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Uncertainty is common in ship construction. However, few studies have focused on scheduling problems under uncertainty in
shipbuilding. This paper formulates the scheduling problem of panel block construction as a multiobjective fuzzy flow shop
scheduling problem (FSSP) with a fuzzy processing time, a fuzzy due date, and the just-in-time (JIT) concept. An improved
multiobjective particle swarm optimization called MOPSO-M is developed to solve the scheduling problem. MOPSO-M utilizes
a ranked-order-value rule to convert the continuous position of particles into the discrete permutations of jobs, and an available
mapping is employed to obtain the precedence-based permutation of the jobs. In addition, to improve the performance ofMOPSO-
M, archive maintenance is combined with global best position selection, and mutation and a velocity constriction mechanism are
introduced into the algorithm.The feasibility and effectiveness ofMOPSO-M are assessed in comparison with general MOPSO and
nondominated sorting genetic algorithm-II (NSGA-II).

1. Introduction

Large bulk carriers, tankers, and container ships are charac-
terized by large block coefficients and long parallel middle
bodies. Consequently, there is a significant demand for panel
blocks. To improve the efficiency of panel block construction,
most large shipyards establish an assembly line for panel
blocks. However, many shipyards in China face the problem
that panel block assembly line scheduling often does not
work for actual production. The scheduling problem of
panel block construction is a type of flow shop scheduling
problem (FSSP). Normally, FSSPs consist of determining
the sequence for processing 𝑛 jobs on 𝑚 machines, where
each job is processed on all of the machines in the same
order. FSSPs are a type of nondeterministic polynomial-hard
(NP-hard) combinational optimization problems. Heuristic
or metaheuristic algorithms are considered to be suitable for
solving FSSPs.

In most cases, FSSPs are considered in deterministic
environments where the parameters, including the process-
ing time and due date, are taken as crisp values. Neverthe-
less, the temporal parameters cannot be evaluated precisely

in real-world production because of machine and human
factors. This could be the major reason that flow shop
scheduling often does not apply to actual production.Thus, it
is more reasonable to model FSSPs with imprecise and vague
parameters. Approaches to model this type of problem based
on the concept of fuzzy sets have been widely studied in
recent decades (e.g., Tsujimura et al. [1]; Itoh and Ishii [2];Wu
[3]; Huang et al. [4]). These problems are called fuzzy FSSPs
because the imprecise and vague parameters are expressed as
fuzzy parameters. In general, fuzzy FSSPs can be classified
into three main classes: fuzzy FSSPs with a fuzzy due date,
fuzzy FSSPs with a fuzzy processing time, and fuzzy FSSPs
with both a fuzzy processing time and a fuzzy due date.

Multiple objectives should be taken into account in FSSPs.
Multiple objectives increase the complexity of FSSPs but
make them more similar to actual production. Many studies
have examined multiobjective FSSPs. Sun et al. [5] and
Yenisey andYagmahan [6] provided two independent reviews
and reported details about the development of multiobjective
FSSPs and methods for solving such problems. However, few
studies have been devoted to multiobjective fuzzy FSSPs.
Kahraman et al. developed a new artificial immune system
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Figure 1: A typical assembly line for panel blocks.

(AIS) algorithm to solve a multiobjective fuzzy FSSP with
both a fuzzy processing time and a fuzzy due date.The objec-
tives were to minimize the average tardiness and the number
of tardy jobs [7]. Engin et al. [8] proposed a scatter search
(SS) method to solve a multiobjective fuzzy FSSP that is
similar to Kahraman’s method. Nakhaeinejad and Nahavandi
integrated the technique for order preference by similarity
to an ideal solution (TOPSIS) method with the interactive
resolution method to solve a multiobjective fuzzy FSSP with
a fuzzy processing time. The objectives were to minimize the
completion time, the mean flow time, and the machine idle
time [9]. Several studies on multiobjective fuzzy job shop
scheduling problems (JSSPs) are applicable because FSSPs are
a special case of JSSPs. Sakawa and Kubota [10] employed
genetic algorithms to solve a multiobjective fuzzy JSSP with a
fuzzy processing time and a fuzzy due date. Xing et al. [11] and
González-Rodŕıguez et al. [12] also used genetic algorithms to
solve multiobjective fuzzy JSSPs. Generally, the objectives of
multiobjective fuzzy JSSPs includeminimizing themaximum
fuzzy completion time, minimizing the number of tardy jobs,
maximizing the minimum agreement index of the fuzzy due
date and fuzzy completion time, and maximizing the average
agreement index. These objectives can also be considered in
multiobjective fuzzy FSSPs.

Multiobjective fuzzy FSSPs can be considered to be
similar to a host of actual flow shop production cases.
However, other conditions should be applied to some mul-
tiobjective fuzzy FSSPs. For example, in an assembly line for
panel blocks, the just-in-time (JIT) idea, which requires the
necessary products to be produced in the necessary quantities
at the necessary times, should be taken into account because
panel blocks are intermediate products in hull construction
systems. In this paper, we formulate the scheduling problem

of panel block construction as a multiobjective fuzzy FSSP
with a fuzzy processing time, a fuzzy due date, and the JIT
idea. The JIT concept determines the existence of prece-
dence relations among the panel blocks to be constructed
as well as the expression of the fuzzy due date. To solve
the multiobjective complex FSSP, we propose an improved
algorithm called MOPSO-M that introduces mutation and a
velocity constrictionmechanism to particle swarm optimiza-
tion (PSO) and implements a hybrid procedure to combine
archive maintenance with global best position selection.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the scheduling problem of panel block con-
struction. Section 3 introduces operations on fuzzy numbers
that are needed to formulate scheduling problems. Section 4
introduces the proposed algorithm for solving the scheduling
problem of panel block construction. Computational results
are reported in Section 5 and are followed by the conclusions
in Section 6.

2. Scheduling Problem of Panel
Block Construction

2.1. Problem Description. Hull construction systems are mul-
tilevel production systems. Generally, a ship hull is assembled
from dozens of hull blocks. A hull block is composed of
several subblocks, most of which are panel blocks. More-
over, every panel block is constructed with steel plants and
sections. As shown in Figure 1, a typical assembly line for
panel blocks that can assemble and weld various types of steel
plants and sections usually consists of seven main processes,
including baseplate splicing, baseplate welding, longitudinal
assembly, longitudinal welding, girders and floors assembly,
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girders and floors welding, and checking and carting. Each
process is implemented at its corresponding station. Every
panel block to be constructed must visit the stations one by
one.

During production, the processing time of each process
is often affected by uncertainty, imprecision, and vagueness
due to both machine and human factors. In this situation,
it is more appropriate to estimate both the processing time
and the due date while considering the uncertainty. As
intermediate products of hull blocks, panel blocks must
prioritize the requirements of the hull block assembly because
of geometric and processing constraints. The JIT concept
includes precedence relations among the panel blocks that
are to be constructed. Additionally, the JIT concept defines
an uncertain due date as follows: “in principle, due dates are
expected to be met, but certain earliness and tardiness limits
can be tolerated, and longer ones will have lower values.”

Thus, the scheduling of panel block construction focuses
on finding proper sequences for processing the required
panel blocks on the assembly line with a fuzzy processing
time, a fuzzy due date, and precedence relations to attain
specific objectives. This problem can be summarized as a
multiobjective complex FSSP and is considered and analyzed
below.

