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Abstract

We develop and validate a medium-term solar irradiance forecasting model by adopting predicted meteorological variables from the
US National Weather Service’s (NWS) forecasting database as inputs to an Artificial Neural Network (ANN) model. Since the inputs
involved are the same as the ones available from a recently validated forecasting model, we include mean bias error (MBE), root mean
square error (RMSE), and correlation coefficient (R2) comparisons between the more established forecasting model and the proposed
ones. An important component of our study is the development of a set of criteria for selecting relevant inputs. The input variables
are selected using a version of the Gamma test combined with a genetic algorithm. The solar geotemporal variables are found to be crit-
ically important, while the most relevant meteorological variables include sky cover, probability of precipitation, and maximum and min-
imum temperatures. Using the relevant input sets identified by the Gamma test, the developed forecasting models improve RMSEs for
GHI by 10–15% over the reference model. Prediction intervals based on regression of the squared residuals on the input variables are also
derived.
� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Although the radiation that reaches the top of the layers
of the atmosphere is well defined and can be easily calcu-
lated, the solar irradiance that reaches the ground level
where solar collectors (thermal and photovoltaic) operate
depends strongly on localized and complex atmospheric
conditions. From the operational standpoint, the balancing
of supply and demand peaks in the electrical grid
requires detailed consideration of the availability of solar
power. Forecasting the available insolation is therefore
an enabling technology for the success of any policy to
include solar power as an important contribution to both
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centralized and decentralized systems. Cloud cover, aerosol
content, and the presence of atmospheric gases in the tro-
posphere (water vapor, carbon dioxide) and in the strato-
sphere (ozone) can reduce the availability of direct
insolation at the ground level to a small fraction of the
solar irradiance that reaches the upper atmosphere. These
effects are particularly strong on the Direct Normal Irradi-
ance (DNI). Because cloud cover corresponds to the stron-
gest effect on ground insolation, no statistical method
that ignores micro-scale (62 km) or meso-gamma scale
(2–20 km) weather systems can succeed in estimating real-
time and/or forecasting solar power availability.

The problem is substantially more complicated for the
characterization of DNI, which is the component of the
total solar irradiation that is most useful for solar concen-
trators. Solar concentrators that can concentrate in excess
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of 300 times the solar flux are considered viable technology
alternatives for solar utilization, both for direct photovol-
taic and solar-thermal conversion systems. In the case of
concentrated PV, the rationale for concentration is primar-
ily due to economics: the high-efficiency multi-junction
photovoltaic cells that can achieve in excess of 40% direct
radiation-to-electricity conversion in laboratory environ-
ments cost slightly more than 100 times the common PV
cell. Recent studies also point out that the Energy Pay
Back Time (EPBT) for multi-junction cells may be substan-
tially shorter (see e.g., Fthenakis and Alsema, 2006; Pacca
et al., 2007) than previously estimated. For solar-thermal
conversion, high concentration designs are needed to
achieve higher thermodynamic cycle efficiencies. Utility-
scale solar thermal power system also use primarily DNI
for both solar-tower and solar-trough power plants.
Because most commercially viable, utility-scale solar
technologies use high concentration technologies, DNI
characterization is of critical importance in designing,
implementing and deploying such power plants.

The purpose of this work is to produce hourly medium-
term forecasting models for both the Direct Normal Irradi-
ance and the Global Horizontal Irradiance (GHI) based on
meteorological predictions from the National Weather Ser-
vice’s National Digital Forecasting Database (NDFD).
The NDFD produces same-day up and to 7-days ahead
forecasts of meteorological variables, not including solar
irradiance. We refer to these forecasting time horizons as
medium-term to be consistent with Perez et al. (2007),
whom have recently developed and validated a forecasting
model for GHI based on the sky cover data supplied from
the NDFD. When applied to the Sacramento and New
York areas, their forecasting model obtained accuracies
consistent with preliminary analysis using Multiple Output
Statistics and meso-scales models elsewhere (e.g.
Heinemann, 2004). More recently, their model has been
evaluated in a number of locations with widely different
climates (Perez et al., 2010) and thus further validating
the generalization of the simple model. The present study
extends theirs by considering the use of additional meteo-
rological variables in order to enhance the forecasting
capabilities of the models. Because this study considers
the use of a larger number of variables, we present and
employ an objective strategy which helps to select inputs
that contain the most predictive information.

