(l - 7pV»(*p)]-»[flT/(0/(m - 1))"] (33) 

For a two parameter Weibull tool reliability model, 

R(t) = expHtA/)"] (34) 

where the relationship between /? and K is as shown in Fig. 2. If T) = 
ti, then [20, 21] 

T/tL = TV, = T( l + 1/0) (35) 

and 

h(rp) = /3(?p)"-1 (36) 

Substitution of equation (25) and (26) into equation (34) results 
in 

ft = [(1 - •ypmrp)f>-^(l + l/j8)]-»[BT/(fl/(m - 1))"] (37) 

where the quantity 

BT/[(8f(m - 1))"] = ^deterministic 

is equal to the spindle speed calculated on the basis of the determin
istic approach [22]. This means that the optimal spindle speed using 
probabilistic models for tool life is a multiple of the optimum spindle 
speed calculated from the classic deterministic equation. This 
multiplying factor depends only upon the coefficient to variation, K, 
and the cost ratio, yp, because 

/? = l/K for K < 0.5 

0 =* l/K for 0.5 < K < 1.0 

"+•0.92 
- 100 

0.05 0.10 

Fig. a Graphs (/) Between Coefficient of Variation K, and Shape Parameter 
/S, and (ft) Between T(1 + 1//3) and 1/0. 

as shown in Fig. 2 and T P depends upon yp and 0 as shown in Fig. 3. 
Fig. 3 shows solutions for equation (18) for the Weibull model. 

Scheduled Tool Replacement S t ra tegy. Scheduled tool re
placements at intervals of ts, 2ts, 3ts, etc. are used with failure re
placement within the intervals and the expected variable cost/com
ponent is [13] 

Using 

E[C(t,)] = x[tc + [6, + 8fH(ts)]tc/ts 

TltL, H{T) = H(t), and rstL • 

(39) 

(40) 

0.0 0.1 0.2 0.3 0.1 0.5 0.6 0.7 0 

(38) 
Fig. 3 Optimum Preventive Planned Replacement Interval, rp, versus Cost 
Ratio Yp, for Weibull Model. 
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then equations (40) can be substituted into equation (39) to obtain 
the following: 

where 

E[C(ts)} = x[tc + g3(Tc)tc/tL] 

E[C(t.)] = (xL/f)lN-1 + 83lT,)N-'-yBtL'' 

g3(Ts) = [6S + 0/tf (TS)]/T, 

(41) 

(42) 

(43) 

Equation (42) is of the same form as equation (28) and can be opti
mized in a similar way to obtain TS and N. The differentiation with 
respect to TS results in 

where 

ys = 6s/dp = TsH(Ts)-H(Ts) 

H(T) = dH(r)ldT 

(44) 

(45) 

is the renewal density of T. Substitution of TS and differention with 
respect to N as before results in 

ft = [(T/tL)H(Ts)]-»{BT/(8/(m - 1))" (46) 

where H(TS) = [ys + H(TS)]/TS and is obtained from equation (44). 
For a Weibull model 

ft = [rs/T(l + l//3)(7» + H(ts))]
nlBrHB,(m - 1))"] (47) 

where Fig. 4 shows the relationship between r s and 7„ for various 
values of (3. Fig. 4 is obtained by solving equation (42). Reference [20] 
can be used for obtaining values of H(TS). Again, the optimum cutting 
speed is a multiple of the deterministic optimum spindle speed. 

Failure Tool Replacement Strategy. In this case, each tool is 
replaced upon failure; therefore, Bs = 0 and ts = t in equation (39). 
The expected cost ($/component) becomes 

E[C(t)] = x[tc + Bf(H(t)/t)tc] (48) 

But since t —• « for any reliability model, the following is true [19] 

H(t)/t = 1/T = mean numher of failures per unit time (49) 

Using relationship (49) in equation (48), the following is ob
tained 

E[C\ = (xL/niN-1 + OfNm-lIBr'r 

Optimization of equation (50) results in 

ft = Br/[8f(m - 1)]" 

(50) 

Equation (51) is the same as the conventional deterministic equation 
for the optimum spindle speed. 

Optimum Cutting Conditions for Multi-Tool 
Machining Operations 

Consider M cutting tools operating simultaneously on a workpiece 
at a spindle speed of N rpm. Let tci denote the cutting time of the ith 
tool,1 and let t0 = maximum \tci, tc% tc3,. . . , £CMI = L0/fBN. 

Preventive Planned Tool Replacement Strategy. The ex
pected cost per component for this case can be developed as an ex
tension of equation (10) for M tools and written as follows: 

E[C(tp)] to + E tsi(Tpi)tci/tLi (52) 

where 

$3i(Tpi) = [BfiF(Tpi) + dpiR(r -»/r R(Ti)dTi. 