A set of panel blocks to be constructed with precedence
relations will be processed sequentially at station 1, station 2,
and so on until the final station.The stations are continuously
available. At any time, each station can process a maximum
of one panel block, and each panel block can be processed at
a maximum of one station. Preemption is not allowed; that is,
the processing of a panel block at a station cannot be inter-
rupted. All of the panel blocks are available for processing at
time zero. The set-up times at the stations are included in the
processing time, while the transportation times between the
stations are negligible. The fuzzy processing time and fuzzy
due date are represented by fuzzy numbers. The notations of
the scheduling problem of the panel block construction are
as follows:

𝑛: number of panel blocks to be constructed,
𝑚: number of stations,
𝑖: index of panel blocks, 𝑖 ∈ {1, 2, . . . , 𝑛},
𝑗: index of stations, 𝑗 ∈ {1, 2, . . . , 𝑚},
�̃�
𝑖,𝑗
: fuzzy processing time of panel block 𝑖 at station

𝑗,
̃
𝑑
𝑖
: fuzzy due date of panel block 𝑖,

�̃�
𝑖,𝑗
: fuzzy completion time of panel block 𝑖 at station

𝑗,
�̃�
𝑖
: final fuzzy completion time (makespan) of panel

block 𝑖.

2.2. Problem Formulation. In this paper, the fuzzy processing
time is taken as a triangular fuzzy number and is denoted as
�̃�
𝑖,𝑗

= (𝑝
𝑂

𝑖,𝑗
, 𝑝
𝑖,𝑗
, 𝑝
𝑃

𝑖,𝑗
), which includes three parameters: the

optimistic value (𝑝𝑂
𝑖,𝑗
), the most plausible value (𝑝

𝑖,𝑗
), and

the pessimistic value (𝑝𝑃
𝑖,𝑗
). The membership function of

the triangular fuzzy processing time is formulated as in the
following equation and as shown in Figure 2(a):
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(1)

The fuzzy due date is considered as a trapezoidal fuzzy
number. For a trapezoidal fuzzy due date that is denoted as
̃
𝑑
𝑖
= (𝑑

𝐿

𝑖
, 𝑑
𝐸1

𝑖
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𝑖
and 𝑑

𝑈

𝑖
are the lower and upper

bounds of the fuzzy due date, respectively, and 𝑑
𝐸1

𝑖
and 𝑑

𝐸2

𝑖

represent the expected due date interval (𝑑𝐸1
𝑖
, 𝑑
𝐸2

𝑖
).Themem-

bership function of the trapezoidal fuzzy due date is given by
(2) and is shown in Figure 2(b); it represents the degree of
satisfaction with respect to the final completion time:
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(2)

Let 𝜋 = [𝜋
1
, 𝜋
2
, . . . , 𝜋

𝑛
] denote a permutation of jobs (i.e.,

the panel blocks to be constructed). Suppose that the job 𝑖

is allocated at the 𝑘th position of 𝜋. The fuzzy completion
times of the panel blocks can be calculated using the following
formulas:
�̃�
𝜋1,1

= �̃�
𝜋1,1

, (3)

�̃�
𝜋1,𝑗
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+ �̃�
𝜋1,𝑗

, 𝑗 ∈ {2, . . . , 𝑚} , (4)
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,
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𝑖
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. (7)

The fuzzy completion time of each panel block has the
same structure as the fuzzy processing time. The final fuzzy
completion time, which is denoted as �̃�

𝑖
= (𝐶

𝑂

𝑖
, 𝐶
𝑖
, 𝐶
𝑃

𝑖
), also

includes three parameters: the optimistic value (𝐶𝑂
𝑖
), themost

plausible value (𝐶
𝑖
), and the pessimistic value (𝐶𝑃

𝑖
).

The completion time is always expected to meet the due
date. The agreement index (AI) of the fuzzy completion time
with respect to the fuzzy due date is often used to represent
the portion of �̃�

𝑖
that meets ̃

𝑑
𝑖
. The AI, which is defined

in (8) and is shown in Figure 2(c), indicates the degree of
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and ̃

𝑑
𝑖
:
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Figure 2: (a) Membership function of the triangular fuzzy processing time; (b) membership function of the trapezoidal fuzzy due date; (c)
agreement index (AI).

The precedence relations between the panel blocks to be
constructed can be depicted in matrix form as in (9). This

equation can express the precedence relations between two
arbitrary panel blocks that are to be constructed:

PR
𝑖,𝑘

=

{
{
{
{

{
{
{
{

{

1, if the completion of block 𝑖 must precede that of block 𝑘 (𝑖 ≫ 𝑘) ,

−1, if the completion of block 𝑖 must ∀𝑖, 𝑘 ∈ {1, 2, . . . , 𝑛} lag behind that of block 𝑘 (𝑖 ≪ 𝑘) , 𝑖 ̸= 𝑘,

0, otherwise.

(9)

To more accurately reflect real-world situations, we for-
mulate the scheduling problem as a three-objective prob-
lem that not only minimizes the fuzzy makespan but also
maximizes the average agreement index and the minimum
agreement index:

minimize 𝑓
1
= makespan = max

𝑖=1,2,...,𝑛

�̃�
𝑖
, (10)

maximize 𝑓
2
= AI = 1

𝑛

𝑛

∑

𝑖=1

AI
𝑖
, (11)

maximize 𝑓
3
= AImin = min

𝑖=1,2,...,𝑛

AI
𝑖
. (12)

In summary, this paper formulates the scheduling prob-
lem of panel block construction as amultiobjective fuzzy flow
shop scheduling problem with precedence relations.

3. Operations on Fuzzy Numbers

Equations (4)–(6) and (10) show that some operations
on fuzzy numbers are essential to the formulation of
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the scheduling problem. These operations involve the addi-
tion operation, the max operation, and the ranking method
for two or more fuzzy numbers.

According to the extension principle of Zadeh, the mem-
bership function of the addition operation (+) for two fuzzy
numbers is given by

𝜇
�̃�+�̃�

(𝑧) = sup
𝑧=𝑥+𝑦

min {𝜇
�̃�
(𝑥) , 𝜇

�̃�
(𝑦)} . (13)

For two triangular fuzzy numbers �̃� = (𝑎
1
, 𝑎
2
, 𝑎
3
) and �̃� =

(𝑏
1
, 𝑏
2
, 𝑏
3
),

�̃� + �̃� = (𝑎
1
+ 𝑏

1
, 𝑎
2
+ 𝑏

2
, 𝑎
3
+ 𝑏

3
) . (14)

The membership function of the max operation (∨) for
two fuzzy numbers is defined as

𝜇
�̃�∨�̃�

(𝑧) = sup
𝑧=𝑥∨𝑦

min {𝜇
�̃�
(𝑥) , 𝜇

�̃�
(𝑦)} . (15)

However, based on the extension principle, the fuzzy number
that is obtained as the result of the max operation (∨) for two
triangular fuzzy numbers is not always a triangular structure.
Two approximations for the max operation, which were
proposed by Sakawa and Mori [13] and Lei [14], are widely
used in fuzzy processing time studies. Sakawa’s criterion
states that the approximatemax is a triple composed of �̃� and
�̃�; according to Lei’s criterion, the approximate max is either
�̃� or �̃�. The two criteria are given below.

Sakawa’s criterion is

max (�̃�, �̃�) = �̃� ∨ �̃� ≃ (𝑎
1
∨ 𝑏

1
, 𝑎
2
∨ 𝑏

2
, 𝑎
3
∨ 𝑏

3
) . (16)

Lei’s criterion is as follows:

if �̃� > �̃�, then max (�̃�, �̃�) = �̃� ∨ �̃� ≃ �̃�; else �̃� ∨ �̃�

≃ �̃�.