The Gamma test (GT) is an appropriate tool for identi-
fying relevant inputs, as this test has been demonstrated to
be able to provide information regarding the relationship
between input and output data sets, even prior to model
development (Durrant, 2001; Jones, 2004; Wilson et al.,
2004; Moghaddamnia et al., 2009; Remesan et al., 2008).
The GT is an algorithm designed to provide an estimation
of the lowest possible mean squared error (MSE) attainable
by a continuous and differentiable model for some output,
y, based on the inputs, x. The criteria for choosing the con-
tent in x can be based on keeping the dimension of x small
(to remove insignificant inputs), meanwhile retaining a low
estimate for the MSE. The GT is a relatively simple algo-
rithm to apply and is used here as a basis for the selection
of relevant inputs. The selection procedure also involves a
genetic algorithm (GA) search in order to efficiently
explore possibly significant input combinations. In Section
3 the GT and GA procedures are described, and in Section
4 the input selection algorithms are evaluated.

After applying the GT and GA to identify which subsets
of inputs are potentially useful, Artificial Neural Networks
(ANNs) are used to construct the forecasting models.
ANNs are described and applied in Sections 5 and 6. In
Section 7, prediction intervals are derived which take into
account the forecasting uncertainty based on the predicted
NDFD-based meteorological conditions.

2. Data

The University of California Merced solar observatory
is equipped with several total and spectral solar instru-
ments acquired from Eppley Labs. Three integrating
instruments were used extensively in the present study: 1
PSP (Precision Spectral Pyranometer) for benchmarking
the global irradiance, 1 NIP (Normal Irradiance Pyrheli-
ometer) for benchmarking the direct irradiance, and 1
SDK (Shaded Disk Kit) that shades another PSP mounted
on a solar tracker to measure the diffuse irradiance. From
measurements of two components irradiance the third can
be calculated, (e.g., global and diffuse data can be used to
calculate the direct). We used all three measurements to
constantly monitor the quality of the data. Expected accu-
racies of the irradiance measurements are estimated to be
on the order of 5% for PSPs, and 3% for the NIPs. Data
acquisition, logging and processing is automated with the
aid of a Campbell Scientific’s CR1000 data-logger. The
data sampling rate is two samples per second. The data log-
ger calculates and stores averaged values for each quantity
every 30 s – hourly averages are calculated from the logged
values.

The National Weather Service (NWS) manages the
National Digital Forecast Database (NDFD) which provides
gridded digital forecasts of weather parameters for the entire
country at high resolutions of up to 2.5-km spatial and 1-h
temporal (Glahn and Ruth, 2003; Perez et al., 2007). Local
forecasts from NWS Weather Forecast Offices (WFOs) are
generated by national model outputs, meso-scale model runs
and human input. These local forecasts are then merged and
assembled on a national grid (Glahn and Ruth, 2003; Perez
et al., 2007). Weather forecasted values are publicly available
and can be accessed electronically in Extensible Markup Lan-
guage (XML) format through the NWS website: http://
www.weather.gov/ndfd (Schattel and Bunge, 2008). The fore-
casted meteorological elements provided by the NWS include
ambient temperature, dew point temperature, relative humid-
ity, sky cover, wind speed and direction, probability of precip-
itation, significant wave height, weather type, and snow
amount. Daily maximum and minimum ambient tempera-
tures are also provided by the NDFD.

http://www.weather.gov/ndfd
http://www.weather.gov/ndfd
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NDFD meteorological data was collected daily at
approximately 12:00 p.m. (Pacific local time) for the period
of this study which spans the dates November 1, 2008–
November 30, 2009. The NDFD data sets collected on each
day contain same-day forecasted values and forecasted val-
ues for the next 6 days. Since the forecasting methodology
is essentially a regression on the NDFD data sets, the solar
irradiance forecasts generated here will also be available as
the NDFD forecasts are produced (same-day forecasts as
well as a few days ahead).

3. Model inputs and input selection

To develop the irradiance forecasting models, 11 input
variables are considered. Nine of the variables are pre-
dicted meteorological variables (described in Section 2)
and listed in Table 1. The other two variables are geomet-
ric/temporal variables: the cosine of the solar zenith angle
(cos Z) and the normalized hour angle (�x, defined later).
The geometric variables are important because they
describe the deterministic diurnal variations of clear-sky
solar irradiation. One of the objectives of this work is to
make a determination of which auxiliary meteorological
variables are useful for predicting solar irradiation and
which ones can be discarded to prevent over complication
of the model. In order to do so, the GT is used as a criteria
for determining the relevant inputs. With a total of 11
inputs there are 211 � 1 = 2047 possible subsets of inputs
to perform the GT with. Rather than evaluating all possi-
ble combinations, a GA search is employed to reduce the
input space. The description of the GT and GA procedures
are provided after a describing the data preprocessing and
introducing the definition of �x.

3.1. Variable representation and preprocessing

Table 1 lists the input variables that are used for model
input selection. In order to keep the notation concise, the
input variables are represented as xj, where j is the associ-
ated variable number indicated in the first column of Table
Table 1
List of inputs for modeling. Note: the range of hourly ambient
temperature is equal to the maximum of the daily Max Temperature
and minimum of the daily Min Temperatures. Wind direction data is given
in increments of 10�.