The optimum value of TPI is obtained from Fig. 3. Substitution of this 
optimum value, TP;, in equation (52) results in 

E[C(tp)]\atrpi='pi = x 

where 

to + E (0fi - 6pi)h(Tpi)\it0ltu 
> = i 

(53) 

Substituting tB = L0/(f0N), and tLi = (BtLi/N)"*, in equation (53) will 
result in 

E[C(tp)] = xLJf0 ~+T. Vp - dpi]h(rPi)\N^-yBtL-i (54) 

Optimization of equation (54) with respect to spindle speed results 

M 
E 
;=i 

1 = E (Ofi - 8pi)\ih(Tpi)(mi - l)(ft/BtLi)"" (55) 

For large values of M, equation (55) can be solved using a computer 
to find ft. For small values of M, equation (55) can easily be solved 
for ft, using a hand calculator. 

A special case of considerable importance is when the tool group 
consists of M identical cutting tools, operating under identical cutting 
conditions. In this case 

mi = m, BtLi = BtL, C/i = Cp, Cp; = Cp, i_ 

0/i = 8f, dpi = dp, ypi = yp, \j = — = — = 1, 
tci to 

and 

Tpi = TP, for i = 1, 2, 3 M, and, equation (55) becomes 

1 = [MBf(l - yP)h(jp)(m - \)ft™yBtL™ (56) 

Using equation (32), equation (56) can be rewritten as follows: 

ft = [(T/tL)(l - yp)h(Tp)]-"[Brl(M8,(m - 1))"] (57) 
For the Weibull reliability model, equation (57) becomes 

ft = [1X1 + 1/(3)(1 - 7P)/?(Tp)"-1]-"[JBT/(M0 /(m - 1))"] (58) 

Scheduled Tool Replacement Strategy. The expected cost per 
component is 

E[C(ts)] = x to + E g3i(Tai)tci/tu 
i=l 

(59) 

(51) where 

g3i(Tsi)=[Bpi+6fiH(Tsi)}/Tsl 

To find TS; for a Weibull model, use Fig. 4. As in the previous section, 
expressions for t0, tu, and tci are substituted and an expected cost 
per component equation using TS; = TS; is obtained and then optimized 
with respect to N to obtain 

M 
E 

i = i 
1 = E fy[(7« + ff(?.i))/T„-][Mm.- - l)ft""/BtLi" (60) 

Again, for large values of M, equation (60) may be solved for ft using 
a computer and for small values of M, a hand calculator will be suf
ficient. 

Now consider the important case of M identical cutting tools op
erating under identical cutting conditions. Then, equation (60) will 
reduce to 

1 = M8,[{y, + H(rs))/ts](m - \)ftmIBlL
m (61) 

Substituting equation (32) into equation (61) and solving for ft results 

1 Symbol i is used to identify i th tool, or other parameters or variables defined 
in the nomenclature, which are related to the ith tool or ith operation. 

ft = [ T S / [ ( T A L ) ( T S + H(rs))]]n[Br/(MBf(m - 1))"] (62) 

For a Weibull model 

Journal of Engineering for Industry AUGUST 1980, VOL 102 / 243 
Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



/3= 7.0 / rig = v/M1^ (70) 

Fig. 4 Optimal Planned Replacement Invervals for Scheduled Replacement 
Policy for a Weibull Reliability Model. 

ft = [*J[T(l + l / f t )(7 s + H(Ts))]]"[&r/(M8/(m - 1))"] (63) 

Failure Tool Replacement Strategy. The expected cost per 
component is 

E[C] to + £ (8(i/Ti)tc (64) 

Expressions for t0, tcu and T; = (Bri/N)mi are substituted in equation 
(64) to obtain 

E[C] = (xL//0) 

Optimization of equation (65) with respect to N results in 

1/N+ £ 0/Ai2V'n'~VBTi
n 

1 = £ dfi(mi - Dhftn/Brr1 

(65) 

(66) 

Consider the case of M identical cutting tools, cutting under identical 
cutting conditions. Equation (65) will become 

ft = Br/(M8f(m- 1))" (67) 

Group Tool Replacement Strategy. Consider a group of M 
identical cutting tools (i.e., ft = ft m; = m, and Ofi = Cf or Bfi = &r, 
i= 1, 2 , . . . , M), operating under identical cutting conditions. Each 
tool has a Weibull reliability model fli(t) = R2(t) = Ra(t) = . . . = 
RM(t) = R(t) = exp[-(£/j))'3]. LetiJg(t) be the reliability model of the 
group. If failure of each tool in the group is considered statistically 
independent, then according to the product law of probabilities: 

Rg(t) = II Ri(t) = lR(t)]M= [ e x p R t / ^ F 

; exp[-M(t/ij)'3] = exp 
y/M1"3. 