(17)

As shown in (10) and (17), obtaining the fuzzy makespan
and approximating the fuzzy max using Lei’s criterion both
require a ranking method for fuzzy numbers.This paper uses
the following three criteria to rank triangular fuzzy numbers
[10].

Criterion 1. The greatest associate ordinary number

𝐶
1
(�̃�) =

𝑎
1
+ 2𝑎

2
+ 𝑎

3

4

(18)

is used as the first criterion to rank the triangular fuzzy
numbers.

Criterion 2. If 𝐶
1
does not rank the fuzzy numbers, then the

best maximal presumption

𝐶
2
(�̃�) = 𝑎

2 (19)

is chosen as the second criterion.

Criterion 3. If𝐶
1
and𝐶

2
do not rank the fuzzy numbers, then

the difference of the spreads

𝐶
3
(�̃�) = 𝑎

3
− 𝑎

1 (20)

is utilized as the third criterion. The three criteria allow
almost all triangular fuzzy numbers to be ranked. For exam-
ple, if 𝐶

1
(�̃�) > 𝐶

1
(�̃�), then �̃� > �̃�; if 𝐶

1
(�̃�) = 𝐶

1
(�̃�) and

𝐶
2
(�̃�) > 𝐶

2
(�̃�), then �̃� > �̃�; if 𝐶

1
(�̃�) = 𝐶

1
(�̃�), 𝐶

2
(�̃�) =

𝐶
2
(�̃�), and 𝐶

3
(�̃�) = 𝐶

3
(�̃�), then �̃� > �̃�.

Lei’s criterion employs the three criteria that are described
above to obtain the approximate max, while Sakawa’s crite-
rion forms the approximate max by comparing three pairs of
special points. Lei’s criterion provides a better approximation
to the real max than Sakawa’s criterion [14]. Accordingly, we
employ Lei’s criterion to approximate the fuzzy max in this
paper.

4. MOPSO-M for the Scheduling Problem

4.1. PSO Algorithm. Particle swarm optimization is a pop-
ulation-based stochastic optimization technique that was
proposed by Kennedy and Eberhart [15]. In PSO, each
potential solution is treated as a particle that possesses two
attributes: position and velocity. Each particle flies in the
search space (i.e., the solution space) at a certain velocity,
which is dynamically adjusted according to the flying expe-
riences of it and its companions. In a 𝐷-dimensional search
space, the velocity of every particle is updated in accordance
with the following equation:

𝑉
𝑞 (
𝑘 + 1) = 𝜔𝑉

𝑞 (
𝑘) + 𝑟

1
𝑐
1
[𝑋

𝑝𝑏𝑒𝑠𝑡

𝑞
(𝑘) − 𝑋

𝑞 (
𝑘)]

+ 𝑟
2
𝑐
2
[𝑋

𝑔𝑏𝑒𝑠𝑡
(𝑘) − 𝑋

𝑞 (
𝑘)] ,

(21)

where 𝑉
𝑞
(𝑘) = {V

𝑞,1
(𝑘), V

𝑞,2
(𝑘), . . . , V

𝑞,𝐷
(𝑘)} and 𝑋

𝑞
(𝑘) =

{𝑥
𝑞,1
(𝑘), 𝑥

𝑞,2
(𝑘), . . . , 𝑥

𝑞,𝐷
(𝑘)} represent the velocity and posi-

tion of the 𝑞th particle at the 𝑘th iteration, respec-
tively, 𝑋𝑝𝑏𝑒𝑠𝑡

𝑞
(𝑘) = {𝑥

𝑝𝑏𝑒𝑠𝑡

𝑞,1
(𝑘), 𝑥

𝑝𝑏𝑒𝑠𝑡

𝑞,2
(𝑘), . . . , 𝑥

𝑝𝑏𝑒𝑠𝑡

𝑞,𝐷
(𝑘)} denotes

the best previous position of the 𝑞th particle, 𝑋𝑔𝑏𝑒𝑠𝑡(𝑘) =

{𝑥
𝑔𝑏𝑒𝑠𝑡

1
(𝑘), 𝑥

𝑔𝑏𝑒𝑠𝑡

2
(𝑘), . . . , 𝑥

𝑔𝑏𝑒𝑠𝑡

𝐷
(𝑘)} represents the global best

position that has been detected in the swarm, 𝜔 is the
inertia weight that controls the impact of the current velocity
on the new velocity, 𝑐

1
and 𝑐

2
are learning factors that

represent the relative influences of the self-cognition and
social-interaction, respectively, and 𝑟

1
and 𝑟

2
are uniform

random numbers in the interval (0, 1). In this paper, we
consider a modified version of PSO that was proposed by
Clerc and Kennedy [16], which incorporates a parameter 𝜒
that is known as the constriction factor. The velocity of every
particle is updated through the following equation:

𝑉
𝑞 (
𝑘 + 1) = 𝜒 {𝑉

𝑞 (
𝑘) + 𝑟

1
𝑐
1
[𝑋

𝑝𝑏𝑒𝑠𝑡

𝑞
(𝑘) − 𝑋

𝑞 (
𝑘)]

+ 𝑟
2
𝑐
2
[𝑋

𝑔𝑏𝑒𝑠𝑡
(𝑘) − 𝑋

𝑞 (
𝑘)]} ,

(22)

where 𝜒 = 2/|2 − 𝜑 − √𝜑
2
− 4𝜑|, 𝜑 = 𝑐

1
+ 𝑐

2
, 𝜑 > 4. The

main role of the constriction factor is to alleviate the swarm
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explosion effect and ensure convergence of the PSO. The
position of every particle is updated as

𝑋
𝑞 (
𝑘 + 1) = 𝑋

𝑞 (
𝑘) + 𝑉

𝑞 (
𝑘 + 1) . (23)

It is clear that the velocity and position of every particle
are updated continuously and that the PSO is suited to a
continuous solution space.

Due to its advantages, including its simplicity, easy imple-
mentation, and low computational cost, PSOhas been used in
a wide variety of optimization problems. Several researchers
have extended PSO for scheduling problems that are set
in discrete spaces. Liao et al. developed a PSO algorithm
for FSSPs with three incommensurable objectives. They also
attempted to incorporate a local search scheme into the
proposed algorithm [17]. Rahimi-Vahed and Mirghorbani
[18] utilized a PSO algorithm in a bicriteria FSSP. Sha
and Hung Lin [19] provided a PSO-based multiobjective
algorithm for FSSPs. Applications of PSO have also been
reported in the area of fuzzy scheduling problems. Lei [20]
proposed a Pareto archive PSO algorithm for multiobjective
JSSPs with both fuzzy processing times and fuzzy due dates.
Niu et al. [21] redefined and modified PSO by introducing
genetic operators, and Li and Pan [22] hybridized PSO with a
tabu search (TS) to solve FSSPs with fuzzy processing times.
The major issue in successfully applying PSO to scheduling
problems is to develop an effective problem mapping and
solution generation mechanism [23].

4.2. The Proposed Algorithm. This paper proposes a multiob-
jective algorithm (we call it MOPSO-M) to solve the schedul-
ing problem of panel block construction that possesses fuzzy
processing times, fuzzy due dates, precedence relations, and
multiple objectives. As a multiobjective algorithm, MOPSO-
M is developed based on the concept of Pareto optimality as
described below.