Number Name Minimum Maximum

1 Max temperature (�C) 7.22 40.55
2 Temperature (�C) �2.78 40.55
3 Dew point temperature (�C) 0 37.78
4 Relative humidity (%) 0 100
5 Sky cover (%) 0 100
6 Wind speed ( m/s) 0 22.5
7 Wind direction (deg) 0 350
8 Probability of precipitation (%) 0 100
9 Min temperature (�C) �2.78 22.22
10 cos(Z) 0 1
11 Normalized hour angle, �x 0 1
1. The set of input variables consists of the meteorological
variables from the NDFD database the solar geometry
variables: cosZ and �x. To avoid scaling issues that can
complicate the Gamma test or neural network training,
all meteorological input variables are normalized by sub-
tracting the variables by their corresponding minimum val-
ues, then dividing by their range (maximum–minimum) so
that the values vary from 0 to 1.

3.2. Dimensionless time scale as an input

We introduce an additional input for modeling DNI
which we refer to as the normalized hour angle defined as

�x ¼ x=ðxmaxÞ; ð1Þ

where x is known as the hour angle and xmax is equal to
absolute value of the maximum hour angle for a given
day while the sun is up; xmax = xsun set = � xsun rise. These
variables are commonly used for conversions between stan-
dard time and solar time and are readily calculated using
algebraic relations given in Duffie and Beckman (2006).
By definition, x = 0 at solar noon when the sun is due
south and is at its highest elevation for a given day. Obser-
vations of DNI daily profiles for clear-sky conditions ver-
sus �x are shown in Fig. 1. This figure shows that �x is a
potentially useful input variable because clear-sky DNI
profiles for any part of the year have the same basic shape
with respect to �x.
3.3. Residual variance estimation: Gamma test

The GT was developed by Koncar (1997) and Stefansson
et al. (1997), and further advanced by Evans and Jones
(2002) and Jones (2004). The idea behind the GT is to
suppose there exists a continuous and differentiable
function, f, relating the output, y, to some m-dimensional
input vector, x, and has the general form
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Fig. 1. DNI for clear-sky conditions plotted versus normalized time index
�x. DNI profiles have same basic shape when viewed on this time scale for
all parts of the year.
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y ¼ f ðxÞ þ r; ð2Þ
where the residual term, r, represents the uncertainty or
noise in the model, and has a mean of 0 and variance r2

r .
The procedure of the GT is to first construct the

kth(1 6 k 6 kmax) nearest neighbor list xN[i,k](1 6 i 6M)
of input vectors xi(1 6 i 6M), where kmax is the maximum
number of nearest neighbors (typically kmax = 10) and M is
the number of data points. The following steps are then
applied:

� for (1 6 k 6 kmax) compute:

dMðkÞ ¼ 1=M
XM

i¼1

jxN ½i;k� � xij2; ð3Þ

and

cMðkÞ ¼ 1=ð2MÞ
XM

i¼1

jyN ½i;k� � yij
2
: ð4Þ

� construct the linear regression for relationship for the
data (dM(k),cM(k)):

cMðkÞ ¼ Cþ AdMðkÞ: ð5Þ

Provided that the regression line is a good fit, the inter-
cept of Eq. (5), C, provides a close estimate of the residual
variance r2

r and therefore the lowest attainable MSE. This
condition is satisfied when M! 1 as proven in Evans and
Jones (2002). The slope A gives a crude estimate of the
complexity of the unknown surface of the regression func-
tion, f(x). The GT is non-parametric technique and the
results apply regardless of the particular methods used to
subsequently build a model. This test is particularly suited
for the analysis of non-linear regression problems.

An extension of the Gamma statistic C is the Vratio

parameter defined as the ratio between the variance of
the residuals and the variance of the output, Vratio = C/
Var(y). This parameter can be considered a normalization
of the expected MSE and is analogous to the commonly
used model quality measure, R2:

R2 � 1� V ratio: ð6Þ
In this paper, we use the Vratio rather than C to evaluate the
GT outputs.

A sequence of GTs performed for an increasing number
of data points is referred to as an M-test (Jones, 2004). The
M-test is useful because allows one to evaluate the reliabil-
ity of C as an estimate of r2

r , and to determine whether
enough data is available for model construction. For
instance, during initial GT evaluations when the number
of data points is small, the M-test plots fluctuate, indicating
that the MSE estimates do not agree and are therefore not
reliable. As more data is included, the M-test plots begin to
stabilize to consistent MSE predictions. If the M-Test plots
stabilize, then a degree of confidence that the C estimate is
reasonably accurate is achieved (Jones, 2004). In these
cases the input/output data will be relatively simple to
model. In Section 4, the M-test will be applied to verify that
enough training data is available and to compare different
model inputs.