(68) 

and for this case the hazard function of the group, he(t), is the sum 
of the hazard functions of individual tools [7, 20]: 

hg(t)= £ hi(t)=Mh(t) (69) 

From equation (68) it can be seen that group reliability is also de
scribed by a Weibull model with its shape parameter, ft, = ft and 
characteristic life 

Equation (70) can also be obtained directly from equation (69). 
Substituting y,g = Tg/V(l + 1/ft, and rj = T/T(l + 1/ft) in equation 
(70), the following is obtained 

(l/Tg) = M^HVT) (71) 

. where Tg 

Since T 
come 

: mean time to failure (MTTF) of the group of cutting tools. 
(Or/V)m = (Br/N)m; therefore, equation (71) will be-

(1/Tg) = M^iN/Br)" (72) 

Let Cgfjr equal the average cost of replacement per tool, under the 
group replacement strategy and 6gfir = Cgftr/x. The variable part of 
the expected machining cost per component ($/component) is given 
by [13] 

E[C] = x[t0 + M6gf,rtJTg] (73) 

As before, substitute the appropriate expression for t0 and Tg, using 
equation (72), into equation (73) to obtain; 

E[C] = (xLJf0)ll/N + M6Sf,rMVf>Nm-V(BT)m] (74) 

The optimization of equations (74) with respect to N will yield: 

ft = Br/[M1/"(04/ , rM)(m - 1)]" - (75) 

When K ->• 0, /3 ->• a, and 1//? -* 0, and equation (75) reduces to 

ft = Br/[(Megf,r)(m - l)", 

which is equal to the ft for the individual tool failure replacement 
policy which is the same as optimal spindle speed obtained using the 
deterministic approach. 

Example 
The drilling of identical holes on a multispindle drilling machine 

is a common machining operation. This operation will be used to il
lustrate the use of this theory for all four replacement strategies. This 
is a simple example but has considerable practical importance. Since 
identical drills will be used, the subscript, i, will be omitted. 

The present operating condition is that eight drills are drilling to 
a depth of 1.5 inches, at feed rate of .005 ipr, and the present operating 
speed is 220 rpm. It has been observed that the tool life, 5, is 400 holes. 
The coefficient of variation calculated using this tool life data at this 
operating condition is .333. Typically, the value of n for this type of 
tool-workpiece combination is 0.12. The estimated costs per cutting 
edge are: planned replacement (Cp = $4), failure replacement (C/ = 
$7.28), and scheduled replacement (Cs = $4). The total machine cost 
is $0.40 per minute; therefore, 8P = 8S = 10 minutes and Of = 18.2 
minutes. 

Before proceeding to evaluate the replacement strategies, the tool 
life data is used to establish the appropriate reliability model. Assume 
that the Weibull model adequately represents the data; therefore, the 
shape parameter, ft is l/K or 3.0. The characteristic life, ?], in number 
of components, is Q/T (.1 + 1//3); however, the theory presented uses 
minutes. The mean tool life in minutes is 

T = W(L/fN) = 546 minutes 

and the characteristic life is 

V = tL = T/T(l + 1/ft = 608.4 minutes 

The above data is all that is necessary to find the optimal tool re
placement interval at the present operating speed. In order to use the 
theory to find the optimal spindle speed and the new optimal re
placement interval, By and Btl must be known. Using equation (2) 
and Table 1, they are as follows: 

Br = N(T)n = 468.6 

BtL = N{tLr = 474.8 
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Preventive Planned Tool Replacement Strategy (PPTRS). 
The cost ratio, yp, is $4/$7.28 or .55, and this value is used with Fig. 
3 to obtain T P = tpli\ = 0.87. The optimal spindle speed, JV, using 
equation (58) is 205 rpm. The characteristic life at 205 rpm is 

ri = tL = (Btjft)"1 = 1095.5 minutes 

The optimum preventive planned replacement interval in number 
of components is 

QP = tp/t0 = vrpi'(.LJfoft) = 749 
* Using equation (54), the expected variable cost at 205 rpm is E[C(tp)] 

= $0.66495/component or $664.95/1000 components. 
Scheduled Tool Replacement Strategy (STRS). The cost ratio, 

ys is 0.55 and this value is used with Fig. 4 to obtain TS = ts/i] = 0.77. 
The optimal spindle speed, N, using equation (63) is 201 rpm. The 
characteristic life at 201 rpm is rj = t t = 1265.09 minutes and Qs 

equals 847.6 component^. Using equation (59), the expected variable 
cost at 201 rpm is E[C(tp)] = $0.67843/component or $678.43/1000 
components. 

Failure Tool Replacement Strategy (FTRS). Using equation 
(67), $ is 203 rpm. It follows that T at 203 rpm is 1188.8 minutes and 
Q is 804.4 components. Using equation (64), the expected variable cost 
at 203 rpm is E[C] = $0.66353/component or $663.53/1000 compo
nents. 