For a multiobjective optimization problem with 𝑇 deci-
sion variables and 𝐿 objectives,

minimize 𝐹 (𝑋) = [𝑓
1 (
𝑋) , 𝑓2 (

𝑋) , . . . , 𝑓𝐿 (
𝑋)] , (24)

where 𝑋 ∈ Θ ∈ R𝑇, Θ is the search space, and 𝐹(𝑋) ∈ R𝐿.
A solution𝑋

0
∈ Θ is said to dominate another solution𝑋

1
∈

Θ, which is represented as 𝑋
0
≻ 𝑋

1
, if and only if 𝑓

𝑙
(𝑋
0
) ≤

𝑓
𝑙
(𝑋
1
) ∀𝑙 ∈ {1, 2, . . . , 𝐿}, 𝑓

𝑙
(𝑋
0
) < 𝑓

𝑙
(𝑋
1
) ∃𝑙 ∈ {1, 2, . . . , 𝐿}.

𝑋
0
is said to be nondominated regarding a given set if 𝑋

0
is

not dominated by any solution in the set. 𝑋
0
is said to be a

Pareto optimal solution if and only if ¬∃𝑋
1
∈ Θ : 𝑋

1
≻ 𝑋

0
.

The proposed algorithm is described in detail below.

4.2.1. Solution Representation. Finding a suitable mapping
between the position of the particles and the job sequence
is crucial to the application of PSO to FSSPs. In MOPSO-
M, a ranked-order-value (ROV) rule [24] that is based
on a random key representation is utilized to convert the
continuous positions of particles to the discrete permutations
of jobs. In particular, for a position𝑋

𝑞
= [𝑥

𝑞,1
, 𝑥
𝑞,2
, . . . , 𝑥

𝑞,𝑛
],

the position values from smallest to largest are mapped to
rank values from 1 to 𝑛, which generates a permutation of

Table 1: Example of the mapping between the position of the
particle and the permutation of jobs.

Dimension number (𝑑) 1 2 3 4
Position value (𝑥

𝑞,𝑑
) 0.138 1.542 2.306 1.542

Rank value 1 2 4 3
Note: 𝑛 = 4,𝑋𝑞 = [0.138, 1.542, 2.036, 1.542], and 𝜋 = [1, 2, 4, 3].

jobs 𝜋 = [𝜋
1
, 𝜋
2
, . . . , 𝜋

𝑛
]. If there are two or more identical

position values, the one with the smaller dimension has
priority to be mapped to the rank value. Table 1 presents
a simple example that illustrates the ROV rule. Note that
the ROV rule is more available for a flow shop scheduling
problem with a relatively large number of jobs (e.g., 𝑛 = 10,
20, or larger), for in such cases the problem that different
positions of the particles map to the same permutations of
jobs is pretty rare and has little or no adverse effect on the
effectiveness of the optimization algorithms.

In MOPSO-M, the precedence relations among the
required panel blocks are not handled based on the particle
position but on the permutation of jobs. To obtain the
precedence-based permutation 𝜋

PR, an available mapping is
constructed using a five-step process:

(1) Initialize 𝜋PR
= [ ], 𝜋 = [𝜋

1
, 𝜋
2
, . . . , 𝜋

𝑛
].

(2) Let 𝑑 = 1.
(3) Identity the 𝑑th dimension value of 𝜋, which is

represented by 𝜋(𝑑); if the job that precedes 𝜋(𝑑) has
not yet been added to 𝜋

PR, then go to (4); else, go to
(5).

(4) Let 𝑑 = 𝑑 + 1; go to (3).

(5) Add 𝜋(𝑑) to 𝜋
PR and take it as the last dimension

value; delete 𝜋(𝑑) from 𝜋; if 𝜋 = [ ], then output 𝜋PR;
else, go to (2).

Table 2 shows an example that uses themapping to obtain
the precedence-based permutation.

4.2.2. Outline of MOPSO-M. In order to improve the search
capability of MOPSO-M, we apply the mechanism that
was introduced in SMPSO [25] for further bounding the
accumulated velocity of each variable 𝑑 (in each particle)
using the following velocity constriction equation:

V
𝑞,𝑑 (

𝑘 + 1)

=

{
{
{
{

{
{
{
{

{

delta
𝑑
, if V

𝑞,𝑑 (
𝑘 + 1) > delta

𝑑
,

−delta
𝑑
, if V

𝑞,𝑑 (
𝑘 + 1) > delta

𝑑
∀𝑑 ∈ {1, 2, . . . , 𝐷} ,

V
𝑞,𝑑 (

𝑘 + 1) , otherwise,

(25)

where delta
𝑑
= (upper limit

𝑑
− lower limit

𝑑
)/2. In summary,

the velocity of every particle is calculated by (22), and the
resulting velocity is then constrained by (25). The position of
every particle is updated through (23).

In MOPSO-M, an external archive (Ar) is used to
store the nondominated solutions that are produced during
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Table 2: Example of the mapping for obtaining the precedence-based permutation.

Initialization Precedence Process of mapping
𝜋
PR

= [], PR
4,2

= 1, (1) 𝑑 = 1, 𝜋(1) = 1, 𝜋PR
= [1], 𝜋 = [2, 4, 3]

𝜋 = [1, 2, 4, 3] PR
2,4

= −1, (2) 𝑑 = 1, 𝜋(1) = 2, go to (4), 𝜋PR
= [1]

(4 ≫ 2) (3) 𝑑 = 2, 𝜋(2) = 4, 𝜋PR
= [1, 4], 𝜋 = [2, 3]

(4) 𝑑 = 1, 𝜋(1) = 2, 𝜋PR
= [1, 4, 2], 𝜋 = [3]

(5) 𝑑 = 1, 𝜋(1) = 3, 𝜋PR
= [1, 4, 2, 3], 𝜋 = [],

Output 𝜋PR
= [1, 4, 2, 3]

the search process. Ar is updated at every iteration, and
𝑋
𝑔𝑏𝑒𝑠𝑡 of the particles are selected from the nondominated

solutions in Ar. The algorithm may get stuck in local
optima if the members of Ar lack diversity. This motivates
the introduction of mutation to potentially produce new
nondominated solutions and to provide new members for
Ar. Mutation operator has been usually used in MOSPO.
SMPSO applies a polynomial mutation to the 15% of the
particles [25]. OMOPSO utilizes a combination of uniform
and nonuniformmutation to the particle swarm [26]. PAPSO
performs mutation on archive members [20]. In MOPSO-
M, the mutation operators, including SWAP, INSERT, and
INVERSE, are applied to the copy of the solutions at
every iteration to generate neighboring solutions and to
improve the performance of the neighborhood search. The
above three operators are described below.

SWAP. Randomly select two different elements from a
sequence and then swap them.

INSERT. Randomly choose two different elements from a
sequence and then insert the back one before the front one.

INVERSE. Invert the subsequence between two different
random positions of a sequence.

MOPSO-M is outlined as follows.

(1) Iteration = 0: initialize a population of Ps particles;
obtain 𝜋

PR
0

with respect to each solution; evaluate the
objective vector of each solution and store the non-
dominated individuals of 𝑆

0
(i.e., the set of solutions)

in Ar
0
; determine 𝑋

𝑝𝑏𝑒𝑠𝑡
(0) and 𝑋

𝑔𝑏𝑒𝑠𝑡
(0) for each

particle.