For a fuller discussion on the GT and the implications
for modeling we refer the reader to the reference (Jones,
2004).

3.4. Genetic algorithm search for model input selection

The selection of the optimal subset of inputs can be
accomplished with genetic algorithms (GAs). GAs are opti-
mization search techniques inspired by the process of bio-
logical evolution. The algorithms involve optimization
searching patterns where alleles (features) of individuals
in a population of potential solutions are altered by cross-
over and mutation operators over generations/cycles so
that the fittest individuals continue to evolve (Wilson
et al., 2004). The proportion of individuals that either
mutate or crossover are fixed by the mutation and cross-
over parameters. In the current problem of input selection,
the individual fitness is based on minimizing the objective
function adopted from Durrant (2001) and Wilson et al.
(2004), which consist of three penalty terms:

GðxiÞ ¼ wCgCðxiÞ þ wAgAðxiÞ þ wLgLðxiÞ: ð7Þ

The three penalty terms gC, gA, and gL, are monotoni-
cally increasing functions of C, A, and the ratio of number
of inputs in xi to total number of inputs, respectively.
When selecting the most relevant subset of inputs, xi � x,
the objective function (G(xi)) encourages competition
among three optimality measures. That is, the optimal sub-
set of inputs should (1) produce low prediction errors (the
C value the subset should be low); (2) keep the complexity
of the input and output relationship low (value of A should
be small); and (3) include only the relevant features. Corre-
spondingly, the fitness scaling parameters in this objective
function which must be modified include: (1) intercept fit-
ness weight, wC; (2) gradient fitness weight, wA; and (3)
length fitness weight, wL.

The scale, wC, corresponds to emphasis on the Gamma
statistic, C. In choosing a combination of inputs, it is pref-
erable to keep inputs which contribute to producing low
values of C (equivalently, low values of gC(xi)). Therefore,
the scale wC is set at a high value of wC = 1.

As mentioned in Section 3.3, the gradient returned by
the GT is a crude estimation of the complexity of the
model, f(x). Given that A is only a crude estimate, we
put little emphasis on this measure, so the scale for this
term (gA(xi)) in the objective function is assigned a low
value of wA = 0.1.

The length fitness parameter, wL corresponds to the
number of inputs to be considered in the model. The value
to assign for wL is not as straight forward because too little
emphasis on the length fitness leads to the retention of
insignificant or counterproductive inputs. On the other
hand, too much emphasis on gL(xi) may lead to an overall
increase of C for the population of inputs in the GA search.



Table 2
Genetic algorithm search parameters for model input selection.

Parameter Value

Population size 100
Crossover rate 0.5
Mutation rate 0.05
Intercept fitness, wC 1
Gradient fitness, wA 0.1
Length fitness, wL variable (0.1,0.2, . . . ,1)
Run time(s) 600
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Therefore, wL is left variable and subsets of inputs are con-
sidered optimal based on which inputs remain relevant as
wL is varied from 0.1 to 1 in increments of 0.1.

Values of all the GA optimization parameters are listed
in Table 2.
4. Evaluation of input selection algorithms

The GA search is applied using the WINGAMMA computer
software. The length fitness scale, wL, is varied from 0.1 to
1 in increments of 0.1 and the results obtained by the GA
search are used to produce the bar plots in Fig. 2a and b.
The height of the bars represent the collective frequency
(in percent) that each input is included in the best 10% of
input subsets which minimized the objective function
(G(xi)). These results indicate that the variable x10 (cos Z)
is the most important input for modeling GHI. This is
expected because cosZ dictates the deterministic part of
the global horizontal solar irradiation. The next most rele-
vant inputs for GHI are x5 (sky cover), x8 (probability of
precipitation), and x9 (minimum temperature). The vari-
ables which seem to be the least important are x7 (wind
direction), and x4 (relative humidity) which have low fre-
quency in the best 10% of input combinations.

Fig. 2a can be used for choosing which input subsets to
consider. Based on Fig. 2a, the combination of inputs to be
selected for GHI are subset 1: [x8,x10]; subset 2:
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Fig. 2. Genetic algorithm results for model input selection. High frequency of
function, Eq. (7).
[x5,x9,x8,x10]; subset 3: [x1,x2,x3,x5,x6,x8,x9,x10] and sub-
set 4: [all variables]. The inputs in subset 1 corresponds to
the simplest case where the two variables that were pre-
dicted by the GA to have the most significance are used.
The size of the input set is incremented in subset 2 by
including the next significant variables: x5 (minimum tem-
perature) and x9 (probability of precipitation). Input subset
3 increments subset 2 by including the next most significant
variables, and subset 4 contains all the available variables.
These input subsets are listed in the second column of
Table 3.