Group Tool Replacement Strategy (GTRS). In this case, Cgf>r 

(or 8gfir) will be slightly less than C/ (or df). This is due to the fact that 
a single tool failure causes a group failure. The remaining M — 1 tools 
will be removed prior to complete failure; therefore, there will be less 
regrinding and other replacement costs per cutting edge. In this ex
ample, let 8gff = 16 machine minutes (i.e., Cg/ir = $6.4/cutting edge). 
Using equation (75), N is 190 rpm and 

T = iBf/ft)"1 = 1849.5 minutes 

Tg = T/M1"1 = 925.43 minutes 
* 

Qg = Tg/t0 = 586 components 

Table 2 compares the results for all four replacement strategies. 
Suppose that by proper regrinding of the tools, using better quality 
tool material and better control of the overall machining process, the 
coefficient of variation could be decreased to 0.2. While this is not 
generally the objective of tool builders and users, reduction in tool life 
variability (i.e., reduction in coefficient of variation) has been strongly 
recommended, see discussion by Black and Cohen (4). The new results 
for K - 0.2, and yp = ya = 0.55, and for yp = ys = .3, are presented 
in Tables 3 and 4. 

C o n c l u s i o n s 
The significance of the coefficient of variation of cutting tools in 

machining economics is illustrated. The equations developed in this 
paper require that the coefficient of variation be independent of the 
cutting parameters. When K is not independent of the cutting pa
rameters, the exponents n, n\, n^ in the tool life equation will also vary. 
Investigations are continuing on how this theory can be modified for 
the condition when K is a function of the cutting parameters. 

Using the Weibull model, the effect of tool life scatter and the cost 
ratio on the optimum tool replacement interval for preventive and 
scheduled tool replacement strategies is shown in Figs. 3 and 4. These 
same relationships have been developed for other reliability models 
[13]. 

The optimum spindle speed using probabilistic models of tool life 
is a multiple of the optimum spindle speed calculated from the classic 
deterministic equations. This multiplying factor is dependent upon 
the coefficient of variation; preventive or scheduled replacement and 
failure replacement cost ratio; and the tool replacement strategy. 
Tables 2, 3 and 4 show that when the cost ratio (i.e., ys or yp) and/or 
coefficient of variation, K decreases, this multiplying factor increases 
the optimal spindle speed based on a deterministic model to a level 
that can substantially increase productivity. For smaller values of 7S 

or yp and/or smaller values of K, the cost effectiveness of preventive 

Table 2 Results of Computations when K = .333, yp 
.55,7S = .55 

Tool Replacement S t ra t egy 

* 
N, rpm 

Optimum planned replacement i n t e r -* 
v a l or Average L i fe a t N, <ff of 

Components) 

Expected coat/1000 Components, $ 

PPTRS 

205 

Q " 290 

665 

STRS 

201 

6̂  - 848 

678.4 

FTRS 

203 

Q - 804 

663.53 

GTRS 

190 

Q » 586 

719 

Table 3 Comparison of Various Replacement 
Strategies when K = 0.2 and 7 P = 7S = .55 

Tool Replacement S t ra t egy 

* 
N, rpm 

Optimum planned replacement I n t e r 

va l or Average Life a t N, (# of 

Components) 

Expected Cost/1000 Components, $ 

PPTRS 

208 

5 - 520 
P 

654.6 

STRS 

218 

Q - 324 
P 

677 

FTRS 

203 

Q =804 

663.53 

GTRS 

196 

Q = 615 

695.5 

Table 4 Comparison of Various Replacement 
Strategies when K = 0.2, and yp = ys = .3 

Tool Replacement S t ra tegy 

N, rpm 

Optimum planned replacement i n t e r 

val or Average Life a t N, (// of 

Components) 

Expected Cost/1000 Components, $ 

PPTRS 

207 

Qp - 429 

653.7 

STRS 

204 

Qa - 439 

675.1 

FTRS 

191 

Q - 1127 

713.4 

GTRS 

+186 

\ " 9°3 

733.7 

25 machine minutes 

and scheduled replacement policy increases as compared to the failure 
replacement policy. 

The most important conclusion concerns how this approach relates 
to current methods for optimization of machining operations. Sim
ulation has been the primary approach for stochastic optimization. 
By directly using the probability model with classical optimization 
techniques, a more direct and efficient way is available to obtain op
timal cutting conditions. Additionally it has the potential to be used 
as an in-process decision making model. Classical optimization ap
proaches using deterministic variables can be enriched by using the 
probability models and replacement strategies that have been in
vestigated in this research. For these reasons, more effort should be 
made to expand the use of probability models and replacement 
strategies in a variety of automatic production systems. 
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