(2) Iteration = 𝑘+1: update𝑉(𝑘+1) and𝑋(𝑘+1) of each
particle using (22), (25), and (23); obtain 𝜋

PR
𝑘+1

with
respect to each solution; evaluate the objective vector
of each solution, find the nondominated individuals
of 𝑆

𝑘+1
, and store them in set𝑁𝑑

𝑘+1
.

(3) Copy the members of 𝑆
𝑘+1

to 𝑆𝐶
𝑘+1

; perform mutation
on the members of 𝑆𝐶

𝑘+1
and produce neighboring

solutions; rename 𝑆
𝐶

𝑘+1
to 𝑆

𝑀

𝑘+1
; obtain 𝜋

PR(𝑀)
𝑘+1

with
respect to each solution; evaluate the objective vector
of each solution, find the nondominated individuals
of 𝑆𝑀

𝑘+1
, and store them in set𝑁𝑑

𝑀

𝑘+1
.

(4) Maintain Ar
𝑘+1

and select 𝑋
𝑔𝑏𝑒𝑠𝑡

(𝑘 + 1) for every
particle;𝑋𝑝𝑏𝑒𝑠𝑡

𝑞
(𝑘+1) is updated with𝑋

𝑞
(𝑘) if𝑋

𝑞
(𝑘) ≻

𝑋
𝑝𝑏𝑒𝑠𝑡

𝑞
(𝑘).

(5) If the terminal condition is met, then output the
optimal solutions and the optimal objective vectors;
else, let iteration ← iteration + 1 and go to (2).

The procedure of archive maintenance and 𝑋
𝑔𝑏𝑒𝑠𝑡 selec-

tion is detailed in Section 4.2.3. The mutation operators,
including SWAP, INSERT, and INVERSE, are randomly
implemented on the members of 𝑆𝐶

𝑘+1
.

4.2.3. Archive Maintenance and𝑋𝑔𝑏𝑒𝑠𝑡 Selection. The number
of nondominated solutions in Ar is limited by the prede-
termined maximum archive size 𝑠

𝑀
. When the actual size

of Ar, which is denoted as 𝑠
𝐴
, reaches 𝑠

𝑀
, Ar must decide

which solution should be replaced by a new nondominated
solution. The crowding distance, which is defined as a
density-estimationmetric [27], is usually used to select which
solution to replace and to promote the diversity of the stored
solutions inmultiobjective PSO (e.g., Nebro et al. [25]; Raquel
and Naval Jr. [28]). Generally, when Ar is full, the solution
that has the smallest crowding distance is preferably replaced.

Archive maintenance and𝑋𝑔𝑏𝑒𝑠𝑡 selection are two impor-
tant procedures in the PSO-based multiobjective algorithm.
MOPSO-M combines these two procedures by referring to
Lei’s method [20]. The hybrid procedure of archive mainte-
nance and𝑋

𝑔𝑏𝑒𝑠𝑡 selection is presented below.

(1) Assign all members of Ar
𝑘
to Ar

𝑘+1
; let 𝑋𝑔𝑏𝑒𝑠𝑡

𝑞
(𝑘) ←

𝑋
𝑔𝑏𝑒𝑠𝑡

𝑞
(𝑘 + 1).

(2) For each solution 𝑋
𝑁
(𝑘 + 1) ∈ 𝑁𝑑

𝑘+1
or 𝑁𝑑

𝑀

𝑘+1
, if it

is dominated by any member of Ar
𝑘+1

, then exclude
it from the archive; else, first insert it into Ar

𝑘+1
and

take it as a new member; go to (3) or (4).

(3) For each new member 𝑋
𝑁
(𝑘 + 1), if it dominates

some members of Ar
𝑘+1

, then remove the dominated
members from the archive and substitute 𝑋

𝑁
(𝑘 + 1)

for the 𝑋𝑔𝑏𝑒𝑠𝑡(𝑘 + 1) of all of the particles in the set
{𝑞 | 𝑋

𝑔𝑏𝑒𝑠𝑡

𝑞
(𝑘+1) = 𝑋

𝐷
(𝑘+1), 𝑋

𝑁
(𝑘+1) ≻ 𝑋

𝐷
(𝑘+1) ∈

Ar
𝑘+1

}.
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(4) For each new member 𝑋
𝑁
(𝑘 + 1), if it does not

dominate any member of Ar
𝑘+1

, then one has the
following:

(4.1) If 𝑠
𝐴

= 𝑠
𝑀
, remove member 𝑋

𝐶
(𝑘 + 1) with

the smallest crowding distance; if 𝑋
𝑁
(𝑘 + 1) ̸=

𝑋
𝐶
(𝑘 + 1), then replace𝑋𝑔𝑏𝑒𝑠𝑡(𝑘 + 1) of all of the

particles in the set {𝑞 | 𝑋
𝑔𝑏𝑒𝑠𝑡

𝑞
(𝑘+1) = 𝑋

𝐶
(𝑘+1)}

with 𝑋
𝑁
(𝑘 + 1); else, remove 𝑋

𝑁
(𝑘 + 1) from

Ar
𝑘+1

.
(4.2) If 𝑠

𝐴
< 𝑠

𝑀
, one has the following:

(4.2.1) Compute 𝑢 = min
𝑒=1,2,...,𝑠𝐴

{𝑁(𝑋
𝑒
(𝑘 + 1))},

∀𝑋
𝑒
(𝑘 + 1) ∈ Ar

𝑘+1
, where 𝑁(𝑋

𝑒
(𝑘 + 1))

represents the number of particles whose
value of𝑋𝑔𝑏𝑒𝑠𝑡(𝑘+1) is𝑋

𝑒
(𝑘+1);𝑁(𝑋

𝑁
(𝑘+

1)) = 0; if 𝑢 > 𝑔 (𝑔 is an integer, and
𝑔 ∈ [0.025Ps, 0.05Ps]), then let 𝑢 ← 𝑔.

(4.2.2) Let 𝐻 = {𝑋
𝑒
(𝑘 + 1) | 𝑁(𝑋

𝑒
(𝑘 + 1)) > 𝑢},

𝐶 = |𝐻|, 𝑓 = 0.
(4.2.3) Select the solution 𝑋

𝑒
(𝑘 + 1) ∈ 𝐻 that is

nearest to 𝑋
𝑁
(𝑘 + 1); substitute 𝑋

𝑁
(𝑘 + 1)

for the new 𝑋
𝑔𝑏𝑒𝑠𝑡

(𝑘 + 1) of one particle
whose current𝑋𝑔𝑏𝑒𝑠𝑡(𝑘 + 1) is𝑋

𝑒
(𝑘 + 1); let

𝐻 ← 𝐻 \ {𝑋
𝑒
(𝑘 + 1)}; let𝑁(𝑋

𝑁
(𝑘 + 1)) ←

𝑁(𝑋
𝑁
(𝑘 + 1)) + 1; let 𝑓 ← 𝑓 + 1;

if 𝑁(𝑋
𝑁
(𝑘 + 1)) < 𝑢 and 𝑓 < 𝐶, repeat

(4.2.3); if𝑁(𝑋
𝑁
(𝑘 + 1)) < 𝑢 and 𝑓 = 𝐶, go

to (4.2.2); if 𝑁(𝑋
𝑁
(𝑘 + 1)) = 𝑢, go to the

end.