The relevant inputs for DNI are slightly different than
for GHI. The most relevant inputs appear to be x5 (sky
cover), x9 (minimum temperature), and x11 (normalized
hour angle). The four subsets selected for modeling DNI
are subset 5: [x5,x9,x11]; subset 6: [x1,x3,x5,x8,x9,x11]; sub-
set 7: [x1,x2,x3,x5,x6,x8,x9,x11]; and again subset 4: [all
variables]. These input subsets are listed in the second
column of Table 3.

An M-test is performed on the selected inputs and the
results are plotted in Fig. 3a and b. As described in Section
3.3 the reliability of the GT can be inferred from the stabil-
ity of the M-test plots. All GHI M-test plots appear to have
stabilized indicating that enough data is obtained and that
the GT results are reliable. It is clear from Fig. 3a that the
variables x8 (probability of precipitation) and x10(cos Z)
alone will not be enough to produce the most accurate
models. The M-test results for DNI (Fig. 3b) are similar
in that the variables x5 (sky cover), x9 (probability of pre-
cipitation), and x11ð�xÞ will not give the best possible model
accuracy.
5. Artificial Neural Networks

Artificial Neural Networks (ANNs) are useful tools for
approximating complicated mapping functions for prob-
lems in classification and regression (Bishop, 1994), and
have also been used extensively in many areas including
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(b) DNI

inclusion indicates that the variable is useful for minimizing the objective
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Fig. 3. M-tests for various input subsets (as indicated in the legend) which were selected based on results obtained from GA results. The Vratio on the
vertical axis is an estimate of the normalized MSE, i.e. �1 � R2. The total number of data points for GHI is 4472 and for DNI is 3738.
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solar radiation modeling. Mellit (2008) gives a review of
over 40 applications of ANNs and other artificial intelli-
gence techniques applied to solar radiation modeling. The
advantage of ANNs is that no assumptions are required
about the underlying process relating input and output
variables. However, because ANNs are universal approxi-
mating functions, their mapping capabilities can poten-
tially lead to problems such as over-fitting training data
(Bishop, 1994), and thus leading to poor generalization
on new data sets. To prevent overtraining (Lauret et al.,
2006), for example, used an approach to construct network
architectures based on Bayesian and sensitivity analysis
where coincidentally the methodology identifies relevant
inputs as well as an appropriate neural network architec-
ture in the case of modeling the Direct Normal Irradiance.
Another approach which addresses the issue of overtrain-
ing and model input selection simultaneously is based on
the GT (see e.g., Moghaddamnia etal. (2009) and Remesan
et al. (2008) for application on modeling daily values of
GHI). The principal advantage of the GT approach over
the Bayesian approach is the simplicity of the theoretical
underpinnings behind the methodologies. The GT results
obtained in Section 4 are used here to prevent overtraining
with ANNs.

An ANN is a specific representation of y in terms of
some input variables x. The ANN representation is based
on signals being sent through elements called neurons in
such a way that the processing of the inputs signals pro-
duces an output, y, that is sufficiently close to the desired
target value of t. Neurons are arranged in layers, where
the first layer contains the set of inputs, the last layer con-
tains the output, and the layers in between, referred to as
hidden layers, contain hidden neurons. A feedforward neu-
ral network with N inputs and Nh neurons in one hidden
layer with a linear output activation function can be
expressed as

y ¼ f ðx;wÞ ¼
XNh

i¼1

wkf hidden
k

XN

j¼1

wj;kxj þ w0; k

 !
þ w0 ð8Þ

where f hidden
k are sigmoidal functions, such as the hyperbolic

tangent function. A characteristic of feedforward neural
networks is that the neurons are successively intercon-
nected from layer to layer where neurons in one layer affect
all neurons in the next but do not affect other neurons in
the same layer or any preceding layers. Numerical optimi-
zation algorithms such as back-propagation, conjugate
gradients, quasi-Newton, and Levenberg–Marquardt have
been developed to efficiently adjust the weights, wk,j and
wk in the feedforward neural networks so that the minimi-
zation of some performance function is achieved on some
training data. Typically the performance function used
for adapting the weights is the MSE.