This hybrid procedure ensures that each archive member
serves as 𝑋𝑔𝑏𝑒𝑠𝑡 of at least one particle. Thus, all of the mem-
bers, especially the new individuals, can participate in the
search process and guide particles towards new regions of the
search space. The implementation of the hybrid procedure,
the introduction of mutation, and the application of the
velocity constriction mechanism of SMPSO are expected to
make the optimal solutions that are generated by MOPSO-M
better approximate the Pareto optimal solutions.

5. Computational Results

Because the scheduling problem of panel block construction
is usually complex and requires higher quality optimal
solutions, a serviceable algorithm with stronger optimization
capability is needed. In this study, real-time production data
are used to test the performance of the proposed algorithm.
The real-time data of the fuzzy processing time and fuzzy due
date of two sets of panel blocks to be constructed (10 × 7 and
20 × 7 fuzzy FSSPs) come from a large shipyard in Shanghai,
China, and are shown in Tables 8 and 10. The most plausible
value (𝑝

𝑖,𝑗
) of the fuzzy processing time is determined as the

mean value of the historical processing times of the same
or very similar panel blocks. The optimistic value (𝑝𝑂

𝑖,𝑗
) and

the pessimistic value (𝑝𝑃
𝑖,𝑗
) are often randomly obtained from

[𝛿
11
𝑃
𝑖,𝑗
, 𝛿
12
𝑃
𝑖,𝑗
] and [𝛿

21
𝑃
𝑖,𝑗
, 𝛿
22
𝑃
𝑖,𝑗
], respectively [29]. In this

paper, 𝛿
11
, 𝛿
12
, 𝛿
21
, and 𝛿

22
are set to 0.85, 0.90, 1.10, and

Table 3: Main parameter settings of the three algorithms.

MOPSO-M General MOPSO NSGA-II
Ps = 60 Ps = 60 Ps = 60

𝑠
𝑀

= 15 𝑠
𝑀

= 15 𝑠
𝑀

= 15

Fe = 30000 Fe = 30000 Fe = 30000

𝑐
1
= 2.05, 𝑐

2
= 2.25 𝑐

1
= 2.05 𝑝

𝑐
= 0.80

𝑝
𝐶

𝑚
= 1 𝑐

2
= 2.25 𝑝

𝑚
= 0.05

Notes: Ps denotes the population scale; Fe represents function evaluations;
𝑝𝑐 and 𝑝𝑚 denote the crossover probability and the mutation probability,
respectively.

1.25, respectively, based on historical data and the advice of
experienced workers. The fuzzy due date of each panel block
is provided by the hull block assembly shop, which is the
demand side. Additionally, precedence relations among the
panel blocks are provided by the hull block assembly shop and
are presented in Tables 9 and 11.

MOPSO-M is compared with the general MOPSO (with-
out proposed modifications) and nondominated sorting
genetic algorithm-II (NSGA-II). Each algorithm uses the
ROV representation rule. The parameter settings of the three
algorithms are shown in Table 3. All of these algorithms are
implemented in MATLAB 8.1.

For evaluating the performance of the algorithms, we
consider three quality indicators: unary additive epsilon indi-
cator (𝐼1

𝜀+
) [30], hypervolume indicator (HV), and coverage

indicator (𝐶) [31].
The 𝐼

1

𝜀+
indicator, which is defined in (26), equals the

minimum factor 𝜀 such that any objective vector in an
obtained front (OF) is 𝜀-dominated by at least one objective
vector in Pareto optimal front (PF∗):

𝐼
1

𝜀+
(OF) = inf

𝜀∈R
{∀𝑍

2
∈ PF∗ ∃𝑍

1
∈ OF : 𝑍

1
≻
𝜀+
𝑍
2
} , (26)

where 𝑍
1
≻
𝜀+
𝑍
2 if and only if ∀1 ≤ 𝑙 ≤ 𝐿 : 𝑧

1

𝑙
< 𝜀 +

𝑧
2

𝑙
𝑍
1
= (𝑧

1

1
, . . . , 𝑧

1

𝐿
) and 𝑍

2
= (𝑧

2

1
, . . . , 𝑧

2

𝐿
) are two objective

vectors of a minimization problem. Because the PF∗ for each
aforementioned fuzzy FSSP is not known, a reference front
constituted by gathering all obtained fronts of all algorithms
is used in this paper.

As far as the HV indicator is concerned, it measures the
volume, in the objective space, covered by the obtained front.
Mathematically, for objective vector 𝑍𝑡 ∈ OF, a hypercube
V
𝑡
is constructed with a reference point R and the objective

vector 𝑍𝑡 as the diagonal corners of the hypercube [32]. The
vector of worst objective function values is usually used as the
reference point.The HV indicator is calculated as the volume
of the union of all hypercubes:

HV = volume(
|OF|
⋃

𝑡=1

V
𝑡
) . (27)

The 𝐶 indicator is a binary indicator. Let 𝐸
𝐴
and 𝐸

𝐵
rep-

resent two sets of approximate Pareto optimal solutions that
are generated by algorithm 𝐴 and algorithm 𝐵, respectively.
𝐶(𝐸

𝐴
, 𝐸
𝐵
), which is defined in (28), measures the fraction of
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Table 4: Median and IQR of the 𝐼1
𝜀+
and HV indicators.

MOPSO-M General MOPSO NSGA-II
Median IQR Median IQR Median IQR

𝐼
1

𝜀+

10 × 7 1.34𝑒 − 02 1.04𝑒 − 02 1.20𝑒 − 01 9.66𝑒 − 02 1.20𝑒 − 01 3.26𝑒 − 01

20 × 7 1.87𝑒 − 01 1.11𝑒 − 01 1.00𝑒 − 00 1.13𝑒 − 01 9.11𝑒 − 01 2.67𝑒 − 01

HV
10 × 7 9.78𝑒 − 01 6.54𝑒 − 03 9.26𝑒 − 01 4.57𝑒 − 02 9.15𝑒 − 01 2.93𝑒 − 01

20 × 7 7.76𝑒 − 01 1.65𝑒 − 01 7.84𝑒 − 02 1.13𝑒 − 01 1.12𝑒 − 01 1.58𝑒 − 01

Table 5: Results of the Wilcoxon rank-sum test for the 𝐼1
𝜀+
and HV indicators.

General MOPSO NSGA-II
10 × 7 20 × 7 10 × 7 20 × 7

𝐼
1

𝜀+
MOPSO-M 87.5 (2.45𝑒 − 08) 102.5 (5.87𝑒 − 08) 41.5 (5.77𝑒 − 10) 90 (3.93𝑒 − 08)

HV MOPSO-M 800 (1.19𝑒 − 07) 807 (4.78𝑒 − 09) 871 (1.95𝑒 − 13) 840 (5.43𝑒 − 11)
Notes: for the 𝐼1

𝜀+
indicator, we apply wilcox. test (𝐼1

𝜀+
(MOPSO-M), 𝐼1

𝜀+
(general MOPSO or NSGA-II), and alternative = “less”) in R. For the HV indicator, we

apply wilcox. test (HV (MOPSO-M), HV (general MOPSO or NSGA-II), and alternative = “greater”). Values in ( ) are the 𝑝 values for the test statistics.

the members of 𝐸
𝐵
that are dominated by members of 𝐸

𝐴
,

reflecting the dominance relation between the two sets:

𝐶 (𝐸
𝐴
, 𝐸
𝐵
) =






{𝑋

𝐵
∈ 𝐸

𝐵
| ∃𝑋

𝐴
∈ 𝐸

𝐴
, 𝑋

𝐴
≻ 𝑋

𝐵
}











𝐸
𝐵






. (28)

The𝐶 indicatormaps the ordered pair (𝐸
𝐴
, 𝐸
𝐵
) to the interval

[0, 1]. 𝐶(𝐸
𝐴
, 𝐸
𝐵
) = 1 indicates that all of the solutions in 𝐸

𝐵

are dominated by individuals in 𝐸
𝐴
, while 𝐶(𝐸

𝐴
, 𝐸
𝐵
) = 0

implies that none of the solutions in 𝐸
𝐵
are dominated by

members of 𝐸
𝐴
.