MSE ¼ 1

M

XM

i¼1

ðyi � tiÞ2: ð9Þ
6. Model development and evaluation

The MATLAB NEURAL NETWORK TOOLBOX was used to con-
struct regression models for GHI and DNI where the
inputs consists of same-day forecasted meteorological vari-
ables. The same-day forecasted NDFD data was random-
ized and split into two categories consisting of a training
set and a test set. The proportions of each set are based
on the results of the M-test (Fig. 3a and b). Accordingly,
the training set consists for 60% of the randomly selected
points of the entire data set to train the GHI neural net-
works and 80% to train the DNI neural networks. The neu-
ral network architectures are based on the feed-forward
structure described in Section 5 where the input layer con-
sist of the inputs from the four subsets suggested in Section
4.
6.1. Forecasting model training

Eight ANN models were trained and tested to forecast
solar irradiation. Models 1–4 forecast GHI and Models
5–8 forecast DNI. In each training cycle (epoch), all the
training data is presented to the ANN in random batches
and the MSEs are computed. The weights are adapted
using Levenberg–Marquardt learning algorithm and the
stopping criteria for neural network training is based on



752 R. Marquez, C.F.M. Coimbra / Solar Energy 85 (2011) 746–756
continued training until the R2 reaches the Gamma test
output, Vratio, or for a maximum of 100 epochs. The num-
ber of neurons in the hidden layer was kept at 10–20 neu-
rons. When more neurons were used, larger discrepancies
of the model quality statistics between the training and test-
ing sets were observed and as a result the ANN models gen-
eralized more poorly.

6.2. Benchmark reference models: 24-h persistent model and

Perez model

For the purpose of comparisons, we include a persistent
model defined as the model that estimates the solar irradi-
ance as having the same hourly values as the previous day,
i.e., the persistent model used here is a 24-h persistent
model.

The Perez GHI forecasting model (Perez et al., 2010)
which has been validated at a number of locations is also
applied here. The Perez model relates GHI to sky cover
(SC) as:

GHI ¼ GHIclearð1� 0:87SC1:9Þ; ð10Þ

where SC is the sky cover values obtained from the NDFD
forecasts. Estimates for GHIclear are obtained using a
Linke Turbidity factor of 3 as per Perez et al. (2002).

6.3. Statistical evaluation metrics

The eight models differ by their inputs as is indicated in
Table 3. The model quality metrics used for comparisons of
the different models include the R2, RMSE, and relative
RMSE (rRMSE), which are calculated using the following
equations:

R2 ¼ 1�
PM

i¼1ðyi � tiÞ2PM
i¼1ðti ��tÞ2

; ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1

1

M
ðyi � tiÞ2

r
; ð12Þ

rRMSE ¼ RMSE=�t; ð13Þ
Table 3
Statistical summary of trained neural network models and comparison with p

Model Inputs Training

MBE [W/m2] (%) RMSE [W/m

(a) [GHI]

1 [x8,x10] +0.38 (+.1) 77 (19.3)
2 [x5,x8,x9,x10] �1.35 (�0.3) 67 (17.2)
3 [x1,x2,x3,x5,x6,x8,x9,x10] �2.25 (�0.5) 63 (15.7)
4 [All] �1.94 (�0.5) 58 (14.8)

Persistent GHI – –
Perez model – –

(b) [DNI]

5 [x5,x9,x11] �1.5 (�0.3) 171 (35.0)
6 [x1,x3,x5,x8,x9,x11] �2.7 (�0.5) 142 (29.1)
7 [x1,x2,x3,x5,x6,x8,x9,x11] �6.3 (�9.5) 148 (30.1)
8 [All] �1.3 (�1.9) 138 (28.1)

Persistent DNI – –
MBE ¼
XM

i¼1

1

M
ðyi � tiÞ; ð14Þ

and

rMBE ¼MBE=�t: ð15Þ

In the above definitions, yi are the predictions from the
ANNs, ti, are measured values of GHI or DNI, and �t are
the averages of GHI or DNI for the training or test set.
Night values (values which occur when cosZ < 0) are
removed when computing each of the statistical quantities.

6.4. Forecasting model evaluations

All models proposed here show major improvements
over the 24-h persistent model. The improvement is partic-
ularly accentuated for the DNI forecasting models (see
Table 3). By comparing the statistical measures for training
and test sets of each model, we notice there are significant
improvements over the simpler models with the least
inputs. As can be the case in modeling with ANNs, better
training performance is achieved when more inputs are
used. However, the use of more inputs does not necessarily
translate to better generalization or ability to forecast. The
results in Table 3a and b show that models with intermedi-
ate complexity perform best on both training and test sets.

As indicated by the RMSE and R2 values, Perez’s 2010
model (Perez et al., 2010) compares favorably with Model
1, which includes the same inputs (note that clear-sky GHI
is approximated well by cosZ). In this case, Perez’s model
should be favored over Model 1 because the later employs
fewer parameters than Model 1, and no additional errors
due to excessive computations are incurred. The Perez
model has only two parameters whereas the ANN method
requires over 20 parameters and is therefore overly com-
plex in this case. However, a comparison between the
MBE values for the ANN and Perez’s models show that
there is room to improve over Perez’s simple model. If
we take Perez’s model as the baseline for RMSE compari-
sons, Model 1 underperforms by 6%, whereas Models 2–3
ersistent and Perez Model. Best values are denoted in bold fonts.

Test

2] (%) R2 MBE[W/m2] (%) RMSE [W/m2] (%) R2

0.939 +0.60 (+.1) 89 (22.8) 0.915
0.952 �3.23 (�0.6) 72 (17.7) 0.947

0.959 �3.10 (�.6) 73 (18.5) 0.945
0.965 �2.10 (�0.5) 74 (18.6) 0.942
– �1.5 (�0.4) 123.1 (31.1) 0.854
– �10.73 (�2.50) 84 (21.7) 0.921

0.763 �2.4 (�0.5) 162 (32.3) 0.781
0.835 �3.4 (�1.3) 156 (31.2) 0.801

0.821 �7.1 (�10.3) 161 (33.2) 0.788
0.845 �4.2 (�8.3) 158 (32.0) 0.797
– �8.40 (�1.7) 270 (54.5) 0.404
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improve over Perez’s model by over twice the same
amount, indicating that the stochastic approach with more
inputs represents a true gain that compensates for the addi-
tional complexity in computation. Again, some of these
results were expected from the M-tests (see Fig. 3a).

It is also interesting to compare results from Table 3
with the M-test results in Fig. 3a and b. In comparing
the actual training R2s of each model with those predicted
from the M-tests, we see that they are quite close, in partic-
ular, for the GHI models. For example, according to the
M-test for Model 1, we could have expected an
R2 � 0.945, which is close to the actual R2 = 0.939. The
training R2s for GHI are generally much closer to what
was predicted in the M-test than for DNI. This is likely
because the M-test plots have stabilized with a relatively
smaller proportion of data (at �45%) as compared to
DNI (M-test plots do not stabilize until after �80% of total
number of data points used). This also indicates GHI is
much easier to predict than DNI and that additional data
will be required to obtain better models for DNI.

One concern for using a larger input set is that the pre-
diction errors of each input directly propagates to errors in
forecasting the output. In order to observe the propagation
of the NDFD uncertainty, the forecasting errors for all
models for same-day and several days ahead are shown
in Fig. 4a and b. These figures illustrate that forecasting
errors increase with forecasting lead times as a result of
uncertainty in the next few days of the inputs from the
NDFD. This point is explained more explicitly in the next
section. A general observation from these figures is that
models with fewer inputs have lesser nominal increases in
forecasting errors with respect to forecasting horizon. In
addition, as the forecasting horizon increases to 4 or more
days ahead there is less of a difference between each of the
models, and so the preferred models would be Model 1 and
Model 5 because fewer inputs are involved.

The rRMSEs given so far are a measure of model qual-
ity over the entire data set. In some cases it may be impor-
tant to know if there are certain periods when the solar
radiation is more predictable. The rRMSEs for GHI Model
0 1 2 3 4 5
0.15

0.2

0.25

0.3

(a) GHI

Fig. 4. The relative RMSE (%) for forecasts using models with different inpu
number of days ahead where 0 denotes same-day.
3 and DNI Model 7 are calculated on a monthly basis to
produces Fig. 5a and b. For both models the rRMSEs
are lower than the aggregated rRMSE during the months
between and including March through September. It is also
apparent from these figures that during the summer
months solar irradiation (GHI and DNI) is much more
forecastable.

7. Prediction intervals

As a post-analysis step, prediction intervals are provided
in order to examine how model and forecasting uncertainty
depends the type of sky situation. For instance, as shown in
Fig. 5a and b, model and forecasting accuracy is generally
much better during summer months when there are few
cloudy days. Similar as in Bacher et al. (2009) and Lorenz
et al. (2009), prediction intervals are derived here by ana-
lyzing the residuals.

To construct the prediction intervals we make a few
assumptions regarding the distribution of the residuals.
One of the assumptions is that the expected value, or mean
value, of the residuals (r) given some value of the inputs x,
denoted as E(rjx), is equal to zero, E(rjx) = 0. The next
assumption is that the residuals with the expectation value
E(rjx) = 0 and variance Var(rjx) = E(r2jx) are normally dis-
tributed. Then letting sðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðr2 j xÞ

p
, the prediction

limits of the models can be computed as

yprediction limits ¼ f ðxÞ � za=2sðxÞ; ð16Þ

where za/2 is the z-score for the confidence level 1 � a. For
95% confidence levels, za/2 = 1.96. In Lorenz et al. (2009),
s(x) was modeled using a fourth degree polynomial using
the predicted clearness index and cloud cover. Similarly,
we applied regression using ANNs to produce model esti-
mates of s(x).