In the performance evaluation experiment, each algo-
rithm is independently run 30 times for each fuzzy FSSP.
The median and interquartile range (IQR) of the 𝐼1

𝜀+
and HV

indicators are reported inTable 4. In the calculation of the two
indicators, the objective values are normalized into values in
the interval [1, 2]. For the 𝐼1

𝜀+
indicator, the lower the value

the better the obtained front, while, for the HV indicator, the
lower the value the better the obtained front.Thus, depending
on the data contained in Table 4, we see that MOPSO-M
achieves the best values for both the 𝐼1

𝜀+
and HV indicators

in both the fuzzy FSSPs. Table 5 summarizes the results of
statistical pairwise comparisons by applyingWilcoxon test to
the 𝐼1

𝜀+
and HV values. These results suggest that MOPSO-M

obtains better fronts than generalMOPSO andNSGA-II with
statistical confidence, regarding the two indicators in both the
fuzzy FSSPs. More information can be obtained from the box
plots in Figure 3, for the box plots visualize the distributions
of the 𝐼1

𝜀+
and HV values. Attending to this figure, we can also

observe the fact that MOPSO-M outperforms the other two
algorithms concerning the two indicators.

We turn now to the 𝐶 indicator. Let 𝐴1, 𝐴2, and 𝐴3

denote MOPSO-M,MOPSO, and NSGA-II, respectively, and
𝐸
𝐴𝑖

(𝑖 = 1, 2, 3) denote the set constituted by gathering
all nondominated solutions that are produced by 𝐴𝑖 (𝑖 =

1, 2, 3) in 30 independent runs. Table 6 lists the results of
the 𝐶 indicator, and Figure 4 shows the distribution of the

Table 6: Results of the 𝐶 indicator.

10 × 7 20 × 7 10 × 7 20 × 7

𝐶 (𝐸
𝐴1
, 𝐸
𝐴2
) 0.000 0.571 




𝐸
𝐴1






6 25
𝐶 (𝐸

𝐴2
, 𝐸
𝐴1
) 0.000 0.000 




𝐸
𝐴2






5 21
𝐶 (𝐸

𝐴1
, 𝐸
𝐴3
) 0.000 1.000 




𝐸
𝐴3






5 16
𝐶 (𝐸

𝐴3
, 𝐸
𝐴1
) 0.000 0.000

Notes: |𝐸𝐴𝑖| denotes the number of optimal solutions generated by algorithm
Ai in 30 independent runs.

corresponding objective vectors of the solutions in 𝐸
𝐴𝑖
. Here

the makespan which is assumed to be a triangular fuzzy
number is defuzzified using (18). For the smaller-scale 10 ×

7 fuzzy FSSP with simpler precedence relations, MOPSO-M
exhibits better average performance than the generalMOPSO
and NSGA-II. All of the optimal solutions of MOPSO and
NSGA-II are covered by those ofMOPSO-M, and the number
of optimal solutions of MOPSO-M is 20% greater than those
of the other two algorithms. For the larger-scale 20 × 7 fuzzy
FSSP with more complex precedence relations, MOPSO-
M is significantly superior to the other two algorithms. Its
superiority is manifested in two ways:

(1) MOPSO-M generates more optimal solutions.

(2) All of the optimal solutions of NSGA-II and the most
optimal solutions of general MOPSO are dominated
by those of MOPSO-M, while none of the optimal
solutions ofMOPSO-Mare dominated by those of the
other two algorithms.

In summary, the results of the 𝐼
1

𝜀+
, HV, and 𝐶 indica-

tors demonstrate that MOPSO-M outperforms the general
MOPSO and NSGA-II in solving the scheduling problem of
panel block construction in terms of the quality of the optimal
solutions. The outperformance can clearly be attributed to
the implementation of the hybrid procedure, the introduction
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Table 7: Three examples of determining the processing sequence for the 20 × 7 fuzzy FSSP using MOPSO-M.

Index 𝛼
𝑗

Optimal objective vectors Optimal solutions (processing sequence)
𝛼
1

𝛼
2

𝛼
3

𝑓
1

𝑓
2

𝑓
3

1 0.55 0.30 0.15 4931.50 0.898 0.090 3-2-7-4-1-9-12-10-5-17-15-19-16-6-8-11-14-20-13-18
2 0.40 0.30 0.30 4954.00 0.974 0.723 3-2-7-1-4-9-10-5-12-17-15-19-6-16-13-8-11-14-20-18
3 0.30 0.35 0.35 4969.25 0.990 0.889 3-1-2-7-4-9-10-5-12-17-15-19-6-13-16-8-11-14-20-18

0.8
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0.4

0.2

0

MOPSO-M MOPSO NSGA-II

Epsilon indicator: 10 × 7 fuzzy FSSP

0.8

1

0.6

0.4

0.2

MOPSO-M MOPSO NSGA-II

Epsilon indicator: 20 × 7 fuzzy FSSP

0.8

1
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0.2
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0.8

0.6

0.4

0.2

0
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HV indicator: 10 × 7 fuzzy FSSP HV indicator: 20 × 7 fuzzy FSSP

Figure 3: Box plots of the 𝐼1
𝜀+
and HV indicators obtained by MOPSO-M, MOPSO, and NSGA-II in the two fuzzy FSSPs.

of mutation, and the application of the velocity constriction
mechanism of SMPSO.

The optimal objective vectors and the corresponding
optimal solutions that are generated by MOPSO are more
reliable for use in determining a sequence for process-
ing required panel blocks on the assembly line to attain
specific objectives. For example, for the 20 × 7 fuzzy
FSSP, whose optimal objective vectors that are generated by
MOPSO are shown in Figure 4(b), the weighted sum of the

nondimensional objective values is utilized to determine the
processing sequence.The objective values are nondimension-
alized using the following equation:

𝑤
𝑠,𝑡

=

{
{
{
{
{

{
{
{
{
{

{

𝑓
max
𝑡

− 𝑓
𝑠,𝑡

𝑓
max
𝑡

− 𝑓
min
𝑡

, 𝑡 = 1,

𝑓
𝑠,𝑡
− 𝑓

min
𝑡

𝑓
max
𝑡

− 𝑓
min
𝑡

, 𝑡 = 2, 3,

(29)
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Table 8: Fuzzy processing time and fuzzy due date of the 10 × 7 fuzzy FSSP.