Fig. 6a shows time-series plots of measured and modeled
GHI with prediction bands for same-day forecasts. The
upper limits of the bands were limited to a maximum value
of 1000 W/m2. Although approximately 95% of all the
observed points fell within the confidence intervals, most
0 1 2 3 4 5 6
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0.55

(b) DNI

ts as indicated in the legend on graph. The horizontal axis represents the
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Fig. 5. The relative RMSE by month from beginning of November 2008 to end of November 2009. The rRMSEs are normalized with respect to
GHImean = 474 W/m2 and DNImean = 541 W/m2. The rRMSEs are for modeling DNI for same-day and forecasts 1–6-days ahead as indicated by legend
on graph. The DNI data sets for June 2009 were deemed unreliable due to mechanical problems with the measurement tracking system, and therefore these
values are not reported here.

754 R. Marquez, C.F.M. Coimbra / Solar Energy 85 (2011) 746–756
of the departures were clustered on a few days, while most
days had no departures. These systematic departures are
probably due to errors in the inputs for which the estimates
of prediction bands are based on.

For clear days, the prediction bands are relatively nar-
row indicating that GHI is very predictable for clear-sky
situations. For days with more sky cover, however, irradi-
ance is much less predictable as indicated by the wider pre-
diction bands. Fig. 6b shows 1-day ahead predictions of
GHI for the same days as in Fig. 6a. These results coincide
with previous results from Bacher et al. (2009) and Lorenz
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(a) Same-day forecasted hourly values and 
                    measured values.

Fig. 6. Forecasts from Model 3 with prediction intervals for hourly GHI. The
and the shaded regions are the 95% confidence intervals.
et al. (2009), where they characterized larger forecasting
uncertainty during partly cloudy to overcast conditions
for solar power and irradiance model predictions,
respectively.

Fig. 8 shows sky cover values for the same days used in
the prediction interval plots. For the day 4/24/2009, the 1-
day ahead forecasted hourly values are underestimated,
and thus the prediction bands are smaller for the 1-day
ahead irradiance predictions than the same-day predic-
tions. The opposite is true for the sky cover and predictions
bands for 4/25/2009. These figures show that forecasting
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(b) One-day ahead forecasted hourly values and 
                             measured values.

dark-bold lines are the measured values, the thin lines are the predictions,
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Fig. 7. Forecasts with prediction intervals for hourly DNI. The dark-bold lines are the measured values, the thin lines are the predictions, and the shaded
regions are the 95% confidence intervals.
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Fig. 8. Hourly values of sky cover for same days used in the prediction
interval plots. Night values were removed.
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uncertainty is proportional to sky cover and also that the
irradiance predictions and prediction intervals are directly
related to sky cover forecasting uncertainty.

One can also compare the prediction intervals for same-
day forecasts with 1-day ahead forecasts for DNI, Fig. 7a
and b. The prediction intervals for DNI are much wider
than for GHI, further illustrating that DNI is relatively
more difficult to reliably predict.
8. Conclusions

We developed forecasting models for hourly solar irradi-
ation using Artificial Neural Networks for lead times of up
to 6 days. Model inputs included current and forecasted
meteorological data obtained from the US National
Weather Services forecasting database, and solar geotem-
poral variables. The normalized hour angle was introduced
as an effective input for modeling and forecasting solar
irradiation. An input selection scheme was applied using
the Gamma test combined with a master genetic algo-
rithm-based method to reveal the most relevant set of
inputs which included the solar geometry variables, sky
cover, probability of precipitation, and minimum and max-
imum temperatures.

For same-day forecasts of GHI, rRMSEs range from
15% to 22% for different models constructed on 13 month
data set. The same-day forecasts show that the models con-
structed here compare favorably to those of satellite-based
models (Perez et al., 2002; Schillings et al., 2004; Vignola
et al., 2007), and other medium-range (lead times of 1–6-
days) forecasting models (Lorenz et al., 2009; Bacher
et al., 2009; Breitkreuz et al., 2009; Perez et al., 2007,
2010). Implementation of Perez’s latest GHI forecasting
model to the data set used here yields an RMSE of
84.5 W/m2 (rRMSE = 21.7%) for same-day forecasts
which compares well with one of our simple models that
uses the same inputs. Models with slightly larger sets of
inputs generally perform better for same-day and 1-day
ahead forecasts. The DNI forecasting models were not
compared to any established models because their is none
available to compare. However, this study finds DNI to
be generally much more difficult to predict reliably: rRM-
SEs obtained on same-day forecasts are in the range of
28–35%. This trend is in agreement with previous satel-
lite-based studies (see e.g., Vignola et al., 2007).

In general, and as expected, the models lose accuracy
with increasing forecasting horizon but less sharply during
the summer than during the winter months. This is due to
long periods of consecutive clear days in the summer and a
large number of cloudy to overcast days during the winter
for California’s Central Valley. These weather characteris-
tics are important for the siting and operation of solar
farms, since the high irradiation summer months coincide
with peak power demand in the region. Solar power is
not only abundant in the region studied, but it is also very
predictable during the peak demand season.
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