𝑖 �̃�
𝑖,1

�̃�
𝑖,2

�̃�
𝑖,3

�̃�
𝑖,4

�̃�
𝑖,5

�̃�
𝑖,6

�̃�
𝑖,7

̃
𝑑
𝑖

1 115 136 153 189 220 273 120 133 159 126 144 170 139 157 186 212 244 285 105 124 150 900 1300 1900 2300
2 88 101 112 132 152 173 87 97 109 84 98 109 103 116 144 139 158 185 68 79 97 700 800 900 1000
3 121 134 160 205 228 255 122 139 167 140 159 182 143 159 196 204 240 264 108 123 135 800 1000 1600 2000
4 86 100 114 146 162 196 82 94 107 95 107 128 95 112 123 139 160 187 66 75 86 1000 1400 2200 2500
5 116 137 152 190 224 251 119 133 151 134 157 179 143 165 188 197 226 276 105 123 140 1800 2200 2900 3200
6 83 92 112 150 176 195 75 89 97 97 108 121 95 108 134 141 160 195 77 87 104 1000 1800 2300 2500
7 121 134 163 212 244 268 122 141 168 126 148 169 128 149 180 216 248 308 100 118 136 1100 1400 1600 1800
8 92 107 122 158 176 215 86 99 114 87 103 126 106 120 138 139 160 186 68 76 88 2000 2200 2700 3000
9 124 139 174 194 220 246 122 141 167 128 147 163 127 150 186 199 226 253 105 118 140 2000 2400 2700 3500
10 118 137 168 208 236 281 117 136 166 139 156 190 142 159 199 203 236 276 99 116 140 2000 2300 2800 3500

2900
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Figure 4: Distribution of optimal objective vectors generated by MOPSO-M, MOPSO, and NSGA-II in the performance evaluation
experiment. (a) 10 × 7 fuzzy FSSP; (b) 20 × 7 fuzzy FSSP.

Table 9: Precedence relations among the 10 panel blocks to be con-
structed.

𝑖 𝑘 PR
𝑖,𝑘

PR
𝑘,𝑖

Graphical representation
1 7 1 −1 1 ≫ 7

5 9 1 −1 5 ≫ 9

where 𝑤
𝑠,𝑡

is the 𝑡th nondimensional objective value of the
𝑠th optimal solution, 𝑓

𝑠,𝑡
is the 𝑡th objective value of the

𝑠th optimal solution, 𝑓max
𝑡

= max{𝑓
1,𝑡
, 𝑓
2,𝑡
, . . . , 𝑓

25,𝑡
}, and

𝑓
min
𝑡

= min{𝑓
1,𝑡
, 𝑓
2,𝑡
, . . . , 𝑓

25,𝑡
}. The weighted sum of the

nondimensional objective values can be calculated by

𝑊
𝑠
=

3

∑

𝑡=1

𝛼
𝑡
𝑤
𝑠𝑡
, (30)

where ∑
3

𝑡=1
𝛼
𝑡

= 1, 0 ≤ 𝛼
𝑡

≤ 1. The optimal solution
with the maximum value of 𝑊

𝑠
can be used as the processing

sequence. Three examples of determining the processing
sequence are shown in Table 7.

6. Conclusions

In this study, we introduce a typical assembly line for panel
blocks in a shipyard. To accurately represent actual produc-
tion, we formulate the scheduling problem of panel block
construction as a multiobjective fuzzy FSSP with a fuzzy
processing time, a fuzzy due date, and precedence relations
between the panel blocks. An effectivemultiobjective particle
swarm optimization called MOPSO-M is proposed and
applied to the scheduling problem. Computational results
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Table 10: Fuzzy processing time and fuzzy due date of the 20 × 7 fuzzy FSSP.

𝑖 �̃�
𝑖,1

�̃�
𝑖,2

�̃�
𝑖,3

�̃�
𝑖,4

�̃�
𝑖,5

�̃�
𝑖,6

�̃�
𝑖,7

̃
𝑑
𝑖

1 121 139 174 206 240 271 118 131 161 124 146 182 143 166 199 204 240 300 111 125 145 1000 1300 2000 2500
2 88 98 112 134 156 190 77 86 105 89 104 118 103 116 145 144 166 196 74 87 106 800 1200 1700 2000
3 81 90 105 162 180 218 93 104 122 91 105 125 92 105 116 131 150 177 70 82 101 700 800 1000 1100
4 119 132 160 205 238 264 123 137 155 132 152 186 132 155 177 211 248 310 113 125 139 1500 1800 2200 2300
5 81 91 104 146 168 197 75 89 105 99 117 146 89 101 118 144 160 195 73 81 97 2000 2300 3000 3500
6 124 143 157 206 232 285 123 137 159 136 159 179 130 153 180 200 222 255 99 113 127 1600 2300 3800 4700
7 90 100 116 143 162 185 87 98 121 94 105 118 101 119 135 155 180 216 71 83 100 1000 1200 2300 2500
8 128 144 164 194 228 262 120 135 165 135 155 184 152 169 208 211 234 257 101 116 142 3500 4000 4600 4800
9 121 139 153 213 242 300 117 130 144 138 157 190 142 159 193 191 220 271 103 120 142 1500 1800 2500 2800
10 87 97 122 150 172 191 87 97 110 103 114 143 106 120 135 139 164 200 72 80 94 2000 2200 2700 3000
11 83 96 114 141 166 189 88 104 117 102 117 144 100 111 123 139 154 183 69 77 90 3700 4000 4600 5000
12 128 150 185 200 232 255 111 128 151 137 156 192 139 163 194 220 250 295 101 113 138 2000 2800 3800 4000
13 88 102 120 153 176 206 73 86 106 89 100 118 100 115 141 134 154 174 68 80 98 2000 2800 4000 4500
14 82 95 112 155 172 198 84 95 117 96 113 139 99 112 133 136 158 198 73 83 102 3900 4200 4800 5200
15 131 145 168 214 238 283 117 138 173 125 146 175 135 154 171 200 230 265 104 116 138 2200 2800 3400 3700
16 126 145 182 197 224 260 120 139 168 138 163 190 146 167 186 225 250 290 96 113 137 2500 3000 4400 5000
17 116 133 156 221 248 273 114 127 147 131 146 181 144 162 178 197 232 274 110 124 140 2500 2800 3300 3500
18 78 90 104 153 178 201 88 102 117 94 107 133 90 104 128 150 172 189 73 82 93 3500 4000 5000 5500
19 84 95 113 139 156 176 78 87 104 94 108 119 95 111 130 153 178 210 72 80 89 2600 3000 3800 4000
20 118 137 153 210 236 283 127 141 157 124 144 159 149 169 196 216 248 298 99 117 145 3900 4300 5300 5600

Table 11: Precedence relations among the 20 panel blocks to be
constructed.

𝑖 𝑘 PR
𝑖,𝑘

PR
𝑘,𝑖

Graphical representation
1 9 1 −1 1 ≫ 9

3 5 1 −1 3 ≫ 5

5 13 1 −1 10 ≫ 5

8 11 1 −1 5 ≫ 13

10 5 1 −1 13 ≫ 18

10 17 1 −1 10 ≫ 17

11 14 1 −1 8 ≫ 11

12 16 1 −1 11 ≫ 14

13 18 1 −1 14 ≫ 20

14 20 1 −1 12 ≫ 16

15 19 1 −1 15 ≫ 19

Notes: some PR𝑖,𝑘 values that rely on transitive relations (e.g., PR10,18) are
not reported in this table.

that are based on real-time shipbuilding production data
indicate that MOPSO-M outperforms the general MOPSO
and NSGA-II in terms of the quality of the optimal solu-
tions. The combination of archive maintenance with 𝑋

𝑔𝑏𝑒𝑠𝑡

selection, the introduction of mutation, and the application
of the velocity constriction mechanism of SMPSO greatly
increase the optimization capability of MOPSO-M. Further
research is required to analyze more complex problems, such
as noncompletely hybrid assembly lines in shipyards, which
have more complicated constraints.

Appendix

See Tables 8, 9, 10, and 11.
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